Электронная библиотека » Питер Эткинс » » онлайн чтение - страница 2


  • Текст добавлен: 27 ноября 2023, 18:29


Автор книги: Питер Эткинс


Жанр: Прочая образовательная литература, Наука и Образование


Возрастные ограничения: +12

сообщить о неприемлемом содержимом

Текущая страница: 2 (всего у книги 11 страниц) [доступный отрывок для чтения: 3 страниц]

Шрифт:
- 100% +

Не все законы природы математические, но даже те, которые таковыми не являются, приобретают большую силу, когда находят математическое выражение. Один из самых глубоких вопросов, которые можно задать о законах природы, кроме вопроса об их происхождении, это почему математика оказывается столь совершенным языком описания Природы. Почему реальный мир явлений так хорошо изображается с помощью высшего продукта человеческого мышления? Я исследовал этот вопрос в другом месте, но он очень важен для нашего восприятия и понимания мира, и я вернусь к нему позже (в главе 9). Подозреваю, что все истинно глубокие вопросы, касающиеся природы физической реальности (единственной реальности, за исключением изобретаемой поэтами), такие как эффективность математики в качестве описания Природы, вероятно, имеют ответы, тесно связанные каким-то общим источником, и должны рассматриваться как единое целое.

* * *

Заканчивая, я должен сказать еще несколько слов о «служанках» законов природы. Как я уже говорил, закон – это итог наблюдений за поведением сущностей. Закон выводится двумя этапами. Сперва можно предложить гипотезу. Гипотеза (на древнегреческом это слово означает «фундамент», в чисто строительном смысле) – это просто догадка о скрытой причине наблюдаемого поведения. Она может подтверждаться другими наблюдениями и постепенно перерасти в теорию (по-гречески – «размышление в союзе с созерцанием»; это слово одного происхождения с «театром»).

Теория – это полностью сформировавшаяся гипотеза, основания которой могут корениться в других источниках знания, и сформулированная таким образом, что может быть протестирована сравнением с дальнейшими наблюдениями. Во многих случаях теория включает в себя предсказания, которые затем подлежат проверке. Часто теория находит математическое выражение, и из нее выводятся следствия – методом логической дедукции и манипуляции символами (определенным образом интерпретируемыми). Если на любой стадии своего развития гипотеза или теория вступает в конфликт с наблюдениями, она возвращается на доработку, – появляется новая гипотеза, которая развивается в новую теорию.

Хоть я и описал эту процедуру, – за циклом наблюдений следует гипотеза, созревающая в теорию, а теория затем проверяется опытом, – как некий алгоритм, которому следуют ученые, на практике все несколько иначе. Научный метод – царство свободного творчества, и на ранних этапах постижения неизвестного важную роль играет интуиция, «нутро». Ученые вынюхивают истину, делают непредсказуемые интеллектуальные прыжки в сторону, конечно, ошибаются, выхватывают идеи друг у друга из рук, кое-как выкарабкиваются из трясины непонимания и наконец как бы случайно видят впереди свет. Это и есть реальный научный метод, как бы его ни идеализировали философы науки.

Такая идеализация похожа на «предельный закон» – она представляет суть научного метода очищенной от человеческой «грязи», как человеческую деятельность, осуществляемую в идеальном предельном случае отсутствия самих людей вместе со всеми их недостатками и слабостями. Но при всей важности и сложности устройства плавильного тигля научной процедуры главным критерием приемлемости теории почти неизменно остается сравнение ожидаемых ее результатов с экспериментальными наблюдениями. Как однажды сказал Макс Планк, «единственным средством познания для нас остается опыт: все остальное – спекуляции».

В некоторых случаях происходят резкие отклонения от идеального пути рождения теории. Одна из самых мощных научных теорий – теория эволюции Дарвина, построенная на идее естественного отбора. В формулировках этой выдающейся теории нет математики, но ее влияние было усилено позднейшей математической разработкой. Я не уверен, что эта теория основана на законе природы. Она, без сомнения, построена на наблюдениях – исследованиях ископаемых окаменелостей и разнообразия видов, но эти наблюдения, возможно, сами по себе слишком разнородны, чтобы их можно было обобщить в сжатой формулировке закона, более отчетливой, чем афоризм Герберта Спенсера «выживает самый приспособленный» (в его Principles of biology, 1864), или, напротив, менее запутанно и косноязычно, чем «распространяются те организмы, которые достигают репродуктивного успеха во временно доступных им нишах». Этот закон, конечно, по нашей классификации следовало бы отнести к категории могучих внутренних законов.

* * *

Теперь у нас есть фон для того, что должно последовать далее. Я показал, что существуют внутренние и внешние законы: законы огромной важности и менее важные. Моей первой задачей будет привести примеры законов каждого вида, исследовать их и разобраться, откуда они происходят. Я заявляю, что буду искать их корни в бездействии, том самом, из-за которого при сотворении мира ничего особенного не произошло; а там, где это сделать не удастся, – в анархии, которая за этим последовала. В некоторый момент повествования вам придется отправиться со мной в умозрительный полет, целью которого будет открытие источника способности математики объяснять физическую сущность реального мира, – но до этого момента еще далеко.

2
Много шума из ничего

Как из ничего возникают законы

Ничто необычайно плодотворно. В его бесконечном охвате потенциально находится все, но «все» таится там полностью нереализованным. Такие рассуждения выглядят загадочными не случайно: на этой стадии повествования я хочу привлечь ваше внимание и возбудить любопытство. Это, возможно, напоминает заимствованное из индийской философии столь же бесспорное, сколь и неудовлетворительное определение бытия как отсутствие небытия. Чтобы меня не постригли под эту гребенку, я должен развить свое высказывание и проиллюстрировать плодоносную потенцию «ничего», показать, что рассматривать ничто – не упражнение в пустословии, схожее больше с теологией, чем с физикой, дать понять, что в рамках научного метода из ничего могут быть получены проверяемые выводы, и заставить вас поверить, что его загадку можно раскрыть, а ее содержание представить вполне значимым. Я хочу показать, что ничто есть центральная идея, основа возможности понимания законов природы, и поэтому оно есть все существующее и все действующее. Короче, я хочу показать, что ничто есть фундамент всего.

Чтобы привести вас к пониманию «ничего» и всех его последствий, чтобы помочь вам разобраться, почему бездействие играет столь важную роль в установлении механистической инфраструктуры мира, я вначале хотел бы, чтобы вы задумались о «ничем» с точки зрения самого обыкновенного примитивного здравого смысла. Это в свою очередь должно будет привести вас к кое-чему более сложному, а здравому смыслу тогда придется несколько усохнуть. Но чтобы начать это путешествие, вы можете вполне безопасно представлять себе ничто как пустое пространство. И пока я не отвлеку вас от этих мыслей, просто ложитесь на спину и подумайте о бесконечном количестве миль однородного и пустого пространства, о бесконечной череде лет, протянувшейся из далекого прошлого в бездонное будущее. Подумайте о вечной, однородной и неизменной пустоте, царящей повсюду и всегда.

И в этот образ безбрежной и плоской, как прерия, пространственной и временной пустыни я введу сейчас одинокую фигуру. Обладающая выдающимся талантом и необыкновенно богатым воображением немецкая женщина-математик Эмми Нётер (1882–1935) родилась в Эрлангене, училась (вкусив при этом всю горечь мизогинистических предрассудков того времени) в Геттингене, а потом бежала от нацистского преследования в колледж Брин-Мор в Пенсильвании. Здесь она преждевременно скончалась, оставив богатое наследие абстрактных математических концепций и теорем. Норберт Винер, который и сам был знаменитым математиком, в 1935 году назвал ее «величайшей из всех когда-либо живших женщин-математиков». Ее гением был очарован Эйнштейн. Для моего рассказа – и для всей теоретической физики – она является абсолютно необходимой, можно сказать, центральной фигурой, – благодаря одной теореме, к которой она пришла в 1915 году и опубликовала парой лет позже. Я, разумеется, не смогу воспроизвести здесь техническую сторону ее аргументации, но вывод из теоремы формулируется очень просто. Эмми Нётер установила, что везде, где в природе имеется симметрия, есть и соответствующий ей закон сохранения[6]6
  Доступное объяснение теоремы Нётер см. Dwight Neuenschwander, Emmy Noether’s wonderful theorem (Johns Hopkins University Press, 2010). Более основательное изложение см. Yvette Kosmann-Schwarzbach, The Noether theorems: invariance and conservation laws in the twentieth century. Transl. Bertram Schwarzbach (Springer, 2011).


[Закрыть]
. Я дам развернутую интерпретацию этого утверждения и объясню, что подразумевается под законом сохранения, под симметрией и какое отношение между ними было установлено теоремой Нётер.

Под «законом сохранения» я буду понимать закон, в соответствии с которым в ходе происходящих в природе событий некоторая численная величина остается неизменной – «сохраняется». Об одном из таких законов я уже говорил – это закон сохранения энергии, и начну я снова с него.

* * *

Энергия – одно из понятий, которые широко используются в ежедневном дискурсе, но которые очень трудно точно определить и уверенно сказать, что же они в действительности собой представляют. Каждый рад о ней порассуждать, но как только появляется необходимость объяснить, что же это такое, тут же возникают затруднения. Этот термин вошел в физику в начале XIX столетия и оказался настолько удачным, что распространился на все области науки, потеснив многие другие понятия, например постоянно использовавшуюся Ньютоном более осязаемую и конкретную идею силы. Введение понятия энергии и реализация обнаружившегося у этой идеи мощного потенциала привели даже к тому, что пришлось заново переписать учебники. Сила – величина почти буквально осязаемая; энергия абстрактна. В этом источник ее значения, – ведь абстрактные концепции, вообще говоря, более широко применимы, чем конкретные. Абстрактные понятия – это как бы составленные из идей скелеты, которые можно одеть плотью наблюдательных фактов; конкретные концепции – изолированные интеллектуальные острова.

Происхождение слова «энергия» – от древнегреческого выражения, означающего «работать в помещении», – дает ключ к его пониманию. Энергия – способность производить работу. Такое «функциональное определение», может быть, не даст вам глубокого понимания действительной сущности энергии, но, по крайней мере, позволит вам распознавать ее присутствие: ведь о совершении работы всегда легко судить, так как при этом мы снова возвращаемся к осязаемому понятию силы. Работа есть процесс приведения предмета в движение против действующей на него силы – поднимаем ли мы вес, противодействуя силе тяжести, или используем батарею, чтобы пустить электрический ток в цепи. Чем больше имеется в запасе энергии, тем большее количество работы можно выполнить. Сжатая пружина содержит больше энергии, чем развернувшаяся: сжатая может совершить работу, а развернувшаяся нет. В баке с горячей водой больше энергии, чем в баке с холодной. Можно придумать механизм, который совершит работу за счет энергии горячей воды, но если вода остыла, этот механизм работать не сможет.

Есть разные виды энергии – кинетическая, то есть энергия движения; потенциальная, связанная с положением объекта, как, например, энергия, возникающая благодаря притяжению тела Землей; лучевая, то есть энергия, переносимая излучением, – например, тепло, идущее от Солнца, является движущей силой фотосинтеза и всего каскада его следствий, составляющих то, что мы называем биосферой [7]7
  Кинетическая энергия тела с массой m, движущегося со скоростью v, равна ½mv2. Потенциальная энергия тела с массой m на высоте h над поверхностью Земли равна mgh, где g – постоянная, обозначающая ускорение свободного падения (ее значение близко к 9,8 м/с2). Энергия электромагнитного поля пропорциональна квадратам напряженностей электрического и магнитного полей.


[Закрыть]
. Каждый вид энергии может быть преобразован в любой другой вид. Тем не менее в природе, оказывается, существует строгий закон: общее количество энергии во Вселенной постоянно. Если энергия одного вида расходуется, она должна превратиться в энергию другого вида или появиться в том же виде, но в другом месте. Знакомый всем пример такого постоянства – мяч, подброшенный вверх. Сначала в нем много кинетической энергии. По мере того, как он взлетает все выше и выше, преодолевая силу притяжения, его потенциальная энергия растет, а кинетическая падает. В высшей точке своей траектории мяч на миг оказывается в покое – в этот момент его кинетическая энергия нулевая, а вся его первоначальная энергия перешла в потенциальную. Как только он начинает падать обратно на землю, ускоряя при этом свое движение, его потенциальная энергия снова уменьшается, а кинетическая растет. На каждой стадии полета мяча, от начала до конца, его полная энергия, сумма кинетической и потенциальной, постоянна. Закон сохранения энергии подводит итог этого постоянства: он утверждает, что энергия не может быть ни создана, ни уничтожена.

В главе 1 я упоминал, что закон сохранения энергии настолько всеобъемлющ, что даже его кажущееся нарушение приводит к предсказанию и открытию новых фундаментальных частиц материи. Нильс Бор (1885–1962), датский физик-теоретик, создатель ранней версии квантовой механики, рассматривая непонятные результаты наблюдений только что открытых ядерных процессов, предположил, что здесь закон сохранения энергии все же нарушается. Но оказалось, что этого не происходило – энергию уносила ранее неизвестная частица, нейтрино, то есть «нейтрончик». Существование нейтрино предсказал в 1930 году Вольфганг Паули. В 1956 году, после долгих и трудных поисков частица в конце концов была экспериментально обнаружена [8]8
  Экспериментальная регистрация нейтрино была выполнена Ф. Б. Харрисоном, Х. У. Крузом и А. Д. Мак-Гуайром, которые были удостоены Нобелевской премии по физике, но только в 1995 году, спустя сорок лет. Представьте, каково это – сорок лет каждый октябрь сидеть как на иголках!


[Закрыть]
. Этот эпизод показывает, что закон сохранения энергии в каком-то смысле напоминает известное «правило Дэвида Юма» о чудесах, – согласно этому правилу, разумнее не поверить тому, кто рассказывает о чуде, чем поверить в то, что он рассказывает. Поэтому ученые воспринимают любое сообщение о нарушении сохранения энергии с крайним скепсисом. Как и в приведенном примере, в каждом таком случае закон ставился под сомнение, ситуация тщательно проверялась, и сохранение энергии неизменно подтверждалось. Нельзя, однако же, не признать, что в неисследованных частях космоса могут еще таиться драконы и что в каких-то пока неизвестных нам событиях сохранение энергии нарушается.

В свое время, а именно в главе 8, мне придется вернуться к этому вопросу в связи с великой идеей, просветляющей человеческую мысль, хоть и повсеместно неверно интерпретируемой, – принципом неопределенности Гейзенберга. Некоторые считают, что этот принцип открывает в законе сохранения энергии лазейку, позволяющую энергии флуктуировать на очень короткой шкале времени. На более широком временном масштабе и в общепринятых ситуациях сохранение энергии является основой невозможности вечного двигателя, то есть производства работы без потребления топлива. Действительно, одно из проявлений этого закона – крах множества отчаянных попыток построить механизм, находящийся в состоянии вечного движения. На протяжении веков всяческие шарлатаны снова и снова объявляли о том, что им наконец это удалось – но нет, вечный двигатель так и не создали, и сейчас уже ясно, что эта задача решена быть не может. Данный экспериментальный факт, лишающий нас всякой надежды на получение бесконечного количества даровой энергии, а вследствие этого и на какие-либо перспективы бесконечного благоденствия, стал одним из оснований целой большой группы законов природы – законов термодинамики, к которым я вернусь в главе 5. Шарлатаны, правда, не унимаются – подстегиваемые мечтой о фантастическом богатстве, они продолжают время от времени предлагать все новые и новые хитроумные конструкции машин, производящих работу из ничего; но каждый раз все кончается для них позорным крахом и насмешками, а доверие к закону становится еще сильнее. До некоторой степени мы должны быть благодарны этим беднягам (как, конечно, и их оппонентам – честным труженикам, взявшим на себя нелегкую задачу опровергать их заявления) за то, что неудачи их упорных, агрессивных, одержимых нападок на закон сохранения энергии привели только к укреплению убежденности в его справедливости.

У этого закона есть много других подтверждений. На нем основаны все вычисления движений частиц по законам ньютоновской механики, и хотя в некоторых случаях наблюдаются отклонения от ее предсказаний, они всегда объясняются хорошо известными причинами. Расчеты квантовой механики тоже базируются на предположении о справедливости закона, а они неизменно с высокой точностью соответствуют наблюдениям. Для сомнений в том, что энергия сохраняется, и притом сохраняется в точности, места не остается.

Но как ни огромна важность закона сохранения энергии в техническом и экономическом отношении, как ни универсальна его роль в решении физических задач, в структуре любого учебника физики, на деле он еще важнее, чем кажется. На нем зиждется «причинность», с виду неопровержимое утверждение, что каждое событие обусловлено событием предыдущим. Не будь причинности, мир сделался бы непредсказуемым. Вселенная превратилась бы в хаотическую свалку не связанных друг с другом происшествий. Причинность дает нам шанс на понимание природы: от каждой причины мы можем проследить цепь ее следствий, для каждого события – восстановить его причину. Причинность позволяет найти в мире порядок и систематическое поведение, управляемое законами природы, и, следовательно, именно из нее рождаются воплощенные в науке формы познания. Сохранение энергии играет в причинности центральную роль, накладывая на возможности осуществления событий мощные ограничения: в любом событии энергия должна сохраняться. Требование сохранения энергии можно сравнить с суровым, недремлющим и неподкупным полицейским надзором, запрещающим малейшее отклонение от закона, который ограничивает содержание энергии в мире единым, раз навсегда установленным и неизменным в космических масштабах значением. Если бы энергия не сохранялась, ограничения на возможные действия, вызванные какой-либо первопричиной, были бы менее строгими, а это могло бы привести к нарушению причинности. Да, существуют и другие ограничения, но понятие энергии настолько важно для поведения любого объекта, настолько универсально, что сохранение этой величины имеет первостепенное значение. Как я уже отмечал в главе 1, закон сохранения энергии – царь всех «внутренних» законов, основной первозакон природы.

* * *

Так почему же сохраняется энергия? Каково происхождение этого наивысшего закона? Вот тут-то и появляется Эмми Нётер, и освещает голую пустоту, о которой я призвал вас задуматься, сиянием своей великолепной теоремы. Центральный момент построенного Нётер доказательства происхождения сохранения какой-либо величины из связанной с этой величиной симметрии заключается в том, что в конкретном случае сохранения энергии, на котором мы сейчас и сосредоточились, оно проистекает из однородности времени. Эта однородность и создает симметрию, позволяя тем самым применить теорему Нётер.

Что же эта однородность означает на практике? На первый взгляд однородность времени значит, что, независимо от того, выполните вы один и тот же эксперимент в понедельник, четверг или в любой другой день, вы получите один и тот же результат. Другими словами, период колебаний маятника или высота, которой достигнет подброшенный мяч, будут одними и теми же, если, конечно, все остальные условия проведения эксперимента не изменятся. Чтобы выразить обусловленную однородностью времени независимость законов природы от момента, в который они применяются, мы называем эти законы «инвариантными по времени». На практике такая инвариантность означает, что если ваше уравнение описывает некоторый процесс в определенный момент времени, то же самое уравнение будет описывать этот процесс и в любой другой момент. В общем, законы природы не изменяются с течением времени. Следствия, вытекающие из этих законов, измениться могут – планета может оказаться на другой орбите, вы можете подбросить мяч сильнее, чем собирались, – но сами законы остаются инвариантными.

Теперь давайте попробуем взглянуть на это поглубже. Чтобы законы природы были инвариантными по времени, само время должно течь равномерно. Оно не может сначала замедлиться, потом ускориться, а потом вообще почти замереть. Подумайте, как бы выглядел полет мяча, или, в большем масштабе, движение планеты по ее орбите, если бы время на каком-то участке их траектории сжималось, а на другом – расширялось. Невозможно себе представить, что могла бы быть построена динамическая теория их движения. Мяч казался бы то ускоряющимся, то замедляющимся, то повисающим в воздухе при отсутствии каких-либо сил, заставляющих его это делать. В понедельник закон движения был бы одним, в четверг – другим. Даже если бы скачки` хода времени были бы не случайными, а регулярными, если бы оно то растягивалось, то сжималось периодически, полет мяча все равно происходил бы весьма причудливым образом. Вряд ли даже Ньютону удалось бы его описать. Наш мир был бы страшно запутанным в динамическом смысле. Чтобы законы природы были независимыми от того, когда они применяются, время должно течь с ненарушимой однородностью: тик… тик… тик… опять и опять, без конца, в идеально устойчивом ритме.

Предвижу доводы, которые вы могли бы выдвинуть, чтобы подорвать мое обоснование однородности времени. Один из них мог бы заключаться в том, что наши измерительные инструменты тоже, возможно, растягиваются и сжимаются в полном соответствии с колебаниями хода времени, влияющими на полет мяча. В этом случае мы бы, возможно, не заметили – и даже не могли бы заметить, – что время неоднородно. Если бы по той или иной причине физические параметры наших измерительных инструментов (в том числе наших глаз и ушей) синхронно изменялись, мы были бы слепы и глухи к этим изменениям. Думаю, на это можно возразить так: уравнения, решая которые мы описываем движение, вовсе не подвержены сжатиям и растяжениям (в том смысле, что «время», входящее в них в качестве параметра, не изменяется). То есть они дают объективное, а не субъективное описание движения. И хотя утверждение, обратное теореме Нётер (а именно, что если имеется сохраняющаяся величина, то должна найтись и связанная с ней симметрия) не столь хорошо обосновано, как прямая теорема (если есть симметрия, то есть и связанная с ней сохраняющаяся величина), следующий довод должен быть таким: поскольку нам известно, что энергия сохраняется, мы можем, хоть и с осторожностью, заключить, что время должно быть однородно.

Вы могли бы еще возразить, что когда Эйнштейн вскарабкался на плечи Ньютону, он увидел, что в космосе существуют локальные искажения времени (описание искажения пространства-времени в присутствии массивных объектов, таких как, например, планеты, составляет содержание общей теории относительности). Значит, время локально неоднородно, и поэтому теорема Нётер ничего не говорит о локальном сохранении энергии. Это серьезное возражение; выдвигая его, вы оказываетесь в хорошей компании. По-видимому, именно предложение исключительно проницательного и пользовавшегося огромным авторитетом немецкого математика Давида Гильберта (1862–1943) рассмотреть это возражение заставило Нётер дополнить свое доказательство, в результате чего появилась вспомогательная теорема («вторая теорема Нётер»). Чтобы снять это возражение, мне придется применить две увертки. К сожалению, в науке, как и в жизни, увертки всегда выглядят неубедительно, – приходится признать, что две увертки не стоят одного хорошего объяснения.

Прежде всего, – и это соответствует исходной формулировке теоремы, – я ограничу свое применение теоремы Нётер Вселенной в целом, во всем ее объеме. Хотя когда материя образовалась, когда она конденсировалась в планеты, солнечные системы и галактики, пространство-время вокруг них искажалось, в глобальном масштабе все же царит однородность – растяжение в одном месте компенсируется сжатиями в другом. Взятое в целом, пространство-время, как и его временна`я составляющая, (почти) определенно плоское. И во‐вторых, локально плоской является и любая достаточно малая область пространства-времени, а значит, закон сохранения энергии в этой области тоже применим [9]9
  Стоит только открыть этот ящик Пандоры, и оттуда еще многое полезет. Различие между энергией и количеством движения (о котором далее будет идти речь в этой главе) зависит от состояния движения наблюдателя и объекта наблюдения. По ходу этого обсуждения мы должны будем интересоваться однородностью пространства-времени, а не каждой его составляющей по отдельности. Прошу прощения, что не отметил этого обстоятельства во вступлении к объяснению (хоть про себя я, разумеется, его отметил).


[Закрыть]
.

Надеюсь, теперь вы согласитесь, хотя и с осторожностью, что время в глобальном масштабе (а также локально, в достаточно малых областях) однородно. Следовательно, соответственно первой теореме Нётер, энергия сохраняется. Как я уже замечал, если бы мы могли слышать ход времени, его «тик, тик, тик…» раздавалось бы вечно. Вот если бы время шло так: «тик, тик… тик… тик, тик» и так далее, оно не было бы однородно, – а значит, энергия бы не сохранялась, мир был бы непознаваем, а наука бесполезна.

* * *

И все же – почему время однородно? Здесь я в первый раз в этой главе вернусь к понятию бездействия и к моему предварительному предположению, что при сотворении мира ничего особенного не происходило. Мне необходимо снова вернуться с вами к моменту рождения Вселенной, к мгновению космогенеза. Но прежде, просто для порядка, надо упомянуть еще несколько вопросов и уладить их, не дожидаясь, пока они сами придут к вам в голову.

Во-первых, можно себе представить, что наша Вселенная, возможно, является «дочкой» предшествующей Вселенной и «внучкой» третьей, еще более ранней, породившей вторую, – и так далее, все глубже в темную пропасть времен. Однако, пусть и очень давно, была ведь и самая первая Вселенная – назовем ее Протовселенной, – которая возникла абсолютно из ничего. Протовселенной вполне может оказаться и нынешняя Вселенная, – тогда, значит, это она возникла из ничего (и может в будущем породить следующую Вселенную или даже уже ее породила). Меня интересует именно Протовселенная, будь она нынешней Вселенной или ее предком. Главное в том, что, как ни крути, на некотором этапе должно было произойти событие, в ходе которого ничто превратилось в нечто, – пусть даже это событие случилось несколькими Вселенными раньше нынешней. Даже если число таких «поколений» бесконечно, все равно возможно, что Протовселенная родилась конечное время тому назад [10]10
  Если время между поколениями уменьшается вдвое при каждом отступлении на поколение назад, то общая временная протяженность будет конечной даже при бесконечном количестве поколений (1 + 1/2 + 1/4 +… = 2), но время, необходимое для того, чтобы Протовселенная породила свою «дочь», было бы бесконечно малым. Я-то был бы очень расстроен, если бы оказалось, что Протовселенная возникла бесконечно давно – это лишило бы смысла все, что я говорю, – но, без сомнения, понравилось бы людям с определенным складом ума.


[Закрыть]
. Но так как я не могу этого тем или иным способом доказать, и моя интуиция тоже молчит, я эту возможность рассматривать здесь не буду. Да она в данном контексте и не имеет никакого значения.

Во-вторых, возможно, экстраполяция на такое огромное время назад будет слишком большим упрощением. Что, если время – это один великий круг бытия, замыкающийся сам на себя, как шарообразная поверхность Земли, которая не имеет начала? Например, в далеком будущем мы обнаружим себя самих, находящихся в глубоком прошлом, а настоящему – возможно, в каком-то измененном виде – еще только предстоит наступить. На нашем нынешнем опыте в несколько миллиардов лет мы основали такой взгляд на время, согласно которому оно, в сущности, движется вперед по прямой. У нас нет никаких аргументов ни за, ни против возможности, что эта прямая на деле представляет собой крохотный фрагмент гигантской окружности. Сейчас все издеваются над «плоскоземельщиками», которые не желают замечать кривизны земного шара. Но мы сами можем оказаться в роли «плосковременщиков», над которыми точно так же стоит посмеяться. Возможно, с моей стороны наивно предполагать, что время в каком бы то ни было смысле имело начало. Моя интуиция и здесь ничего не может унюхать, и все, что я могу сделать, – это указать на такую возможность, но тут же о ней забыть. Возможность, однако же, существует, хоть и ровно ничем не подтверждается. Она может оказаться примером того, о чем я упоминал в главе 1, а именно научного прогресса, достигаемого через демонстрацию бессмысленности вопроса. В данном случае, если время движется по кругу, то у него не могло быть никакого заметного начала, – кто может указать, в какой точке начинается круг? Тогда выходит, что наука одержала пиррову победу – разгадала тайну того, что же происходило, когда все началось. Просто-напросто ничего не начиналось, или, другими словами, начало и конец оказались одним и тем же местом.

Время, идущее по кругу, – не единственная возможная проблема. На очень коротких интервалах времени сразу после рождения Вселенной – неважно, была она Протовселенной или нет – и при очень тщательном анализе течения времени в нашем мире концепция времени может и вовсе рухнуть. Это может произойти множеством способов. Одна из возможностей заключается в том, что на крайне малых пространственных масштабах, порядка так называемой планковской длины, столь привычная для нас «гладкость» пространства, которую мы полагаем его неотъемлемым свойством, исчезает, и различие между пространством и временем стирается [11]11
  Планковская длина определяется как , где G – гравитационная постоянная; можно показать, что ее значение около 1,6 × 10–35 метра, что примерно равно одной триллионной от одной триллионной части диаметра атомного ядра. Планковское время определяется как время, за которое свет преодолевает это расстояние: , что равняется 5,4 × 10–44 секунды. Исключительно в целях полноты изложения я упомяну еще планковскую массу, , которая оказывается равной более разумной и вполне представимой величине в 22 микрограмма. Одна страница этой книги весит около 140 000 планковских масс.


[Закрыть]
. Перестает работать и современная физика. Никто пока не имеет ни малейшего представления, как найти подход к этому сценарию. На таких масштабах пространство-время больше не является однородной, непрерывной, похожей на жидкость средой – теперь оно скорее похоже на ящик, наполненный песком или пеной. Эту проблему мне тоже придется отложить в сторону.

* * *

В отсутствие убедительных доказательств обратного давайте считать, что начало все-таки было, и сосредоточимся на моменте, когда ничто стало чем-то. На этом моменте сфокусировалось множество философских, мифологических и теологических спекуляций, к которым мы сейчас добавим еще одну – надо признать, псевдонаучную. До этих строк я призывал вас представлять себе «ничто» всего лишь как пустое пространство и пустое время – короче, как пустое пространство-время. Но теперь пора отбросить этот примитивный взгляд. С этих пор, говоря «ничто», я буду подразумевать именно абсолютное ничто. Меньше, чем пустое пространство. Меньше, чем вакуум. Если угодно, «отсутствие существования», знакомое индийской философии. Чтобы подчеркнуть его абсолютную пустоту, я буду писать это слово с заглавной буквы: «Ничто». В нем нет ни пространства, ни времени – абсолютно, абсолютно ничего. Вакуум вне пространства и времени. Полная, совершенная пустота. Пустота, в которой нет даже пустоты. Все, что у нее есть, – это ее имя [12]12
  Я полностью и безо всякого отторжения воспринимаю слова Гимна о Сотворении мира из «Ригведы»:
  1. Не было тогда не-сущего, и не было сущего. Не было ни пространства воздуха, ни неба над ним. Что двигалось чередой своей? Где? Под чьей защитой? Что за вода тогда была – глубокая бездна?
  2. Не было тогда ни смерти, ни бессмертия. Не было признака дня или ночи. Нечто одно дышало, воздуха не колебля, по своему закону, И не было ничего другого, кроме него.
  3. Мрак вначале был сокрыт мраком. Все это было неразличимым хаосом.


[Закрыть]
.

В начале Вселенной (точнее, Протовселенной, но я для простоты больше не стану пользоваться этим термином), Ничто обернулось чем-то. В нашей нарождающейся Вселенной появились пространство и время. Непосредственным результатом этого оборачивания и стало то, что мы называем Большим Взрывом. Однако на этом этапе я хочу избежать взрывных ассоциаций. Мне хотелось бы представить Большой Взрыв как событие, которое имело место позже, чем Ничто оборотилось чем-то. Обернувшись чем-то, Ничто в надлежащий миг и позволило – в определенном смысле – случиться Большому Взрыву. Сейчас наука ничего не говорит о механизме, посредством которого Ничто оборотилось чем-то, – быть может, она и никогда не сможет ничего о нем сказать, хотя кое-какие догадки имеются. Приверженцы религий или мирские поэты, возможно, могли бы довольствоваться представлением о творце, который существовал отдельно от Ничего. Он мог упереться в него плечом или просто случайно с ним столкнуться, что и сдвинуло Ничто с места и заставило покатиться навстречу своей судьбе (а если это произошло нечаянно, творец, возможно, теперь в ужасе от содеянного). Но это ненаучный подход.


Страницы книги >> Предыдущая | 1 2 3 | Следующая
  • 0 Оценок: 0

Правообладателям!

Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.

Читателям!

Оплатили, но не знаете что делать дальше?


Популярные книги за неделю


Рекомендации