Электронная библиотека » Ричард Мюллер » » онлайн чтение - страница 7


  • Текст добавлен: 8 мая 2017, 16:51


Автор книги: Ричард Мюллер


Жанр: Физика, Наука и Образование


Возрастные ограничения: +12

сообщить о неприемлемом содержимом

Текущая страница: 7 (всего у книги 27 страниц) [доступный отрывок для чтения: 7 страниц]

Шрифт:
- 100% +
Пространство-время

После того как Минковский и Эйнштейн представили миру концепцию пространства-времени, многие другие физические явления стали легко объясняться при подходе к ним с позиций четырехмерного пространственно-временного континуума. Энергия и импульс (количество движения), которые ранее рассматривались как связанные, но отдельные понятия: три компоненты классического вектора импульса, имеющие направления x, y и z, стали составными частями 4D-вектора энергии-импульса, а четвертой компонентой оказалась полная энергия. Эйнштейн «соединил» импульс и энергию в том же смысле, в котором (он и Минковский) соединил пространство и время.

Другие физические понятия также красиво вписались в четырехмерную модель. Больше не считались отдельными феноменами электрические и магнитные поля: они стали просто разными компонентами четырехмерных объектов – тензоров. Удивительным оказалось и такое открытие: если перевернуть координаты этих объектов, электрическое поле можно было превратить в магнитное, и наоборот. Математика такого поворота в своей основе напоминала преобразования Лоренца/Эйнштейна. На формировавшемся тогда научном жаргоне это явление получило название релятивистской ковариантности[85]85
  Ковариантность (от лат. со – совместно и varians – изменяющийся) – форма записи физических величин и уравнений, непосредственно отражающая характер их изменения (векторный, спинорный, тензорный и т. д.) при преобразованиях системы пространственно-временных координат. Прим. ред.


[Закрыть]
. Подобные повороты математически эквивалентны классическим уравнениям Максвелла, относящимся к электрическим и магнитным полям. Тем самым уравнениям, которые использовались для создания электромоторов и электрогенераторов.

Тем временем Эйнштейн продолжал свои поразительно продуктивные разработки. Вскоре после создания первых трудов по общей теории относительности он написал несколько работ по радиационному излучению, в которых предсказал прежде не известное явление – вынужденное, или индуцированное, излучение. Это привело в 1954 году к изобретению лазера известным американским физиком Чарльзом Таунсом[86]86
  Чарльз Таунс (1915−2015) – американский физик, лауреат Нобелевской премии по физике (1964). Член Национальной академии наук США (1956), иностранный член Российской академии наук. Основные труды Таунса посвящены радиоспектроскопии, квантовой электронике и ее приложениям, нелинейной оптике, радиоастрономии. Прим. ред.


[Закрыть]
и советскими физиками Николаем Басовым[87]87
  Николай Басов (1922−2001) – советский физик, лауреат Нобелевской премии по физике (1964). Дважды Герой Социалистического Труда. Работы Басова посвящены квантовой электронике и ее применениям. Прим. ред.


[Закрыть]
и Александром Прохоровым[88]88
  Александр Прохоров (1916−2002) – советский физик, один из основоположников квантовой электроники, лауреат Нобелевской премии по физике (1964). Работы Прохорова посвящены радиофизике, физике ускорителей, радиоспектроскопии, квантовой электронике и ее приложениям, нелинейной оптике. Прим. ред.


[Закрыть]
. Собственно, слово «лазер» – это английская аббревиатура: L.A.S.E.R., light amplification by stimulated emission of radiation – «усиление света посредством вынужденного излучения».

Эйнштейн считал свою специальную теорию относительности, опубликованную в 1905 году, первым шагом на пути к пониманию всей физики через геометрию. С помощью принципа эквивалентности он включил в СТО гравитацию, создав общую теорию относительности – геометрическую теорию тяготения. И не собирался на этом останавливаться. Эйнштейн хотел сделать электромагнетизм геометрической теорией, так же как он поступил с гравитацией, и объединить теорию электромагнетизма излучения с общей теорией относительности. В 1928 году он начал писать ряд статей, посвященных «единой теории поля», с помощью которой планировал добиться своей цели. Сегодня многие ученые считают, что в конечном счете Эйнштейн пошел по неверному пути; возможно, потому что в свои исследования не включил квантовую физику, которую сам же некогда помог создать.

С принятием квантовой физики многие теоретики верят, что приблизились к решению задачи создания единой теории, хотя она и не основана на геометрическом подходе. Этот подход, названный теорией струн, объединяет общую теорию относительности и квантовую физику, сводя в один предмет изучение силы гравитации, электричества и магнетизма; «слабые» взаимодействия, которые вызывают радиоактивный распад; и «сильные» взаимодействия, которые удерживают протоны и нейтроны в ядре, несмотря на существующие между ними гигантские силы отталкивания.

Теория струн вызвала в научной среде большой энтузиазм. На эту тему появилось много популярных изданий. По моей оценке, эта теория не стала тем решением, которое мы ищем. На ее основе сделано много предсказаний (насчет существования новых частиц), которые пока не подтверждаются. С другой стороны, теория струн не предугадала многих явлений, оказавшихся реальностью. Некоторые ученые утверждают, что самым убедительным доказательством правильности можно назвать ее математическую последовательность и отсутствие произвольных (и трудных для оправдания) вычислительных хитростей ради избежания бесконечностей, присутствующих в классической квантовой физике. Некоторые говорят, что величайшим достижением теории струн стало ее «предсказание существования гравитации». Разумеется, гравитация была известна задолго до возникновения этой теории. Однако «предсказание» отражает то, что теория струн нуждается в существовании относительно слабых (в сравнении с другими силами) гравитационных полей.

* * *

Даже без каких-либо теоретических дополнений вскоре после публикации работ Эйнштейна удивительные явления были обнаружены в самой общей теории относительности. Эта теория может быть применена по отношению и к Вселенной, и к очень плотным объектам. По мнению Роберта Оппенгеймера[89]89
  Роберт Оппенгеймер (1904−1967) – американский физик-теоретик, профессор физики Калифорнийского университета в Беркли, член Национальной академии наук США. Научный руководитель Манхэттенского проекта. Внес важный вклад в современную теорию нейтронных звезд и черных дыр, а также в решение отдельных проблем квантовой механики, квантовой теории поля и физики космических лучей. Пропагандист науки, отец-основатель американской школы теоретической физики, получившей мировую известность в 30-е гг. XX в. Прим. ред.


[Закрыть]
, будущего научного руководителя Манхэттенского проекта и «отца» атомной бомбы, черная дыра создается, когда исключительно тяжелая звезда подвергается коллапсу. Действительно, существует мнение, что ближайшая к Земле черная дыра находится «всего лишь» (по оценкам астрономов) на расстоянии 6000 световых лет от нашей планеты. Теоретическое изучение черных дыр заставило по-новому взглянуть на время. Этот новый взгляд бросает вызов многим врожденным предубеждениям.

Глава 7
В бесконечность и далее
Время, текущее поблизости от черных дыр, намного необычнее, чем большинство из нас думает…

В бесконечность и далее!

Базз Лайтер, «История игрушек»[90]90
  «История игрушек» – американский мультфильм (1995), созданный студией Pixar совместно с компанией Walt Disney. Это первый полнометражный фильм, смоделированный на компьютере полностью трехмерным, и первый мультфильм, номинировавшийся на «Оскар» за лучший оригинальный сценарий. Базз Лайтер – вымышленный персонаж, один из главных героев фильма. Прим. перев.


[Закрыть]

Физики часто бывают ошарашены собственными уравнениями. Из них нередко трудно сразу сделать какие-то выводы, даже если они носят эпохальный характер. Чтобы помочь себе разобраться в своих же математических построениях, они обращают внимание на исключительные примеры и смотрят, что в итоге получается. А в нашей Вселенной нет более исключительных и экстремальных примеров, чем черные дыры. Их изучение вооружает нас очень важными идеями относительно особых аспектов времени.

Если вы кружите по орбите над небольшой черной дырой (скажем, массой с наше Солнце) на приличном расстоянии – например, 1500 километров, – то не почувствуете ничего особенного. Вы находитесь на круговой орбите над массивным объектом, увидеть который не можете. На орбите испытываете невесомость, как и все астронавты. Вас не засасывает внутрь дыры. Черные дыры, в отличие от изображаемых в научной фантастике, не втягивают в себя. На такой близкой орбите от Солнца за миллионную долю секунды вы были бы уже внутри светила, но до этого моментально сгорели бы. Однако черная дыра темна. (Микроскопически малые черные дыры испускают излучение, но большие не выпускают наружу ничего.)

Окружность вашей орбиты равна 2πr. Если ваш товарищ двигается по той же орбите, но с противоположной стороны, через четверть протяженности орбиты вы встретитесь. Но когда ваш товарищ в диаметрально противоположной точке, прямая линия между вами бесконечна. Рядом с черной дырой огромное пространство.

Если вы включите тормозные двигатели, замедляя или останавливая свое движение по орбите, то будете втянуты в черную дыру так же, как притянулись бы любым массивным объектом. (Космические корабли покидают орбиту именно таким образом: включают тормозные двигатели, а затем просто позволяют силам гравитации притянуть себя к Земле.) Прежде чем в вашей системе отсчета пройдут 10 минут собственного времени, то есть прежде чем состариться на 10 минут, вы достигнете поверхности черной дыры – по радиусу Шварцшильда (мы говорили о нем в главе 3). А теперь нечто поразительное, касающееся времени. Когда вы достигнете поверхности, то есть через 10 минут после спуска время измеряемой в системе отсчета орбитальной станции достигнет бесконечности[91]91
  Л. Саскинд и Дж. Линдсей рассуждают об этом бесконечном времени спуска к черной дыре в книге An Introduction to Black Holes, Information, and the String Theory Revolution («Знакомство с черными дырами, информация и революция теории струн») (2005, стр. 22). Они располагают вдоль линии падения объекта наблюдателей, которые сообщают о результатах внешнему контролеру. «Согласно такому подходу частица никогда не пересекает горизонт и будет приближаться к нему асимптотически, то есть бесконечно». Возможно, квантовая теория может изменить это заключение.


[Закрыть]
.

Да, именно так. Падение в черную звезду занимает бесконечное время в системе отсчета стороннего наблюдателя. В вашей ускоряющейся СО этот процесс займет всего 10 минут. На одиннадцатой минуте время вовне приблизится к бесконечности и выйдет за ее пределы.

Но это абсурд! Возможно. Однако в классической релятивистской теории это так. Конечно, испытать подобный потенциальный парадокс невозможно, потому что время вне черной дыры бесконечно. А как только вы проникаете в нее, остаетесь там навсегда. Здесь нет измеряемого противоречия. Это пример того, что физики называют цензурированием. Абсурдность не может быть наблюдаемой, потому это не настоящая абсурдность.

Можете ли вы удовлетвориться ответом вроде «за пределами бесконечности, но с учетом цензурирования»? Подозреваю, что нет. Я нахожу такой ответ умопомрачительным. Но я нахожу умопомрачительным все, касающееся времени. Мы увидим абсурдные, но цензурированные заключения в теме квантовых волновых функций и запутанностей. Эти примеры бросают вызов нашему ощущению реальности и оставляют чувство неудовлетворенности. Как говорил Ницше: «Когда вы долго смотрите в бездну, бездна тоже начинает смотреть на вас».

Черные дыры ничего не «засасывают»

Давайте вернемся к моему утверждению, что черная дыра не может вас «засосать» и что вы можете двигаться вокруг нее по орбите, как и вокруг любого другого массивного объекта. Предположим, что Меркурий вращается вокруг черной дыры с массой, равной массе Солнца. Как изменится его орбита? Согласно распространенному убеждению, черная дыра втянет в себя маленькую планету. Но если исходить из общей теории относительности, никаких изменений не произойдет. Конечно, Меркурий перестанет быть таким горячим, потому что интенсивное излучение Солнца сменится холодной тьмой черной дыры.

Меркурий обращается вокруг Солнца по орбите со средним радиусом 58 млн км. Представьте, что вы двигаетесь по орбите вокруг нашего светила с радиусом 1,6 млн км. Если не считать испепеляющей температуры и сопротивления солнечного ветра, вы должны облететь вокруг Солнца примерно за 10 часов. Теперь заменим Солнце черной дырой с такой же массой. Чтобы ощутить на себе какие-то эффекты, нужно подобраться к ней очень близко. Как и в случае с любой звездой, чем ближе вы окажетесь к ее поверхности, тем быстрее начнете вращаться вокруг нее, чтобы остаться на орбите[92]92
  Чтобы компенсировать гравитационное притяжение планеты, необходимо испытывать центробежную силу, рассчитываемую как mV²/R, где V – линейная скорость. Соответственно, растущую силу притяжения надо компенсировать увеличением скорости. Прим. науч. ред.


[Закрыть]
. Практически рядом с черной дырой вы не почувствуете никаких различий, пока расстояние до нее не станет настолько малым, что ваша орбитальная скорость приблизится к скорости света.

На Солнце максимальная сила гравитации действует на его поверхности, как и в случае с Землей. Стоит внедриться под его поверхность, как масса, притягивающая объекты, в глубине светила начинает меньше действовать, чем на поверхности. В самом центре Солнца гравитация равна нулю.

Однако в черной дыре поверхность близка к центру. Согласно уравнению Шварцшильда, которое я приводил ранее, радиус черной дыры с массой Солнца должен составлять примерно 3,2 км. На расстоянии 16 км от нее орбитальная скорость должна составлять ⅓ скорости света. Орбитальный (сидерический) период при этом будет равняться одной тысячной доле секунды. В этих условиях для вычислений мы должны использовать теорию относительности.

Достижение световой скорости и уход в бесконечность

Когда вы находитесь близко к черной дыре, время течет очень медленно, и хотя длина орбиты может быть очень маленькой, между вами способно расположиться большое пространство. Для студентов, изучающих физику, оно обычно рисуется в виде диаграммы. Представьте ее как двухмерное изображение черной дыры. Сама дыра расположена в центре, ниже плоскости – там, куда направлено искривленное пространство.

Это полезная диаграмма, однако она несколько ошибочна, потому что подразумевает необходимость искривления пространства в другое измерение (в этом случае имеется в виду измерение, которое уходит вниз), чтобы захватить огромные расстояния около черной дыры. На самом деле такое измерение не нужно. Пространство просто сжимается из-за релятивистского сокращения длины. Эта диаграмма, изображающая черные дыры, часто присутствует в популярных фантастических триллерах. Когда Джоди Фостер падает в кротовую нору в фильме «Контакт»[93]93
  «Контакт» – научно-фантастический фильм 1997 г. режиссера Р. Земекиса по одноименному роману К. Сагана. Прим. перев.


[Закрыть]
, это место очень напоминает нашу виртуальную диаграмму. (Кротовые норы выглядят как две почти черные дыры, соединенные до возникновения радиуса Шварцшильда; вы падаете с одного края норы и вылетаете из другого.) В реальности черная дыра выглядит совсем не так. Если вместе с вами в нее падают другие объекты, она должна выглядеть абсолютно черным шаром.

С таким разъяснением диаграмма полезна. Она иллюстрирует основные свойства черных дыр и помогает ответить на простой вопрос: каково расстояние от внешнего мира (относительно плоского пространства) до поверхности черной дыры? Мы уже знаем – это бесконечность. Попробуйте измерить участок «падения» внутри черной дыры, и вы столкнетесь с бесконечностью. Вы упретесь в радиус черной дыры только в самом низу, но это бесконечно далеко.

Если до поверхности черной дыры бесконечно далеко, то что тогда я имел в виду, говоря о каких-то 16 километрах? Признаю, вводил вас в заблуждение. Я использовал обычную систему координат. Радиус r определяется тем, что мы говорим об окружности вокруг черной дыры как 2πr, аналогично обычному пространству. Но законы обычной геометрии здесь не работают, и мы не можем высчитать расстояние между двумя точками, просто найдя разницу в их координатах.

На самом деле никаких черных дыр нет

Список галактических объектов, похожих на черные дыры, можно найти в астрономических справочниках и в интернете. Статья в «Википедии» «Список черных дыр» упоминает более 70. Но вот в чем загвоздка: мы имеем основания полагать, что ни один из этих объектов на самом деле черной дырой назвать нельзя.

Метод, которым руководствуется астроном в поиске объекта Вселенной – кандидата на черную дыру, – это поиск космического тела, масса которого в несколько раз больше массы Солнца, но при этом от него регистрируется очень мало излучения или вообще ничего. Некоторые из потенциальных объектов испускают импульсы рентгеновских лучей, которые, как полагают, указывают на то, что какие-то формирования (комета? планета?) «падают» в них. По мере падения эти тела распадаются и нагреваются за счет большой разницы в гравитации, ограниченной самим объектом, которой достаточно, чтобы испускать рентгеновское излучение. Другие потенциальные кандидаты, которых называют сверхмассивными черными дырами, имеют массу сотен наших Солнц.

Один из таких сверхтяжелых объектов существует в нашей галактике Млечный Путь. Мы наблюдаем звезды, расположенные поблизости от этого центра, которые невероятно быстро ускоряются. Это указывает на присутствие очень большой массы. Однако из этого объекта не исходит свет, поэтому сам он, притягивающий звезды, не звезда. Физические теории заставляют полагать, что такая огромная концентрация массы без какого-либо излучения может быть только черной дырой.

Почему я утверждаю, что в действительности их не существует? Вспомните расчеты, показывающие, что «падение» в черную дыру будет длиться бесконечно. Подобные расчеты указывают и на то, что формирование черной дыры в нашей системе отсчета тоже займет бесконечное время. Все вещество для ее создания должно преодолеть бесконечное расстояние. Если только черные дыры не существовали к моменту формирования нашей Вселенной, то есть если не были первичными объектами космоса, нельзя считать, что они достигли статуса настоящих черных дыр. Не прошло еще достаточно времени (во внешней системе отсчета), чтобы материя «упала» на бесконечное расстояние, характеризующее черную звезду. И у нас нет оснований думать, что какие-то объекты Вселенной могли быть первичными (хотя некоторые ученые рассуждают, что мог быть один или несколько таких объектов).

Возможно, я слишком педантичен. Действительно, «падение» в черную дыру может длиться бесконечно, однако вы можете продвинуться очень далеко всего за несколько минут в собственном времени, измеряемом падающими с вами часами. С точки зрения внешней системы отсчета вы никогда не достигнете поверхности черной дыры, но за сравнительно короткое время преобразуетесь в сверхтонкую материю, что, в некотором смысле, будет уже неважно. Возможно, в этом заключалась причина того, что в 1990 году Стивен Хокинг решил объявить о своем поражении в пари Кипу Торну, признав, что один из самых популярных объектов современной астрономии «Лебедь Х-1» в созвездии Лебедь, заметный источник рентгеновского излучения, действительно черная дыра. Технически прав был Хокинг, а не Торн. «Лебедь Х-1» на 99,999 % в самом деле черная дыра, но потребуется бесконечное время (в системе отсчета Хокинга и Торна), чтобы он стал таковой полностью.

В квантовой теории есть одна лазейка, позволяющая обойти мое утверждение, что черных дыр не существует. Хотя согласно теории относительности Эйнштейна, формирование такого объекта – процесс бесконечный, для завершения процесса нужно сравнительно немного времени. С того мгновения, когда «падающая» материя достигнет расстояния в два радиуса Шварцшильда от него, до момента, когда она будет от него в непосредственной близости и проявятся сильные квантовые эффекты (на так называемой планковской длине), пройдет менее одной тысячной секунды. Мы не думаем, что в этой точке продолжится действие обычной общей теории относительности.

Что случится потом? Неизвестно. Над этой проблемой работают многие ученые, но ничего еще не было обнаружено и экспериментально проверено. Конечно, интересен сам факт того, что Хокинг отдал Торну выигрыш в пари относительно классификации «Лебедя Х-1» как черной дыры. Вероятно, он посчитал объект настолько близким к этому, что «чуть-чуть» уже не важно, а возможно, убедился, что включение в дело квантовой физики бросает тень сомнения на определение бесконечности времени.

Признание того, что черных дыр пока нет, во всяком случае в том «пока», которое соответствует нашей внешней системе отсчета, – это тонкость, которая обычно не известна неспециалистам. Так что, вооружившись этим фактом, вы тоже могли бы выиграть пари: реальность допускает возможность и верить, и не верить в существование черных дыр.

Другая лазейка вокруг скорости света

В главе 5 я показал, как постоянное ускорение 1g в вашей собственной системе отсчета может привести к тому, что расстояние между вами и отдаленным объектом (измеренное в ускоряющейся системе отсчета) изменяется в 2,6 раза быстрее скорости света. С помощью ускорителя BELLA в нашей лаборатории можно было изменять расстояние до Сириуса в системе отсчета электрона со скоростью, эквивалентной 8,6 миллиарда скоростей света. Вы можете добиться большего. Можете изменять расстояния с бесконечной скоростью. Вот как это происходит.

Представьте, что мы с вами в космосе на расстоянии метра друг от друга. Вокруг нас ничего нет. Предположим, наши системы отсчета идентичны. В них мы оба в состоянии покоя. Теперь возьмем маленькую первичную (полностью сформировавшуюся) черную дыру, которая имеет массу, может быть, несколько килограммов. Поместим ее точно между вами и мной. Гравитационное притяжение у черной дыры не больше, чем у другого объекта с такой же массой, так что мы не испытываем воздействия необычных сил. Когда черная дыра находится между нами, прямая линия, соединяющая нас, становится бесконечной. Таким образом, расстояние между нами изменилось. А наше местоположение нет.

Сдвинулись ли мы с места? Нет. Изменилось ли расстояние между вами и мной? Да. Колоссально. Пространство текучее и гибкое. Оно способно сжиматься и растягиваться. Бесконечная концентрация пространства может быть передвинута достаточно легко, потому что его масса может оказаться небольшой. Это означает, что расстояния между объектами способны изменяться с произвольно высокими скоростями, даже со скоростью «световой год / секунда», а может, и быстрее. Вы словно передвигаетесь с суперскоростью (сверхсветовой), хотя остаетесь на месте.

Эти понятия и концепции очень пригодятся нам при обсуждении современной космологии в последующих главах. В особенности они важны как основа теории инфляционного развития Вселенной, которая используется для объяснения парадоксальности ее удивительного единства, даже несмотря на то что она так велика и (видимо) не обладала временем для объединения. Подробнее об этом далее.

Пространственно-временные туннели

Кротовая нора – это гипотетический объект, похожий на черную дыру. Но вместо искривленного пространства, которое устремляется к дыре, обладающей колоссальной массой, в конечном счете пространство открывается в другую горловину. Простейший пример такого туннеля – соединенные в узком месте две «не совсем черные дыры». («Не совсем» означает, что можно упасть в дыру с одного входа и выйти из другого за конечный промежуток времени.) Чтобы это произошло, нужно представить: пространство согнуто таким образом, что сгиб приходится как раз на место выхода из туннеля. Однако на самом деле воображать это не нужно. Вспомните, что падение внутрь черной дыры в системе отсчета внешнего наблюдателя бесконечно по протяженности. Так что если кротовая нора и не такая глубокая, она может иметь достаточную глубину, чтобы достичь любой точки.

Проблема с простыми кротовыми норами состоит в том, что расчеты указывают на их нестабильность. Поскольку внизу норы нет никакой массы, чтобы концентрировать искривленное пространство, полагают, что кротовая нора прекратит свое существование быстрее, чем человек сможет «проскочить» сквозь нее. Мы могли бы стабилизировать ее (как это делают в шахтах, ставя подпоры), но, согласно современным взглядам на проблему, для этого необходимо нечто, чего человечество еще не открыло, – некая частица с негативной энергией в ее поле. Такое поле возможно (во всяком случае, его нельзя исключать). Так что приглашаем фантастов использовать предположение, что в будущем мы сумеем создавать стабильные и полезные пространственно-временные туннели.

Кротовые норы – классика научной фантастики, особенно в описании суперскоростных путешествий на расстояния во многие световые годы. Даже сам термин «варп-двигатель» (warp-drive)[94]94
  Варп-двигатель – гипотетическая научно-фантастическая технология, которая позволит кораблю, оснащенному таким двигателем, преодолевать межзвездные расстояния со сверхсветовой скоростью. Прим. перев.


[Закрыть]
из киноэпопеи «Звездный путь», который использовался также в телесериале «Доктор Кто»[95]95
  «Доктор Кто» – культовый британский научно-фантастический телесериал компании ВВС об инопланетянине, известном как Доктор. Вместе со спутниками он путешествует во времени и пространстве как для спасения цивилизаций или отдельных людей, так и ради удовольствия. Прим. ред.


[Закрыть]
, предполагает, что четырехмерное пространство-время Вселенной имеет еще и пятое измерение, сближая объекты. Та же тема звучит и в популярном научно-фантастическом фильме «Дюна»[96]96
  «Дюна» – фантастический фильм Д. Линча по мотивам одноименного романа Фрэнка Герберта, вышедший в 1984 г. Прим. ред.


[Закрыть]
, где вымышленная «Космическая гильдия» использует материал под названием spice, чтобы искривлять пространство. (В послужившем основой романе герои просто покрывают расстояние со скоростью больше скорости света, однако в фильме используется релятивистский аспект такой способности.)

Кротовые норы потрясают воображение поклонников научной фантастики еще и потому, что некоторые физики утверждают, будто они могут сделать возможными путешествия обратно во времени. По мере того как мы будем продвигаться в понимании течения времени, слова сейчас и путешествия во времени, вы увидите, почему я не согласен с тем, что кротовая нора позволит вернуться во времени назад.

* * *

Для меня удивительно, что, не зная причины течения времени, мы можем точно определять его относительное течение в различных местностях и утверждать, будто оно может течь с разной скоростью. Согласно законам физики, время замедляется или убыстряется. Следующий шаг, сделанный учеными-физиками, тоже не смог объяснить скорость течения времени, но попытался ответить на более простой вопрос: почему время скорее течет вперед, чем назад?

Внимание! Это не конец книги.

Если начало книги вам понравилось, то полную версию можно приобрести у нашего партнёра - распространителя легального контента. Поддержите автора!

Страницы книги >> Предыдущая | 1 2 3 4 5 6 7
  • 0 Оценок: 0

Правообладателям!

Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.

Читателям!

Оплатили, но не знаете что делать дальше?


Популярные книги за неделю


Рекомендации