Электронная библиотека » Ричард Мюллер » » онлайн чтение - страница 3


  • Текст добавлен: 8 мая 2017, 16:51


Автор книги: Ричард Мюллер


Жанр: Физика, Наука и Образование


Возрастные ограничения: +12

сообщить о неприемлемом содержимом

Текущая страница: 3 (всего у книги 27 страниц) [доступный отрывок для чтения: 7 страниц]

Шрифт:
- 100% +
Правильные системы отсчета

Эйнштейн обнаружил: если вы ограничитесь только теми системами отсчета, которые движутся с постоянной скоростью, то уравнения в теории относительности останутся достаточно простыми. Я привожу их в Приложении 1. Конечно, люди и мир не движутся с постоянными скоростями. Мы определяем вашу систему отсчета как систему, которая движется вместе с вами, изменяя скорость вместе с вами. Самое важное свойство этой системы в том, что она определяет ваш возраст и то количество времени, которое отпущено вам для жизни.

Когда вы сначала сидите на поверхности Земли, затем летите на самолете, а потом возвращаетесь, ваша собственная система отчета ускоряется. То количество времени, которое вы ощущаете и которое проявляется в вашем возрасте, проявится на ваших часах. Это не очевидно, но таким представлением пользуются все физики. Научно оно называется хронометрической теорией. Если захотите узнать, как изменится ваш возраст во время длительного и сложного путешествия, в котором будет много ускорений, всегда высчитывайте свой гамма-фактор, который покажет, насколько замедляется ход ваших часов на каждой из тех скоростей, которым вы подвергаетесь.

Для ускоряющейся системы отсчета (например, для собственной СО) общие формулы для событий гораздо более сложные, чем для СО, движущихся с постоянной скоростью. Чтобы избежать этих сложностей, Эйнштейн использовал очень простой трюк. В любой момент ваша собственная система отсчета будет совпадать с СО, движущейся с постоянной скоростью. Поэтому достаточно делать ежемоментные вычисления именно в тех системах, которые соответствуют этому моменту. Иными словами, если вы ускоряетесь, используйте уравнения, представляя себе, что ваше движение оказывается «перепрыгиванием» вашей собственной СО из одной системы отсчета в другую, двигающуюся несколько быстрее. Этот подход Эйнштейн позднее использовал при вычислениях гравитации, которую он принимал за эквивалент ускоряющейся системы отсчета. Такой подход он назвал принципом эквивалентности сил гравитации и инерции.

Когда в этой книге я говорю «система отсчета», то имею в виду систему, не подверженную ускорению. Такие системы физики называют «системами отсчета Лоренца» – в честь Хендрика Лоренца[38]38
  Хендрик Лоренц (1853−1928) – нидерландский физик-теоретик, лауреат Нобелевской премии по физике (1902, совместно с П. Зееманом) и других наград, член Нидерландской королевской академии наук, ряда иностранных академий наук и научных обществ. Прим. ред.


[Закрыть]
, современника Эйнштейна, который первым использовал концепцию неподвижных систем. Напротив, ваша собственная система отсчета движется вместе с вами, ускоряясь и останавливаясь, двигаясь пешком и бегом, меняя направление движения, запрыгивая в машины и носясь на них повсюду.

Путешествия в будущее

Эффект замедления времени порождает мысли о возможности путешествий в будущее. Действительно, попытайтесь добиться достаточно высокой скорости передвижения, и ваше собственное время потечет медленнее. За одну минуту вашей жизни можете прожить сотню лет в будущем. Не придется замораживать тело в надежде, что ученые однажды найдут способ разморозить и оживить его. Нужна всего лишь околосветовая скорость. Конечно, возникают и технические детали. Вам нужно позаботиться, чтобы во время путешествия ни с чем не столкнуться. На скоростях, близких к скорости света, это чревато. Важно побеспокоиться и о том, чтобы вернуться в ту же точку, откуда стартовали, чтобы Земля была такой, какой вы и ожидаете ее увидеть в будущем. И тут есть одна загвоздка. Попав в будущее, вы не будете обладать механизмом, который позволит вернуться в прошлое.

Путешествия во времени в обратном направлении, вероятно, возможны. Ученые полагают, что это могло бы произойти при путешествиях со скоростью выше скорости света, когда люди соскальзывали бы в пространственно-временные туннели в гипотетической модели Вселенной. Я позже порассуждаю об этих идеях, но мне кажется, на пути их реализации имеются серьезнейшие проблемы, и ни одна из них никогда не будет успешно реализована.

Эйнштейн вывел свои уравнения, допустив, что относительная скорость систем отсчета ниже скорости света. Если эти скорости сравняются, то гамма-фактор станет бесконечным и уравнения будут неверны. Можно ли использовать формулы для скоростей больше скорости света? Пока официально нет. Но, разумеется, каждый пытается посмотреть, что из этого получится. В конце концов при этом приходят к мыслям о воображаемой массе. Это необязательно противоречит физике. Мы поговорим об этом, когда будем рассматривать гипотетические частицы, имеющие скорость, которая превышает световую. Их называют тахионы.

Глава 3
Это скачущее сейчас
Изменение системы отсчета создает дискретные скачки в определении времени отдаленных событий
 
День и время, в которое мы живем,
Дает нам возможность понять скорость и новые открытия,
И даже четвертое измерение.
Нас немного пугает теория м-ра Эйнштейна…
Вы должны запомнить: поцелуй – всего лишь поцелуй,
Вздох – это всего лишь вздох.
С течением времени основополагающие вещи
Все равно остаются неизменными.
 
Отрывок из песни «Время бежит вперед» (включая слова, пропущенные в фильме «Касабланка»[39]39
  Вольный перевод. «Касабланка» – голливудская романтическая кинодрама 1942 г., получила три «Оскара». Сюжет сосредоточен на внутреннем конфликте человека, которому приходится выбирать между долгом и чувством. Его часто называют в числе лучших фильмов Голливуда. Прим. перев.


[Закрыть]
)

Даже если вас не пугает замедление времени, открытия Эйнштейна вокруг понятий когда и сейчас могут вызвать беспокойство. Термин квантовый скачок когда-то использовался только в квантовой физике. Само слово квант означает «дискретный, случайный, резкий». Согласно теории относительности, такие резкие изменения возникают в отношении отдаленных событий, когда вы круто меняете систему отсчета. Скачок во времени при этом может быть очень значительным.

Давайте дадим какому-то событию название (например, «моя новогодняя вечеринка») и определим его местоположение и время. Моя новогодняя вечеринка состоялась ночью 31 декабря 2015 года (или в какое-то другое время), а местом события был мой дом, местоположение которого определяется широтой, долготой и высотой относительно уровня моря. Время события отвечает на вопрос когда. Если два события имеют одно и то же когда, они называются одновременными. Например, ваша новогодняя вечеринка и такая же вечеринка у ваших друзей состоялись одновременно. (Вспомните цитату из статьи Эйнштейна, которая была приведена в начале предыдущей главы относительно часовой стрелки часов и прибытия поезда.) Достаточно просто. Но если два события происходят одновременно в одной системе отсчета, за которую можно взять мой дом, будут ли они обязательно одновременными в другой системе отсчета, скажем движущегося самолета? Очевидный ответ – да. Правильный ответ – нет.

Пока вы не стали изучать теорию и работы Эйнштейна, могло ли вам прийти в голову, что ответ может быть отрицательным? Подлинный гений ученого состоял в том, что он оказался способен задать себе такой вопрос. Без отказа от концепции классической физики об абсолютной одновременности событий Эйнштейн не смог бы решить проблему относительности.

В своей теории он показал, что если два события происходят в разных местах и одновременно, скажем прямо сейчас, то в другой системе отсчета они не будут одновременными. Одно событие происходит прежде, чем другое. Какое из них будет первым? Зависит от системы отсчета. Они могут и менять порядок происхождения. Именно это я имею в виду, говоря, что в теории относительности время может менять направление своего течения.

Предположим, вы летите к далекой звезде. Что происходит в это время на Земле? Скрытым и подразумеваемым, но не произнесенным в этом вопросе будет слово сейчас. Что происходит на Земле сейчас? Но стоит вам достичь звезды, остановиться на ней и изменить собственную систему отчета из подвижной на неподвижную (на поверхности звезды), значение абсолютного сейчас в этой системе отсчета тоже изменится. Это произойдет в силу того, что ваша собственная система отсчета после остановки привязывается к другой СО. Когда ваша система отсчета «перепрыгивает» в другую, то же самое происходит и со временем отдаленных событий. Формула для этого «прыжка» времени оказывается очень простой. Это γDv/с2, где γ – гамма-фактор, D – расстояние до события, v – изменение скорости, а с – скорость света. Я даю эту формулу в Приложении 1.

Приведу пример. Предположим, что ваша новогодняя вечеринка происходит у вас дома, а моя – на Луне. Эти события одновременны в собственной системе отсчета моего дома. А теперь давайте посмотрим на те же самые события в собственной системе отсчета пиона из моей лаборатории. Расстояние D/c составляет 1,3 светосекунды[40]40
  Светосекунда (по аналогии со световым годом) – расстояние, которое свет преодолевает за 1 секунду. Прим. науч. ред.


[Закрыть]
, скорость движения пиона в моей лаборатории (соотношение v/c, безразмерная скорость b) близка к 1, а гамма-фактор составляет число I, вычисленное ранее: 637. Таким образом, «прыжок» времени будет произведением 1,3 × 637, что составляет 828 секунд. Это разрыв в 14 минут между двумя «одновременными» новогодними вечеринками! Какое же событие произойдет первым, зависит от того, движется система отсчета пиона в сторону Луны или удаляется от нее.

Не находите ли вы этот пример более волнующим, чем абстрактная «более долгая жизнь»? Большинство людей согласны с этим, потому что он ближе к реальности. В силу своей труднодоступности для понимания эти «прыжки», или разрывы во времени событий, оказываются одними из самых запутанных парадоксов теории относительности, и мы поговорим о них в следующей главе. Они также несут в себе важные последствия для наших поисков понимания категории сейчас.

Еще раз предупреждаю: остерегайтесь понимать разрывы во времени событий как «несогласие между наблюдателями», что часто используется в популярных объяснениях теории относительности как штамп. Наблюдатели со своими системами отсчета не могут иметь «различное представление» о реальности, в чем хотят убедить вас некоторые авторы. Это вывод базируется на том неправильном представлении, что любой наблюдатель может описывать реальность только в одной системе отсчета – его собственной. Если бы это было так, то в нашей обычной жизни я сказал бы, что не я приехал в Париж, а Париж приехал ко мне. Мы не строго привязаны к собственным системам отсчета в обычной жизни, поэтому нет никакого резона привязывать себя к ним, говоря о релятивизме.

Сжимающееся пространство, плоские протоны

Эйнштейн изменил и наше понимание времени, и наше понимание пространства. В теории относительности он показал, что не только время прохождения двух событий зависит от системы отсчета (Земля, самолет или спутник), но и длина объектов.

Начиная разговор о длине, мы вновь должны обратиться в детство. Чтобы измерить длину автобуса, мы определяем местоположение одного его конца, затем другого и выводим разницу между ними. Но предположим, что автобус двигается. Мы отмечаем нахождение переда автобуса, когда эта его часть минует нас, а буквально через секунду отмечаем, что мимо нас проезжает его задняя часть. И мы ошибочно приходим к заключению о том, что длина автобуса равна 0. Ясно, что мы допускаем ошибку. Нужно измерить переднюю и заднюю точки автобуса одновременно.

Одновременно? Но в этом-то и загвоздка. Одновременность относительна. События, одновременные в одной системе отсчета, не одновременны в другой. Прямым следствием этого будет то обстоятельство, что в разных системах отсчета длина будет разной. Если объект имеет длину L в собственной системе отсчета (двигаясь вместе с ней), тогда его длина в системе отсчета, двигающейся с относительной скоростью v (например, земной СО), будет, по Эйнштейну, меньше на гамма-фактор. Для интересующихся я привожу это уравнение в Приложении 1.

Это сокращение длины объекта называлось в разное время по-разному: сжатие Фицджеральда, сжатие Лоренца[41]41
  Можно встретить также термины Лоренцово сокращение или Фицджеральдово сокращение. Прим. науч. ред.


[Закрыть]
, сжатие движущегося тела в направлении движения.

Множественность названий отражает тот факт, что само явление было постулировано еще до Эйнштейна. Ирландский физик Джордж Фицджеральд, вместе с другими учеными своей эпохи (конец XIX века), предполагал, что все пространство заполнено невидимой жидкостью под названием эфир. (В молодости я путал его с химическим эфиром.) Этот эфир, по представлениям Фицджеральда, был той средой, в которой распространялись электромагнитные колебания: световые и радиоволны. Теперь под этим мы понимаем вакуум, или космическое пространство. Фицджеральд выдвинул гипотезу о том, что объект, движущийся сквозь эфир, будет сжиматься под действием сопротивления этой субстанции. Эту силу сопротивления он называл «эфирным ветром». Новая длина предмета была результатом деления старой его длины (которая существовала в его собственной системе отсчета) на гамма-фактор.

В понимании сжатия движущегося тела много путаницы из-за неточности языка некоторых ученых. Они говорят, что движущийся деревянный метр «кажется короче». Это правда, но не вся. Он короче в нашей системе отсчета, чем в собственной СО. Все наблюдатели, независимо от скорости их движения, сходятся в этом. Деревянный метр кажется короче, потому что он на самом деле короче.

Сжатие движущегося тела я тоже мог наблюдать в своей лаборатории, хотя и не с такой ясностью, как замедление времени. Когда мы сталкиваем пион с протоном, в системе отсчета пиона протон становится совсем не круглым. Он приобретает форму очень тонкого блина толщиной в 1/637 части своего диаметра, то есть больше похожим на тонкую ткань (типа крепа). Это изменение формы протона оказывает серьезное воздействие на рассеивание пиона, которое я наблюдал.

В земной системе отсчета пион был меньшей из двух частиц. Так какая же из них была меньше в реальности, пион или протон? Ответ – обе, в зависимости от системы отсчета. В собственной СО пиона двигался протон, и он был меньше. В собственной СО протона двигался пион, и меньше был он. Все наблюдатели во всех системах отсчета сходятся в этом. В теории относительности наблюдатели никогда не расходятся в определении длины объекта больше, чем в определении его скорости. Скорость относительна. Точно так же относительны временные интервалы. Точно так же относительна форма.

Эксперимент Майкельсона−Морли

Большинство известных дискуссий о теории относительности начинается с описания эксперимента, проведенного американскими физиками Альбертом Майкельсоном[42]42
  Альберт Майкельсон (1852−1931) – американский физик, известен изобретением названного его именем интерферометра Майкельсона и прецизионными измерениями скорости света. Лауреат Нобелевской премии по физике «за создание точных оптических инструментов и спектроскопических и метрологических исследований, выполненных с их помощью» (1907). Прим. ред.


[Закрыть]
и Эдвардом Морли[43]43
  Эдвард Морли (1838−1923) – американский физик и химик. Наибольшую известность получили работы в области интерферометрии, выполненные совместно с А. Майкельсоном. В химии высшим достижением Морли было точное сравнение атомных масс элементов с массой атома водорода, за которое ученый был удостоен наград нескольких научных обществ. Прим. ред.


[Закрыть]
в 1887 году. До сих пор неясно, в какой степени результаты этого эксперимента повлияли на Альберта Эйнштейна. Он упоминает о нем лишь в своих поздних работах. Создается впечатление, что его теория относительности базировалась прежде всего на теории электромагнетизма Максвелла и свойствах этой теории, выведенных Лоренцем.

Майкельсон и Морли сделали исключительно точное измерение скорости света в направлении движения Земли вокруг Солнца и перпендикулярном ему направлении. Цель состояла в обнаружении «эфирного ветра». Ученые выяснили, что скорость распространения света в обоих направлениях была одинаковой, несмотря на движение Земли. Они нашли лишь 1/40-ю долю той разницы в скорости света, которую ожидали увидеть. То есть, по существу, никакой разницы.

Современные эксперименты подтвердили, что скорость света постоянна, независимо от направления вращения Земли. При этом точность измерений достигла 0,01 микрона в секунду. В действительности точность измерений была настолько высока, что ее дальнейшее повышение потребовало бы внесения изменений в определение того, что мы подразумеваем под одним метром в метрической системе. Чтобы избежать каких-либо противоречий, в настоящее время скорость света официально определена в 299 792 458 м/с, а длина метра определяется как расстояние, которое луч света преодолевает за 1/299 792 458 секунды. Это означает, что известное значение скорости света больше не уточняется. Можно только технически повысить точность измерения длины метра. Полезно также запомнить, что свет распространяется со скоростью около 0,3048 м/нс (нс, наносекунда – одна миллиардная доля секунды) с точностью до 1,5 %.

Постоянство скорости света достаточно легко объясняется теорией относительности, как я показываю в Приложении 1. Но это обстоятельство можно повернуть на 180°. В начальных курсах физики преподаватели иногда выводят уравнения теории относительности, начав с тезиса о постоянстве скорости света и показывая потом, что релятивистские уравнения – единственные, которые линейны по отношению ко времени и пространству и которые могут дать этот результат. Студентом я никогда не любил этот метод, потому что считал представление о линейности искусственным. На самом деле это не так, но мне, второкурснику, было трудно принять принцип «линейности», так что все вычисления казались натянутыми.

E = mc²

Самой известной формулой XX века считается формула Эйнштейна об эквивалентности массы и энергии: E = mc². В настоящее время она настолько известна, что трудно даже представить, насколько абсурдной она казалась, когда была впервые сформулирована Эйнштейном. Он опубликовал ее во второй статье, посвященной теории относительности, в 1905 году, через три месяца после первой.

Формула выглядела нелепой. В соответствии с ней любая масса, даже такая, которой обладают абсолютно несжигаемые субстанции типа камня или воды, содержит в себе огромную энергию. После подстановки в формулу показателя с² получались чудовищные значения. Скорость света, с, – это 300 000 000 м/с. Возведите это число в квадрат, и вы получите 90 000 миллионов миллионов. Другими словами, 90 квадриллионов. К тому же Эйнштейн не дал никаких указаний относительно того, как можно извлечь всю эту энергию для полезного использования. Он просто констатировал, что она есть. Если вы не могли освободиться от массы, такая энергия была бесполезна. В то время понятие массы считалось непреложным. Масса «сохранялась», она не могла быть создана или уничтожена. Таким образом, формула Эйнштейна выглядела одновременно и абсурдной, и бессмысленной.

Ученый говорил, что, в принципе, энергия эквивалентна массе. Вы можете представить себе массу как «связанную в узел энергию». Когда, сжигая бензин и воздух, вы получаете тепло, масса дымов (состоящих в основном из углекислого газа и пара) будет несколько меньше массы сожженной бензиново-воздушной смеси из-за истраченной энергии (той энергии, которая использована на придание движения вашему автомобилю). Энергия, помимо прочего, уходит на разогрев воздуха и покрытия дороги (сила трения), в результате чего они станут несколько тяжелее, потому что «впитают» в себя энергию.

Формула E = mc² подразумевает использование физических единиц (джоулей, килограммов, метров в секунду). Я попробую переписать ее в наших повседневных единицах измерения. Килограмм массы – это примерно 2,2 фунта. 1 киловатт-час энергии (кВт/ч) эквивалентен 3,6 млн джоулей. Формулу Эйнштейна можно представить еще и так:

Энергия = mc² = 11 млрд кВт/ч в фунте массы.

В США средняя стоимость электроэнергии равна 10 центам за 1 киловатт-час. Так что один фунт любой массы, переведенный в электрическую энергию, стоил бы более миллиарда долларов.

Другой способ представить эту формулу – измерить энергию в бензиновом эквиваленте. Сколько ее будет содержаться в массе одного галлона бензина (3,79 л). Вот как будет выглядеть формула:

Энергия = mc² = 2 млрд галлонов (в бензиновом эквиваленте) в одном галлоне бензина.

Это означает, что энергии в массе бензина содержится в 2 миллиарда раз больше, чем получается от сжигания той же массы. В США розничная цена бензина колеблется, но если, для примера, ее взять равной $3 за галлон, то в одном галлоне бензина содержится энергии на $6 млрд. А в Европе – на еще большую сумму.

Требовалось ли от Эйнштейна мужество, чтобы в начале XX века опубликовать подобные, явно нелепые, выводы? Сегодня, когда мы знакомы с мирной ядерной энергией и чудовищной разрушительной силой атомных бомб, эти заключения и расчеты не кажутся фантастическими. Но в начале 1900-х годов доказательств существования этих невероятных масс энергии еще не было – кроме того, что в процессе радиоактивного распада атом высвобождал энергию в миллион раз больше, чем при участии в химической реакции. Должен был существовать доселе неизвестный источник гигантской энергии, и Эйнштейн нашел его – это масса. Но утверждения великого ученого требовали либо отчаянной смелости, либо уверенности в том, что он раскрыл фундаментальную правду о массе. Создается впечатление, что превалировал второй фактор.

Каким образом Эйнштейн вывел уравнения об энергии из уравнений времени и пространства? Его метод был достаточно простым. Он задумался: какое влияние окажут наши представления о времени и пространстве на законы механики? Ньютон в свое время решил, что объект, испытывающий на себе силу F, приобретет ускорение а по формуле F = ma. Мы называем это вторым законом Ньютона. (Его первый закон, гласящий, что движущийся объект будет сохранять свое прямолинейное движение или останется в состоянии покоя, есть лишь частный случай для второго закона, при силе F, равной нулю.)

Эйнштейн понимал, что ньютоновские уравнения не могут быть правильными для всех систем отсчета, поэтому он сформулировал другие, которые удовлетворяли этому требованию. Главный его вывод был таков: движущиеся объекты ведут себя так, будто они тяжелее, чем на самом деле. В уравнениях Эйнштейна вместо m появляется γm, которая исторически называется релятивистской массой. Энергия представала в виде E = γmc², что подвело Эйнштейна к признанию эквивалентности релятивистской массы и энергии. (Некоторые физики до сих пор предпочитают использовать термин «масса» для обозначения массы покоя, но тогда утрачивается эквивалентность массы и энергии. Понятие релятивистской массы широко использовалось такими учеными, как Эрнест Лоуренс, и доказало свою концептуальную состоятельность.)

Вспомните о пионе в моей лаборатории. При разгоне не только время для него текло в 637 раз медленнее, чем мое; он при столкновении не только расплющивался в прозрачную ткань толщиной в 637 раз меньше его диаметра, но и его масса оказывалась при столкновении в 637 раз больше, чем соответствующее значение из таблицы частиц. Это увеличение массы можно было легко измерить при прохождении пиона сквозь сильное магнитное поле с минимальным отклонением. Относительность реальна. В своей лаборатории я сталкивался с ней каждый день.

Я мог также непосредственно наблюдать превращение массы в энергию. В экспериментах я использовал пузырьковую камеру на жидком водороде, которую изобрел мой учитель Луис Альварес (американский физик-экспериментатор, член Национальной академии наук США. Прим. ред.). Это устройство создавало след из микроскопических пузырьков по пути движения элементарной частицы. Наиболее драматичные распады происходили с мюонами. Когда с этой частицей происходил радиоактивный «взрыв», ее след неожиданно исчезал и заменялся на новый след от гораздо более легкого, но быстрого электрона. Значительная масса мюона прямо преобразовывалась в кинетическую энергию, то есть энергию движения электрона.

В своей лаборатории я также часто видел антивещество[44]44
  Силы, которые определяют структуру материи, для частиц и античастиц одинаковы. Частицы различаются только знаком заряда. Атомы обычного вещества состоят из положительно заряженного ядра, вокруг которого движутся электроны. А отрицательно заряженные ядра атомов антивещества, в свою очередь, окружены позитронами. В природе у каждой элементарной частицы есть античастица. Для электрона это позитрон, а для положительно заряженного протона – антипротон. То есть антивещество – это материя, состоящая из античастиц. «Антивещество» – не совсем верное название, это лишь разновидность вещества, обладающая теми же свойствами и способная создавать гравитационное притяжение. Прим. перев.


[Закрыть]
. Позже я расскажу о нем подробнее, но для нынешней темы особенно интересно, что когда антивещество замедляется при столкновении с веществом, оно аннигилирует – в смысле превращает всю свою массу и массу цели в энергию, обычно в гамма-излучение, которое впоследствии преобразуется в тепло. Я каждый день видел, как масса становилась теплом. Столкновение вещества и антивещества содержит огромное количество энергии, в тысячи раз больше, чем энергия ядерного синтеза, и в миллиард раз больше, чем энергия бензина. Именно поэтому смесь вещества и антивещества была представлена в качестве топлива для межзвездного корабля Starship в фантастическом триллере «Звездный путь»[45]45
  «Звездный путь» – научно-фантастическая медиафраншиза, включающая шесть телесериалов, 13 полнометражных фильмов, сотни книг, рассказов и компьютерных игр. Прим. перев.


[Закрыть]
.

Процесс взаимоуничтожения вещества и антивещества сейчас в повседневной практике используется в медицине для томографии. Чаще всего «антиэлектрон» называется позитроном, и именно от этого названия происходит буква Р в аббревиатуре РЕТ (позитронно-эмиссионная томография). В этом методе используется то обстоятельство, что некоторые радиоактивные вещества, например изотоп[46]46
  Изотоп – разновидность химического элемента, обладающая тем же количеством протонов, что и исходный элемент, но имеющая другую массу (ввиду другого количества нейтронов в ядре). Прим. науч. ред.


[Закрыть]
йода – йод-121, испускают позитроны. В теле человека он накапливается в щитовидной железе. Когда йод излучает позитроны, эти частицы сталкиваются с близкорасположенными электронами и взаимно аннигилируют, создавая гамма-лучи. Специальная камера улавливает эти лучи и создает изображение щитовидной железы. На таком изображении можно увидеть участки этого органа, не накапливающие йод, – они выглядят на скане как белые пятна.

Некоторые ошибочно полагают, что уравнения Эйнштейна сыграли важную роль в создании атомной бомбы. Это не так. Еще до него было известно, что при радиоактивном распаде выделяется огромное количество энергии. Для создания атомной бомбы было достаточно этого знания и открытия возможности цепной реакции.

Венгерский физик Лео Сцилард[47]47
  Лео Сцилард (Силард) (1898−1964) – американский физик венгерско-еврейского происхождения. Вместе с Э. Ферми определил критическую массу урана-235 и участвовал в создании первого ядерного реактора. Прим. ред.


[Закрыть]
в 1936 году запатентовал бомбу, действие которой основывалось на сделанных к тому времени открытиях. (Патент был выдан в Англии, куда Лео перебрался от угрозы нацизма; в 1937 году он переехал в Нью-Йорк.) В 1939 году Сцилард составил письмо[48]48
  В письме Сцилард указывал на огромную опасность фашизма для мировой цивилизации. Прим. перев.


[Закрыть]
в адрес президента США Рузвельта и убедил Эйнштейна подписать его. Письмо побудило Рузвельта к началу Манхэттенского проекта по созданию атомной бомбы. Из уравнений Эйнштейна мир узнал, что в результате небольшого уменьшения масс делящихся атомов может выделяться огромная энергия. Но сам этот вывод при создании атомной бомбы не использовался.


Страницы книги >> Предыдущая | 1 2 3 4 5 6 7 | Следующая
  • 0 Оценок: 0

Правообладателям!

Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.

Читателям!

Оплатили, но не знаете что делать дальше?


Популярные книги за неделю


Рекомендации