Автор книги: Патрик Смит
Жанр: Зарубежная публицистика, Публицистика
Возрастные ограничения: +12
сообщить о неприемлемом содержимом
Текущая страница: 2 (всего у книги 26 страниц) [доступный отрывок для чтения: 9 страниц]
Хорошо, с закрылками и предкрылками разобрались. Но я никак не могу взять в толк, зачем нужны другие движущиеся части на внешней поверхности самолета. Панели, которые двигаются вверх и вниз, а в хвостовой части – из стороны в сторону…
Птица маневрирует, изгибая крылья и хвост. Эти движения пытались скопировать пионеры авиации, поэтому в первых прототипах самолетов были механизмы поворота крыла. Однако современные самолеты делаются из алюминия и высокопрочных композитов, а не из дерева, ткани или перьев. Различные движущиеся приспособления управляются за счет гидравлики, электричества и вручную при помощи тросов. Они помогают набирать, снижать высоту и поворачивать.
В конце фюзеляжа находится хвостовое оперение, или вертикальный стабилизатор, который выполняет функцию, логично вытекающую из его расположения, – он позволяет самолету двигаться с заданным курсом. К задней кромке хвостового оперения на шарнирах прикреплен руль направления. Он помогает поворачивать, но не управляет поворотами. Руль в первую очередь призван стабилизировать самолет, уравновесить его раскачивание из стороны в сторону, или рыскание. Некоторые рули делятся на несколько секций, которые двигаются все вместе или по отдельности – в зависимости от скорости воздушного потока. Пилот управляет рулем направления посредством ножных педалей, хотя устройство под названием «демпфер рыскания» выполняет большую часть этой работы автоматически.
Два маленьких крыла находятся ниже хвостового оперения, а иногда крепятся к нему самому. Это горизонтальные стабилизаторы, движущиеся задние части которых называются рулями высоты. Они используются для управления тангажом[6]6
Так называется угловое положение самолета относительно горизонтальной плоскости. Угол тангажа – угол между продольной осью самолета и горизонтальной плоскостью. Прим. науч. ред.
[Закрыть] самолета: пилот увеличивает или уменьшает его, двигая ручку управления (джойстик) вперед или назад.
Элероны, расположенные на задних кромках крыльев, отвечают за повороты. Пилоты управляют ими при помощи штурвала или джойстика, задавая направление отклонения элеронов, – вверх или вниз. Они соединены между собой и движутся в противоположном направлении: когда левый элерон поднимается, правый опускается. Поднятый элерон сокращает подъемную силу со своей стороны, опуская соответствующее крыло, а опускание элерона дает обратный эффект. Малейшее шевеление элерона приводит к значительному повороту, поэтому они редко двигаются. Может показаться, что самолет кренится без всякого видимого движения, но на самом деле элероны делают свое дело, даже если двигаются еле заметно. У крупных самолетов по два элерона на крыло: внутренние (около фюзеляжа) и внешние (ближе к концу крыла). Они работают синхронно или по отдельности – в зависимости от скорости. Элероны нередко соединяются со спойлерами, которые частично разворачиваются при повороте.
Как видите, даже простейший маневр может потребовать организации сложного «танца» движущихся частей. Но прежде чем вы представите себе несчастного пилота, жмущего на педали и нервно дергающего разные рычаги, не забывайте, что отдельные детали соединены друг с другом. Любое движение штурвала или ручки управления одновременно приводит в действие разные элементы.
И еще. Рули, элеваторы и элероны оснащены мелкими триммерами, которые действуют независимо от основных поверхностей. Эти триммеры «подравнивают» движения тангажа, крена и направления.
Не спешите все это запоминать – у меня для вас прекрасная новость: практически у всего, описанного выше, есть нестандартные варианты. Однажды я летел на самолете, где были как спойлеры, использовавшиеся только после посадки, так и те, что применяли при поворотах, а также спойлеры для снижения скорости во время полета. Некоторые модели Boeing оснащены стандартными закрылками не только на задних кромках крыльев, но также и на передней кромке – наряду с предкрылками. У Concorde не было горизонтальных стабилизаторов, то есть и рулей высоты тоже не было. Но у него имелись элевоны. К ним, а также к флаперонам вернемся чуть позже.
У многих самолетов есть маленькие перевернутые кили на концах крыльев. Для чего они?
На законцовке крыла область повышенного давления (под крылом) пересекается с областью пониженного давления (над крылом). Это приводит к образованию мощного вихря на законцовке крыла. Крылышки[7]7
Концевые крылышки – концевые аэродинамические поверхности специального вида. Прим. науч. ред.
[Закрыть], как их ласково называют, помогают сгладить эффект от этого перемешивания – они снижают силу лобового сопротивления и способствуют увеличению дальности перелетов и производительности. В силу того, что самолеты могут обладать разными аэродинамическими характеристиками, крылышки не всегда полезны. Например, на Boeing 747–700 и Airbus A340 они есть, а на Boeing 777 – нет, хотя это тоже широкофюзеляжный самолет с большой дальностью полета. Поскольку раньше не старались так экономить на топливе, как в наши дни, а преимущества крылышек были осознаны лишь недавно, ранние модели проектировались без них. Для таких самолетов (в этот список входят Boeing 757 и Boeing 767) крылышки остаются дополнительной опцией, их можно доустановить. Авиакомпании нужно сопоставить экономию на топливе при дальних перелетах со стоимостью установки крылышек, которая в некоторых случаях может достигать миллионов на один самолет. Все зависит от специфики перелетов. В Японии для внутренних рейсов была закуплена партия Boeing 747 малой дальности с большой пассажирской загрузкой – и с этих самолетов крылышки удалили. Они малоэффективны на коротких перелетах, а без них самолет становится легче и проще в эксплуатации.
О вкусах, как известно, не спорят. Мне кажется, что крылышки красиво смотрятся на некоторых реактивных самолетах вроде Airbus A340, но нелепо выглядят на машинах типа Boeing 767. Бывают разные крылышки – большие и яркие или совсем незаметные. Крыло с плавно сопряженным крылышком сужается постепенно, без резких углов. На самолетах вроде Boeing 787 и Airbus A350 используется менее интегрированный вариант, иногда его называют скошенной законцовкой крыла.
Что это за длинные, похожие на каноэ выступы, находящиеся под крылом?
Это обыкновенный элемент обшивки – приспособления, обеспечивающие плавное обтекание (так называемые обтекатели). Они предотвращают образование высокоскоростных ударных волн, но это не самая важная часть крыла: они сглаживают поток воздуха вокруг механизмов выпуска закрылков.
Не так давно был случай, когда несколько пассажиров встревожились, заметив, что на их самолете нет одного обтекателя. Они отказались сесть на борт из-за того, что – как писали в СМИ – «отсутствовала часть крыла». В действительности обтекатель сняли для ремонта, после того как он был поврежден машиной бортпитания. Полет без обтекателя может привести к перерасходу топлива, однако самолет остается абсолютно пригодным к работе. (В перечне допустимых повреждений и неисправностей (configuration deviation list, CDL) можно проверить, допустимо ли, чтобы той или иной детали не было на самолете, и каков при этом перерасход [см. вопрос про неисправности]).
Способен ли реактивный лайнер выполнять фигуры высшего пилотажа? Может ли Boeing 747 сделать мертвую петлю или летать в перевернутом положении?
Теоретически любой самолет может выполнить практически любой маневр: мертвую петлю, бочку или даже перевернутый поворот на горке[8]8
Полупетля в перевернутом положении: начало фигуры – полет в одну сторону, конец – полет в другую сторону. Прим. науч. ред.
[Закрыть]. (Во время демонстрационного полета в конце 1950-х годов Boeing 707 был сознательно перевернут вверх дном.) Однако возможность выполнения этих трюков во многом зависит от запаса тяги или от количества лошадиных сил. А у гражданских самолетов, как правило, недостаточно мощности двигателя относительно своей массы. В любом случае этого делать не стоит. Составные части авиалайнеров не предназначены для фигур высшего пилотажа, в ходе их выполнения они могут получить повреждения (возможны и более тяжелые последствия). Кроме того, уборщикам всю ночь придется оттирать пятна кофе и т. д.
Возможно, теперь вы еще больше недоумеваете: как самолет может летать в перевернутом положении? Наверняка на вас повлиял и мой рассказ о том, что крыло слегка искривлено наверху и имеет плоскую поверхность внизу, чем обусловлена разница давлений, которая, в свою очередь, обеспечивает подъемную силу. Если лететь в перевернутом положении, разве она не будет направлена в противоположном направлении, заставляя самолет двигаться к земле? Да, отчасти это так. Но, как мы уже выяснили, крыло создает подъемную силу, направленную в обе стороны, и разница давлений по Бернулли в данном случае не очень важна. Обычное изменение угла атаки крыла играет гораздо более важную роль. Все, что требуется от пилота, – удерживать правильный угол, при котором будет отклоняться достаточное количество воздушного потока, а отрицательная подъемная сила от перевернутого аэродинамического профиля с легкостью компенсируется за счет «эффекта воздушного змея»[9]9
Имеется в виду, что происходит компенсация за счет набегающего потока при увеличении угла атаки крыла. Прим. науч. ред.
[Закрыть].
Вы утверждали, что не собираетесь утомлять читателей специальной терминологией. «Описание устройства реактивного двигателя, – писали вы, – точно будет неинтересным». И все же, если вас не затруднит, расскажите, как он устроен
Представьте себе устройство двигателя как последовательную сборку вращающихся зубчатых дисков – компрессоров и турбин. Воздух втягивается и направляется через крутящиеся компрессоры. Он плотно сжимается, смешивается с распыленным керосином и воспламеняется. Сгоревший газ затем шумно вылетает из сопла двигателя. Перед этим ряд вращающихся турбин поглощает часть энергии газа. Турбины обеспечивают энергией компрессоры и большой вентилятор в передней части гондолы (обтекателя) двигателя.
Двигатели более ранних поколений получали почти всю тягу из горячего сгоревшего газа. В современных двигателях большой вентилятор, расположенный впереди, делает основную часть этой работы. Реактивный двигатель можно уподобить вентилятору в кольцевом обтекателе, вращающемуся во внутреннем контуре турбины и компрессора. Наиболее мощные двигатели – компаний Rolls-Royce, General Electric и Pratt & Whitney – имеют тягу почти в 450 тысяч ньютонов. Двигатели дают энергию системам электрики, гидравлики, нагнетания давления и борьбы с обледенением. Поэтому реактивные двигатели часто называются энергетическими установками.
Что такое турбовинтовой двигатель?
Все современные гражданские самолеты с воздушными винтами имеют турбовинтовые двигатели. Это, по сути, реактивные двигатели. Только компрессоры и турбины обеспечивают энергией воздушный винт, а не вентилятор – так достигается высокая производительность на малых высотах и во время перелетов на небольшие расстояния. Иными словами, это реактивный двигатель с воздушным винтом. В турбовинтовом двигателе нет поршней, поэтому вас не должна вводить в заблуждение приставка «турбо». Здесь нет никакой связи с автомобильным турбонаддувом. Турбовинтовые двигатели надежнее поршневых и отличаются высокой тяговооруженностью.
Реактивные и турбовинтовые двигатели работают на реактивном топливе, то есть очищенном керосине (варианте того вещества, которое используется в походных лампах). Существуют разные сорта этого топлива – авиакомпании используют Jet-A[10]10
Российские компании используют отечественный авиационный керосин, например ТС-1 (его применяют при более низких температурах). Прим. науч. ред.
[Закрыть]. Реактивное топливо на удивление стабильно, но менее воспламеняемо, чем кажется на первый взгляд – как минимум до распыления. Если зажечь спичку и бросить в лужицу разлившегося топлива, оно не загорится. (Издательство не несет ответственности за любой ущерб, который может быть причинен вследствие данного заявления.)
Я заметил как-то отверстие под хвостом, в верхней части, которое испускает какой-то выхлоп. Что это такое?
Это ВСУ (вспомогательная силовая установка) – небольшой реактивный двигатель. Он используется для поддержки систем электричества и кондиционирования воздуха, когда не действуют основные двигатели, или для того чтобы дополнить их, когда они работают. На всех современных самолетах есть ВСУ. Она, как правило, расположена в конце фюзеляжа под хвостом. Если вы поднимаетесь на борт по открытому трапу, и вам кажется, что вокруг вас работают десять тысяч фенов, знайте – это ВСУ.
ВСУ – это также источник воздуха высокого давления, необходимого, чтобы завести основные двигатели. Внутренние аккумуляторы на больших самолетах не обладают достаточной мощностью, чтобы побудить компрессоры двигателей вращаться. Они раскручиваются при помощи воздуха, получаемого от ВСУ. Первым гражданским авиалайнером, в стандартную комплектацию которого вошла ВСУ[11]11
Турбостартеры как некое подобие ВСУ были установлены на первом советском реактивном лайнере Ту-104 (1955). ВСУ в современном понимании штатно установили на Ту-134 (советский ближнемагистральный пассажирский самолет, выпускался с 1966 года). Прим. науч. ред.
[Закрыть], стал Boeing 727, впервые запущенный в эксплуатацию в 1964 году. До этого внешний источник подачи воздуха – тележку с баллонами сжатого воздуха, или «хаффер», – подцепляли к воздуховодным трубам самолета. Эти тележки можно увидеть и сегодня. Их применяют в тех случаях, когда ВСУ не работает и нужно запустить первый двигатель. Именно он становится источником подачи воздуха для остальных двигателей.
Большинство турбовинтовых двигателей заводятся при помощи электрики, а не пневматики. Если нет ВСУ, а аккумуляторов самолета недостаточно, электроэнергия поставляется посредством наземного источника внешнего питания (ground power unit, GPU). Он буксируется на небольшом тягаче и выглядит как один из генераторов, которые применяют в дорожно-строительных работах.
Если электроэнергия в аэропорту подается через ВСУ, то почему случается видеть, как двигатели вращаются, пока самолет стоит на площадке?
Такого не бывает. Двигатели самолетов практически никогда не работают на площадке. Правда, иногда ветер вращает вентилятор первой ступени. Даже легкий ветерок способен сильно его раскрутить. Это кажется невозможным, так как самолет прижат к зданию или ориентирован не в том направлении, но все дело в том, что ветер дует сзади. На новейших двигателях больший объем всасываемого воздуха поступает в обход блока компрессоров и турбин, обеспечивая прямое попадание на лопасти вентиляторов сзади.
Сколько стоит авиалайнер?
Вы поверите, если я скажу, что новенький Airbus A330 или Boeing 777 стоит 200 миллионов долларов? Или что за новый Boeing 737 платят 70 миллионов? Даже самолеты небольших авиакомпаний, которые большинство из вас терпеть не может, оцениваются в несколько миллионов долларов. Цена в 20 миллионов – вовсе не редкость для высококлассного реактивного или турбовинтового самолета заштатной авиалинии (вспомните эту сумму, когда будете подниматься по трапу и отпускать шуточки насчет игрушечного вида самолетиков). Цена за подержанный лайнер зависит от возраста, модернизации и исправности. Многое определяют двигатели, каждый из которых стоит несколько миллионов, и техническое обслуживание: сколько осталось до капитального ремонта и какие именно работы требуются. В зависимости от всех этих факторов подержанный Boeing 737 можно купить как за два, так и за 20 миллионов долларов.
Авиакомпании напрямую не владеют частью, а иногда и всеми самолетами из своего парка. Они берут их в аренду у банков или лизинговых агентств, делая регулярные выплаты (так же как вы платите за свою машину, купленную в кредит). Другие варианты приобретения им не по карману.
Есть ли разница между самолетами компаний Boeing и Airbus? У меня складывается впечатление, что Airbus выглядят скромнее
Ненавижу этот вопрос, он звучит неуважительно. Выражения типа «выглядит скромнее» говорят о недооценке сложности любого авиалайнера независимо от производителя. Создание любого самолета требует значительных затрат. Машины компаний Boeing и Airbus, безусловно, отличаются по ряду параметров. Они строятся в соответствии с разными представлениями о производстве и эксплуатации, и у каждого есть свои плюсы и минусы. Иногда случаются спорные моменты: Airbus критикуют за то, что компания излишне полагается на автоматизацию управления – в некоторых ситуациях пилот не имеет возможности вмешаться. Boeing, в свою очередь, затравили из-за случаев неисправности руля, что привело как минимум к двум трагедиям в 1990-е годы. Но значительных различий в уровне безопасности нет, а все разговоры о том, какой самолет «лучше», основаны на тонкостях технического устройства машин. Рассказ о них быстро нагонит на вас (и на меня) зевоту. К тому же они не проявляются в виде стуков, скрипов, дребезжания или чего-то такого, что мог бы заметить пассажир. Если говорить о пилотах, то все сводится к личным предпочтениям и, так сказать, стилю и не имеет отношения к уровню качества. Можно сравнить эту ситуацию с противоборством Apple и PC: и у того, и у другого производителя есть и свои критики, и свои поклонники.
Существуют ли самолеты, на которых можно добраться до пункта назначения быстрее?
Скорость на больших высотах измеряется в числах Маха[12]12
Эрнст Мах (1838–1916) – австрийский физик, механик и философ-позитивист. Один из основоположников газовой динамики. Изучал аэродинамические процессы, сопровождающие сверхзвуковое движение тел; открыл и исследовал процесс возникновения ударной волны. В этой области именем Маха назван ряд величин и понятий: число Маха, конус Маха. Прим. ред.
[Закрыть]. Полет со скоростью в 1 Мах – это полет со скоростью звука на данной высоте, а число Маха – это отношение скорости самолета к местной скорости звука. Самолеты, летающие на дальние расстояния, перемещаются с чуть большей скоростью, чем ближнемагистральные. Скорость Boeing 747, Airbus A380 или Boeing 777 составляет примерно 0,84–0,88 Маха (84–88 % от скорости звука). Скорость менее крупных реактивных самолетов вроде Boeing 737 и Airbus A320 находится в диапазоне от 0,74 до 0,80 Маха. У Boeing 767 (на таком летаю я) средняя скорость – от 0,77 до 0,82 Маха. Для каждого полета выбирается своя оптимальная скорость. Если самолет не опаздывает или нужно следить за расходом топлива, мы полетим со скоростью, наиболее экономичной с этой точки зрения. А когда мы опаздываем, но с топливом нет проблем, полетим чуть быстрее. Рекомендации по скорости выдаются как часть плана полета.
Эти различия важны, если речь идет о тринадцатичасовом перелете из Нью-Йорка в Токио. Когда скорость чуть выше, время полета на несколько минут уменьшится. Но этими различиями можно пренебречь, если речь идет о не столь длинных перелетах. Нет смысла отдавать предпочтение какому-то одному самолету, чтобы прилететь вовремя. В любом случае главный фактор, влияющий на скорость, – это не возможности самолета, а ограничения, которые ставят авиадиспетчеры. На коротких перелетах они особенно часто просят пилотов увеличить или снизить скорость.
Граница между дозвуковой и сверхзвуковой скоростями, на которой балансирует большинство самолетов, – не пустяк с точки зрения аэродинамики. Подобно парадоксу Эйнштейна о путешествии со скоростью света требуемая для полета мощность при преодолении звукового барьера значительно увеличивается. Это не серьезная проблема с точки зрения физики, но в бюджете она сразу пробивает брешь. Для сверхзвуковых полетов требуется крыло совершенно другого типа, а расход топлива взлетает до небес. Помните Concorde? Этот самолет канул в небытие не из-за катастрофы, в которую попал в 2000 году неподалеку от Парижа, а из-за чудовищных эксплуатационных затрат. Поэтому, несмотря на прочие технологические достижения нашего времени, средняя скорость гражданских реактивных самолетов со времени их появления изменилась незначительно. Проще говоря, авиалайнеры в XXI веке летают немного медленнее, чем 30 лет назад.
Какие самолеты – рекордсмены по протяженности перелетов?
Из всех гражданских реактивных самолетов рекорд по длительности перелета держит Boeing 777–200LR[13]13
LR – от англ. long range – большая дальность. Прим. ред.
[Закрыть] – примерно 20 часов, то есть свыше 17 300 километров без дозаправки. Практически все важные города на Земле соединены при помощи этого потрясающего дальнемагистрального самолета. На втором месте – Airbus A340–500, впервые поступивший в эксплуатацию в компании Emirates и Singapore Airlines. Современные варианты Airbus A380, Boeing 777 и Boeing 747 обладают сравнимыми, но более скромными возможностями.
Нужно понимать, что количество часов в полете – более точная мера длительности перелета по сравнению с количеством преодоленных километров. И этот показатель может варьироваться в зависимости от высоты, средней скорости и прочих факторов. Кроме того, по размеру самолета не всегда можно судить, насколько далеко (или долго) он сможет лететь. Лучший пример – старая модель Airbus A300, построенная специально для коротких и средних перелетов и вмещающая 250 человек. В то же время есть реактивные самолеты на девять человек, которые могут продержаться в полете 11 часов. Также невозможно с ходу определить, что тот или иной самолет обладает большей длительностью перелета. Обходит ли Airbus A340 по этому показателю Boeing 747? Некоторые модели – да. Технические различия – тип двигателя, дополнительные топливные баки – помогут определить количество часов в полете. Следите за дефисами. Существует не один Airbus A340; есть еще A340–200, A340–300, A340–500 и A340–600. У Boeing 777 есть Boeing 777–200, Boeing 777–400, Boeing 777–800, Boeing 777-LR, Boeing 777-ER[14]14
ER – от англ. extended range – увеличенная дальность. Прим. ред.
[Закрыть] и т. д. И величина числа необязательно указывает на уровень характеристик. A340–500 меньше, чем A340–600, но может пролететь дольше.
Boeing 777–200LR имеет большую длительность полета, чем превосходящий его по размерам Boeing 777–300ER. Не устали? Если любите таблицы и графики, изобилующие звездочками и текстом, написанным мелким шрифтом, отправляйтесь на сайты производителей и порадуйте себя.
Правообладателям!
Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.Читателям!
Оплатили, но не знаете что делать дальше?