Электронная библиотека » Ольга Макарова » » онлайн чтение - страница 5


  • Текст добавлен: 28 мая 2022, 12:48


Автор книги: Ольга Макарова


Жанр: Химия, Наука и Образование


сообщить о неприемлемом содержимом

Текущая страница: 5 (всего у книги 8 страниц)

Шрифт:
- 100% +

37. Минеральные удобрения

Минеральные удобрения – неорганические вещества, в основном соли, включающие в себя необходимые для растений элементы питания и используемые для повышения плодородия почвы. Бывают простые (азотные, фосфорные, калийные, микроудобрения) и комплексные.

Простые (односторонние) удобрения содержат один главный питательный элемент – азотные удобрения (аммиачная селитра), фосфорные удобрения (простой и двойной суперфосфаты), калийные удобрения (КСl) и др.

Комплексные (многосторонние) удобрения содержат два или три главных питательных элемента и по их числу называются двойными (азотно-фосфорные, фосфорно-калийные и др.) либо тройными или полными (например, азотно-фосфорно-калийные).

Сложными называются комплексные удобрения, полученные в результате взаимодействия исходных неорганических солей, кристаллизацией или сплавлением основных компонентов, смешением простых и сложных удобрений.

В зависимости от агрегатного состояния минеральные удобрения бывают:

1) жидкие;

2) твердые;

3) порошковидные (размер частиц < 1 мм);

4) кристаллические (> 0,5 мм);

5) гранулированные (1–4 мм).

По концентрации действующих веществ минеральные удобрения подразделяются на:

1) низкоконцентрированные (до 25 %);

2) концентрированные (до 60 %);

3) высококонцентрированные (более 60 %).

Производство минеральных удобрений – важная отрасль химической промышленности. Наиболее важными минеральными удобрениями считаются фосфорные (суперфосфат, двойной суперфосфат, преципитат).

Суперфосфат получают из размолотого фосфорита, смешивая его с серной кислотой, и непрерывно перемешивают:

Суперфосфат легкорастворим в воде.

Двойной суперфосфат получают в результате разложения природного фосфата под воздействием фосфорной кислоты:

В этом удобрении отсутствует сульфат кальция, упрощая внесение удобрения в почву.

Преципитат – фосфорное удобрение, компонентом которого является гидрофосфат кальция.

Указанные выше минеральные удобрения являются простыми. Сложные минеральные удобрения более перспективны.

Аммофос получается в результате взаимодействия фосфорной кислоты и аммиака – NH4H2PO4 или (NH4)2H2PO4.

Нитрофоска получается при сплавлении гидрофосфата аммония, нитрата аммония и хлорида (сульфата) натрия.

38. Углерод и его свойства

Углерод (С) – типичный неметалл; в периодической системе находится в 2-м периоде IV группе, главной подгруппе. Порядковый номер 6, Ar = 12,011 а.е.м., заряд ядра +6. Физические свойства: углерод образует множество аллотропных модификаций: алмаз – одно из самых твердых веществ, графит, уголь, сажа.

Химические свойства: электронная конфигурация: 1s22s22p2. На электронной оболочке атома – 6 электронов; на внешнем валентном уровне – 4 электрона. Наиболее характерные степени окисления: +4, +2 – в неорганических соединениях, – 4, -2 – в органических. Углерод в любом гибридном состоянии способен использовать все свои валентные электроны и орбитали. У 4-валентного углерода нет неподеленных электронных пар и нет свободных орбиталей – углерод химически относительно устойчив. Характерно несколько типов гибридизации: sp, sp2, sp3. При низких температурах углерод инертен, но при нагревании его активность возрастает. Углерод – хороший восстановитель, но соединяясь с металлами и образуя карбиды, он выступает окислителем:

Углерод (кокс) вступает в реакции с оксидами металлов:

Таким образом выплавляют металл из руды. При очень высоких температурах углерод реагирует со многими неметаллами. Огромное количество органических соединений он образует с водородом – углеводороды. В присутствии никеля (Ni) углерод, реагируя с водородом, образует предельный углеводород – метан: С + Н2 = СН4.

При взаимодействии с серой образует сероуглерод: С + 2S2 = СS2.

При температуре электрической дуги углерод соединяется с азотом, образуя ядовитый газ дициан: 2С + N2 = С2N2↑.

В соединении с водородом дициан образует синильную кислоту – НСN. С галогенами углерод реагирует в зависимости от их химической активности, образуя галогениды. На холоде реагирует со фтором: С + 2F2 = СF2.

При 2000 °C в электропечи углерод соединяется с кремнием, образуя карборунд: Si + C = SiC.

Нахождение в природе: свободный углерод встречается в виде алмаза и графита. В виде соединений углерод находится в составе минералов: мела, мрамора, известняка – СаСО3, доломита – MgCO3·CaCO3; гидрокарбонатов – Mg(НCO3)2 и Са(НCO3)2, СО2 входит в состав воздуха; углерод является главной составной частью природных органических соединений – газа, нефти, каменного угля, торфа, входит в состав органических веществ, белков, жиров, углеводов, аминокислот, входящих в состав живых организмов.

39. Аллотропные модификации углерода

Углерод образует 5 аллотропных модификаций: кубический алмаз, гексагональный алмаз, графит и две формы карбина. Гексагональный алмаз найден в метеоритах (минерал лонсдейлит) и получен искусственно при очень высоком давлении и длительном нагревании.

Алмаз – самый твердый из всех природных веществ – используют для резки стекла и для бурения горных пород. Алмаз – прозрачное, бесцветное, кристаллическое вещество, обладающее высокой светопреломляемостью. Алмазы образуют отдельные кристаллы, образующие кубическую гранецентрированную решетку – одна половина атомов в кристалле расположена в вершинах и центрах граней одного куба, а другая – в вершинах и центрах граней другого куба, смещенного относительно первого в направлении его пространственной диагонали. sp3-гибридизация. Атомы образует трехмерную тетраэдрическую сетку, где они связаны ковалентными связями.

Из простых веществ алмаз имеет максимальное число атомов, расположенных плотно друг к другу, отчего он прочный и твердый. Прочность связей в углеродных тетраэдрах (σ-связи) обуславливает высокую химическую устойчивость алмаза. На него действует лишь F2 и O2 при 800 °C.

При сильном нагревании без доступа воздуха алмаз переходит в графит. Графит – кристаллы темно-серого цвета, со слабым металлическим блеском, маслянистый на ощупь. sp3-гибридизация. Каждый атом образует по 3 ковалентных σ-связи с соседними атомами под углом 120° – образуется плоская сетка, состоящая из правильных шестиугольников, в вершинах которых находятся атомы С. Образовавшиеся слои С идут параллельно друг другу. Связи между ними слабые, их обеспечивают электроны, не участвующие в гибридизации орбиталей. Последние образуют π-связи. Связь атомов С в разных слоях носит частично металлический характер – обобществление электронов всеми атомами.

Графит обладает относительно высокой электро– и теплопроводностью, стоек к нагреванию. Из графита изготавливают карандаши.

Карбин получен синтетически α и β-формы (поликумулен) каталитическим окислением ацетилена. Это твердые, черные вещества со стеклянным блеском. При нагревании без доступа воздуха переходят в графит.

Уголь – аморфный углерод – неупорядоченная структура графита – получается при нагревании углеродосодержащих соединений.

В природе имеется большие залежи угля.

Уголь имеет несколько сортов:

1) кокс;

2) костяной уголь;

3) сажа.

40. Оксиды углерода. угольная кислота

Углерод с кислородом образует оксиды: СО, СО2, С3О2, С5О2, С6О9 и др. Оксид углерода (II) – СО. Физические свойства: угарный газ, без цвета и запаха, ядовит, в воде почти не растворим, растворим в органических растворителях, t кипения = -192 °C, t плавления = -205 °C. Химические свойства: несолеобразующий оксид. В обычных условиях малоактивен, при нагревании проявляет восстановительные свойства:

1) с кислородом: 2C+2O + O2 = 2C+4O2;

2) восстанавливает металлы из руд: C+2O + CuO = Сu + C+4O2;

3) с хлором (на свету): CO + Cl2 = COCl2(фосген);

4) с водородом: СО + Н2 = СН3ОН (метанол);

5) с серой: СО + S = СОS (сульфоксид углерода);

6) реагирует с расплавами щелочей: CO + NaOH = HCOONa (формиат натрия);

7) с переходными металлами образует карбонилы: Ni + 4CO = Ni(CO)4, Fe + 5CO = Fe(CO)5.

СО легко соединяется с гемоглобином – Hb крови, образуя карбоксигемоглобин, препятствуя переносу О2 от легких к тканям: Hb + CO = HbCO.

При вдохе воздуха карбогемоглобин распадается на исходные продукты: HbCO→Hb + CO.

Получение:

1) в лаборатории – термическим разложением муравьиной или щавелевой кислоты в присутствии H2SO4(конц.):

2) в промышленности (в газогенераторах):

Оксид углерода (IV) СO2. Физические свойства: углекислый газ, без цвета и запаха, малорастворим в воде, тяжелее воздуха, t плавления = -78,5 °C, твердый CO2 – сухой лед, не поддерживает горение.

Получение:

1) в промышленности (обжиг известняка): CaCO3→CaO + CO2;

2) действием сильных кислот на карбонаты и гидрокарбонаты: CaCO3(мрамор) + 2HCl =CaCl2 + H2O + CO2; NaHCO3 + HCl = NaCl + H2O + CO2.

Химические свойства: кислотный оксид, реагирует с основными оксидами и основаниями, образуя соли угольной кислоты:

При повышенной температуре проявляет окислительные свойства: С+4O2 + 2Mg = 2Mg+2O + C0.

Качественная реакция – помутнение известковой воды: Ca(OH)2 + CO2 = CaCO3(белый осадок) + H2O.

Угольная кислота – слабая, существует в водном растворе: CO2 + H2O = H2CO3.

Соли: средние – карбонаты (СО32-), кислые – бикарбонаты, гидрокарбонаты (НС03-).

Карбонаты и гидрокарбонаты превращаются друг в друга:

Качественная реакция – «вскипание» при действии сильной кислоты: Na2CO3 + 2HCl = 2NaCl + H2O + CO2; CO32- + 2H+ = H2O + CO2.

41. Кремний и его свойства

Кремний (Si) – стоит в 3 периоде, IV группе главной подгруппы периодической системы. Физические свойства: кремний существует в двух модификациях: аморфной и кристаллической. Аморфный кремний – порошок бурого цвета, плотностью 2,33 г/см3, растворяется в расплавах металлов. Кристаллический кремний – это кристаллы темно-серого цвета, обладающие стальным блеском, твердый и хрупкий, плотностью 2,4 г/см3. Кремний состоит из трех изотопов: Si (28), Si (29), Si (30).

Химические свойства: электронная конфигурация: 1s22s22p63s23p2. Кремний – неметалл. На внешнем энергетическом уровне кремний имеет 4 электрона, что обуславливает его степени окисления: +4, -4, -2. Валентность – 2, 4. Аморфный кремний обладает большей реакционной способностью, чем кристаллический. При обычных условиях он взаимодействует со фтором: Si + 2F2 = SiF4. При 1000 °C Si реагирует с неметаллами: с CL2, N2, C, S.

Из кислот кремний взаимодействует только со смесью азотной и плавиковой кислот:

По отношению к металлам ведет себя по-разному: в расплавленных Zn, Al, Sn, Pb он хорошо растворяется, но не реагирует с ними; с другими расплавами металлов – с Mg, Cu, Fe кремний взаимодействует с образованием силицидов: Si + 2Mg = Mg2Si. Кремний горит в кислороде: Si + O2 = SiO2 (песок).

Диоксид кремния или кремнезем – стойкое соединение Si, широко распространен в природе. Реагирует со сплавлением его с щелочами, основными оксидами, образуя соли кремниевой кислоты – силикаты. Получение: в промышленности кремний в чистом виде получают восстановлением диоксида кремния коксом в электропечах: SiO2 + 2С = Si + 2СO↑.

В лаборатории кремний получают прокаливанием с магнием или алюминием белого песка:

SiO2 + 2Mg = 2MgO + Si.

3SiO2 + 4Al = Al2О3 + 3Si.

Кремний образует кислоты: Н2SiO3 – мета-кремниевая кислота; Н2Si2O5 – двуметакремниевая кислота.

Нахождение в природе: минерал кварц – SiO2. Кристаллы кварца имеют форму шестигранной призмы, бесцветные и прозрачные, называются горным хрусталем. Аметист – горный хрусталь, окрашенный примесями в лиловый цвет; дымчатый топаз окрашен в буроватый цвет; агат и яшма – кристаллические разновидности кварца. Аморфный кремнезем менее распространен и существует в виде минерала опала – SiO22О. Диатомит, трепел или кизельгур (инфузорная земля) – землистые формы аморфного кремния.

42. Понятие коллоидных растворов

Коллоидные растворы – высокодисперсные двухфазные системы, состоящие из дисперсионной среды и дисперсной фазы. По размерам частиц являются промежуточными между истинными растворами, суспензиями и эмульсиями. У коллоидных частиц молекулярный или ионный состав.

Существуют три типа внутренней структуры первичных частиц.

1. Суспензоиды (или необратимые коллоиды) – гетерогенные системы, свойства которых можно определить развитой межфазовой поверхностью. По сравнению с суспензиями более высокодисперсные. Не могут долго существовать без стабилизатора дисперсности. Их называют необратимыми коллоидами из-за того, что их осадки после выпаривания вновь не образуют золей. Их концентрация мала – 0,1 %. От вязкости дисперсной среды отличаются незначительно.

Суспензоиды можно получить:

1) методами диспергирования (измельчение крупных тел);

2) методами конденсации (получение нерастворимых соединений при помощи реакций обмена, гидролиза и т. п.).

Самопроизвольное уменьшение дисперсности у суспензоидов зависит от свободной поверхностной энергии. Чтобы получить длительно сохраняющуюся суспензию, необходимы условия для ее стабилизации.

Устойчивые дисперсные системы:

1) дисперсионная среда;

2) дисперсная фаза;

3) стабилизатор дисперсной системы.

Стабилизатор может быть ионный, молекулярный, но чаще всего – высокомолекулярный.

Защитные коллоиды – высокомолекулярные соединения, которые добавляют для стабилизации (белки, пептиды, поливиниловый спирт и др.).

2. Ассоциативные (или мицеллярные коллоиды) – полуколлоиды, возникающие при достаточной концентрации молекул, состоящих из углеводородных радикалов (дифильные молекулы) низкомолекулярных веществ при ассоциации их в агрегаты молекул (мицеллы). Мицеллы образуются в водных растворах моющих средств (мыл), органических красителей.

3. Молекулярные коллоиды (обратимые или лиофильные коллоиды) – природные и синтетические высокомолекулярные вещества с большим молекулярным весом. Молекулы их имеют размер коллоидных частиц (макромолекулы).

Разбавленные растворы коллоидов высокомолекулярных соединений – гомогенные растворы. При сильном разбавлении эти растворы подчиняются законам разбавленных растворов.

Неполярные макромолекулы растворяются в углеводородах, полярные – в полярных растворителях.

Обратимые коллоиды – вещества, сухой остаток которых при добавлении новой порции растворителя вновь переходит в раствор.

43. Соли кремниевой кислоты

Общая формула кремниевых кислот – nSiO2·mH2O. В природе находятся в основном в виде солей, в свободной форме выделены немногие, например, HSiO (ортокремниевая) и H2SiO3 (кремниевая или метакремниевая).

Получение кремниевой кислоты:

1) взаимодействие силикатов щелочных металлов с кислотами: Na2SiO3 + 2HCl = H2SiO3 + 2NaCl;

2) кремневая кислота является термически неустойчивой: H2SiO3 = H2O + SiO2.

H2SiO3 образует пересыщенные растворы, в которых в результате полимеризации образует коллоиды. Используя стабилизаторы, можно получить стойкие коллоиды (золи). Их используют в производстве. Без стабилизаторов из раствора кремниевой кислоты образуется гель, осушив который можно получить силикагель (используют как адсорбент).

Силикаты – соли кремниевой кислоты. Силикаты распространены в природе, земная кора состоит в большинстве из кремнезема и силикатов (полевые шпаты, слюда, глина, тальк и др.). Гранит, базальт и другие горные породы имеют в своем составе силикаты. Изумруд, топаз, аквамарин – кристаллы силикатов. Растворимы только силикаты натрия и калия, остальные – нерастворимы. Силикаты имеют сложный химический состав:

Каолин Al2O3; 2SiO2; 2H2O или H4Al2SiO9.

Асбест CaO; 3MgO; 4SiO2 или CaMgSi4O12.

Получение: сплавление оксида кремния со щелочами или карбонатами:

Растворимое стекло – силикаты натрия и калия. Жидкое стекло – водные растворы силикатов калия и натрия. Его используют для изготовления кислотоупорного цемента и бетона, керосинонепроницаемых штукатурок, огнезащитных красок. Алюмосиликаты – силикаты, содержащие алюминий (полевой шпат, слюда). Полевые шпаты состоят помимо оксидов кремния и алюминия из оксидов калия, натрия, кальция – K2O·Al2O3·6SiO2 – ортоклаз.

Слюды имеют в своем составе, кроме кремния и алюминия, еще водород, натрий или калий, реже – кальций, магний, железо.

Граниты и гнейсы (горные породы) – состоят из кварца, полевого шпата и слюды. Горные породы и минералы, находясь на поверхности Земли, вступают во взаимодействие с водой и воздухом, что вызывает их изменение и разрушение. Этот процесс называется выветриванием.

Выветривание ортоклаза:

Применение: силикатные породы (гранит) используют как строительный материал, силикаты – в качестве сырья при производстве цемента, стекла, керамики, наполнителей; слюду и асбест – как электро– и термоизоляцию.

44. Получение цемента и керамики

Цемент является важнейшим материалом в строительстве. Цемент получают обжигом смеси глины с известняком. При обжиге смеси CaCO3 (кальцированная сода) разлагается на CaO и углекислый газ CO2. CaO вступает во взаимодействие с глиной и получаются силикаты и алюминаты кальция. Химический состав цемента выражают в виде содержащихся в нем оксидов, главным из них является CaO: Al2O3, SiO2, Fe2O3.

Прокаливание производится в специальных цилиндрических вращающихся печах при температуре 1400–1600 °C. Получаемая спекшаяся масса называется клинкером. Клинкер сдо-бавками размалывают в порошок в шаровых мельницах и получают окончательный продукт – цемент – порошкообразное вещество, при смешивании с водой на воздухе затвердевает в каменнообразную массу (применяется для скрепления кирпича, камня в качестве связующего материала).

Смесь цемента с песком и водой – цементный раствор. Смесь такого раствора с гравием или щебнем – бетон. Залитый бетоном железный каркас – железобетон. Из него строят своды, мосты, арки, бассейны, кладут перекрытия зданий, электростанций. В природе встречаются известняково-глинистые породы, по составу соответствующие цементной массе – мергели.

Виды цемента: 1) быстротвердеющий; 2) морозостойкий; 3) коррозийностойкий; 4) кислотоупорный.

Керамика – изделия или материалы, изготовленные из огнеупорных веществ: глины, карбидов, оксидов некоторых металлов.

Виды керамики:

1) строительная керамика (облицовочные плиты, кирпич, черепица, трубы канализации);

2) огнеупорная керамика (огнеупорный кирпич, материалы для внутренней облицовки доменных, сталелитейных, стеклоплавильных печей);

3) химически стойкая керамика (используется в химической промышленности);

4) бытовая керамика (фаянсовые и фарфоровые изделия);

5) техническая керамика.

Процесс изготовления керамических изделий включает: 1) изготовление керамической смеси; 2) формование; 3) сушка; 4) обжиг.

В зависимости от природы исходных материалов и дальнейшего использования продукции операция проводится по разному, строго определенному режиму.

При изготовлении кирпича сырье измельчается, перемешивается и увлажняется. Получившуюся массу формуют, сушат, а затем при температуре 900 °C подвергают обжигу. При обжиге происходит спекание массы, обусловленное химическим процессом.

Основная реакция при обжиге глины: 3 [Al2O3·2SiO2·2H2O] = 3Al2O3·2SiO2 + 4SiO2 + 6H2O.

45. Физические свойства металлов

Все металлы имеют ряд общих, характерных для них свойств. Общими свойствами считаются: высокая электропроводность и теплопроводность, пластичность.

Разброс параметров у металлов очень велик, например, температура плавления может варьировать от 38,87 °C (Hg – ртуть) до 3380 °C (W – вольфрам), плотность – от 0,531 г/см3 (Li – литий) до 22,5 г/см3 (Os – осмий).

Коэффициент электропроводности металлов храктеризует их способность к проведению электричества. Коэффициент зависит от строения и свойств металла, у каждого металла он индивидуальный. Теория электропроводности состоит в том, что фактором электрического сопротивления металлов являются потери на излучение. Пользуясь теорией, можно вычислить коэффициент для любого металла.

Металлы способны испускать электроны при высокой температуре, это явление называется термоэлектронной эмиссией, возникающее также под воздействием других факторов (электро-магнитое поле, воздействие УФ и др.). Перепад температуры провоцирует в металлах появление электрического тока. Движения электронов в металлах обуславливают их теплопроводность. Отношение теплопроводности металлов и их электрической проводимости является постоянной величиной для всех металлов.

По магнитной восприимчивости металлы делятся на диамагнетики и парамагнетики.

Металлы непрозрачны, обладают металлическим блеском, сочетают в себе такие качества как: пластичность, вязкость, прочность, твердость и упругость. Все эти свойства зависят от целостности кристаллической решетки и состава.

Пластичность металлов находит большое практическое применение. Благодаря ей металлы можно подвергать различным воздействиям – ковке, вытягиванию, прокатке, штамповке. Это свойство можно объяснить специфическими свойствами металлической связи, которая связывает атомы металлов в кристаллической решетке.

Механические свойства реальных металлов характеризуются присутствием дефектов, в первую очередь дислокаций, потому что перемещение дислокаций по плоскостям кристаллической решетки с наиболее плотной упаковкой считается основным механизмом пластической деформации металлов. При взаимодействии дислокаций с другими дефектами вызывается увеличение сопротивления пластической деформации. Во время деформации количество дислокаций растет, одновременно с ними растет сопротивление деформации (деформационное упрочнение или наклеп). Подобные дефекты металла можно устранить при отжиге. В локализациях «сгущения» рост напряжений способен привести к образованию трещин, являющихся очагами разрушения металла.


Страницы книги >> Предыдущая | 1 2 3 4 5 6 7 8 | Следующая
  • 0 Оценок: 0

Правообладателям!

Это произведение, предположительно, находится в статусе 'public domain'. Если это не так и размещение материала нарушает чьи-либо права, то сообщите нам об этом.


Популярные книги за неделю


Рекомендации