Автор книги: Роберт Хейзен
Жанр: Зарубежная образовательная литература, Наука и Образование
Возрастные ограничения: +12
сообщить о неприемлемом содержимом
Текущая страница: 4 (всего у книги 26 страниц) [доступный отрывок для чтения: 9 страниц]
Глава 2
Мощный удар
Образование Луны
Возраст Земли: от 0 до 50 млн лет
Основной принцип, которого я придерживаюсь в этой книге, заключается в том, что планеты развиваются: они меняются с течением времени. Более того, каждая ступень эволюции зависит от предыдущего ряда ступеней. Чаще всего изменения происходят постепенно, в течение миллионов, а то и миллиардов лет, шаг за шагом преобразуя планету, но могут произойти и мгновенные, резкие и необратимые события, которые изменят ее навсегда. Так и произошло с Землей. Наша планета образовалась сравнительно быстро из бесчисленных частиц и звездного мусора, по некоторым оценкам, на это понадобилось не больше миллиона лет. К концу этого процесса довольно близко от Протоземли располагались несколько дюжин планетезималей, сотни километров в диаметре каждая. На протяжении примерно сотен тысяч лет, пока Земля достигала своего нынешнего размера, последние стадии этого процесса сопровождались столкновениями невообразимой силы. Каждые несколько тысяч лет одна мини-планета за другой врезались в Землю и поглощались ею.
В эти беспокойные времена Земля представляла собой горячую, почерневшую сферу, покрытую красными, раскаленными трещинами, фонтанами вулканической магмы и следами беспрерывных падений метеоритов. Каждый из таких гигантских налетчиков врезался в сферу, дробя в пыль камни, выбрасывая их на орбиту и превращая поверхность планеты в расплавленную, огненно-красную жижу. Однако в космосе царит холод, и лишенная атмосферы поверхность Земли после каждого такого метеоритного удара очень быстро охлаждалась и снова чернела.
Странная Луна
История формирования Земли выглядит довольно гладко, за исключением одной поразительной детали: Луны. Ее нельзя было не заметить, и на протяжении последних двух столетий постепенно становилось очевидным, что ее свойства невероятно трудно объяснить. Спутники поменьше понятны. Фобос и Деймос, два неправильной формы каменных массива размером с город на орбите Марса, по-видимому, являются притянутыми гравитацией астероидами. Дюжины спутников вокруг Юпитера, Сатурна, Урана и Нептуна, хотя и покрупнее, все же выглядят крохотными по сравнению с планетами-хозяевами – их масса в тысячи раз меньше массы планет, вокруг которых они обращаются. Крупнейшие из них образованы из невостребованных остатков пыли и газа в процессе формирования планет Солнечной системы и обращаются вокруг газовых гигантов, словно планеты в миниатюрных планетных системах. В отличие от них, Луна сопоставима по размерам с Землей, вокруг которой она движется: ее диаметр составляет более четверти земного, а масса всего в 80 раз меньше массы Земли. Как же возникла такая аномалия?
Историческая наука, особенно история Земли и планет, основана на вдохновенном повествовании (возможно, отчасти соответствующем фактам). Если существует сразу несколько историй, основанных на наблюдениях, геологи применяют осторожную формулу, известную как «многовариантная рабочая гипотеза» – эта стратегия знакома всем любителям детективных романов.
Еще до знаменитой посадки «Аполлона» на Луну, начиная с 1969 г., когда был открыт состав древних горных пород Луны[5]5
Первое инструментальное определение плотности и прочности поверхностного слоя лунного грунта (риголита) было проведено советской автоматической станцией «Луна-13» 24–31 декабря 1966 г. – Прим. ред.
[Закрыть] и стало возможным геофизическое исследование ее внутренних областей, в деле увесистой Луны фигурировали три главных подозреваемых. Первой, получившей широкую поддержку, гипотезой стала идея разделения, выдвинутая в 1878 г. Джорджем Говардом Дарвином (гораздо менее известным, чем его знаменитый отец Чарльз Дарвин). Согласно модели Джорджа Дарвина, расплавленная Земля первоначально вращалась вокруг своей оси с такой скоростью, что она вытягивалась и удлинялась до тех пор, пока с ее поверхности не сорвался сгусток магмы и стал вращаться по собственной орбите вокруг материнской планеты (при этом гравитационная сила Солнца почти не оказала на него воздействия). По данной теории Луна – это росток, отпочковавшийся от Земли. В одном из вариантов этого драматичного вымысла предполагается, что впадина Тихого океана – это шрам, полученный при родах спутника.
С этой моделью соперничала другая, основанная на теории захвата, согласно которой Луна представляла собой независимую планетезималь, возникшую в окрестностях Земли в процессе формирования Солнечной системы. В какой-то момент два небесных тела проходили так близко друг от друга, что более массивная Земля захватила Луну, сместила ее с независимой орбиты и постепенно привязала к себе. Такое проявление гравитационной энергии успешно притянуло каменистые спутники Марса – почему бы не предположить нечто подобное в отношении Земли?
В третьей гипотезе, основанной на теории совместного формирования, была выдвинута идея о том, что Луна сформировалась примерно в ее нынешнем положении на орбите из большой тучи обломков, оставшихся не востребованными на орбите Земли. Идея выглядит вполне правдоподобно, воспроизводя сценарий образования планет вокруг Солнца или спутников вокруг газовых планет-гигантов. Такие процессы регулярно повторялись в Солнечной системе: небольшие объекты образовывались из туч пыли, газа и камней вокруг более крупных небесных тел.
Целых три гипотезы – которая из них верна? Пытливым умам пришлось дожидаться данных анализа лунного грунта – более четырех центнеров образцов с шести посадочных площадок «Аполлонов».
Посадка на Луну
Полеты на Луну по программе «Аполлон» значительно обогатили науку о планетах. Они, безусловно, стали образцом американской доблести и продемонстрировали технологическую мощь страны. И, конечно же, они оказались колоссальным подспорьем военно-промышленному комплексу. Кроме того, они послужили толчком для множества открытий и изобретений, от мини-компьютеров до полимеров и напитка Tang, обеспечив такой рост экономики, который в разы окупил 20 млрд долларов, потраченных на полеты «Аполлонов». Неудивительно, что эти опасные и дорогостоящие экспедиции стимулировались в основном не интересами научного изучения Луны, а национальной гордостью и борьбой за первенство. Тем не менее трудно переоценить вклад полетов «Аполлонов» с их бесценной добычей лунных пород в развитие геологии и геофизики. На протяжении всей истории человечества Луна находилась совсем близко от Земли – на расстоянии менее 400 тыс. км. Когда при ясном закате в небе начинает краснеть полная Луна, кажется, протяни руку – и ты дотронешься до нее. Но образцов грунта у нас не было, и невозможно было судить, из чего состоит Луна, когда и где она образовалась. Благодаря первой партии образцов лунных пород мы впервые в истории в буквальном смысле слова прикоснулись к Луне (сегодня любой посетитель Смитсоновского музея может сделать то же самое).
Я в буквальном смысле слова впервые вдохнул запах лунных образцов зимой 1969–1970 гг., когда учился на старших курсах в MIT (Массачусетском технологическом институте), примерно через полгода после исторического полета «Аполлона-11». Образцы были получены 24 июля 1969 г., когда люди впервые ступили на поверхность Луны и вернулись обратно на Землю. В ту начальную эпоху освоения Луны из-за опасения занести инопланетные микроорганизмы космонавты и образцы лунных пород были подвергнуты строжайшему карантину. Вскоре после того, как их модуль опустился в Тихом океане вблизи Гавайев, Нил Армстронг, Базз Олдрин и Майк Коллинз с бесценным грузом, состоявшим из 21 кг лунных горных пород и грунта, поднялись на борт американского военного корабля Hornet и вместе со всей коллекцией были размещены в герметичной передвижной карантинной установке НАСА. С Гавайских островов их доставили в Хьюстон в специально созданную Лунную приемную лабораторию, где космонавты и их бесценные образцы содержались почти три недели на тот случай, если они действительно подхватили на Луне какое-нибудь опасное заболевание.
В течение последующих трех лет полеты по программе «Аполлон» совершались один за другим. Лунный модуль «Аполлона-12» под названием Intrepid («Неустрашимый») с космонавтами Чарльзом Конрадом-младшим и Аланом Бином опустился на Луну 19 ноября 1969 г. и неделю спустя вернулся на Землю с 32 кг образцов горных пород и грунта; космонавты вместе с грузом были помещены в Хьюстонскую карантинную установку. По счастливой случайности, мой научный руководитель, умнейший и энергичнейший Дэвид Воунз стал членом научно-исследовательской группы по предварительному изучению лунных образцов с «Аполлона-12». Этот небольшой коллектив ученых получил уникальную возможность тщательно исследовать вторую партию лунных образцов с помощью самых передовых технологий. Специальностью Дейва была петрология магматических пород – изучение происхождения горных пород, образовавшихся из магмы. Все образцы, доставленные «Аполлоном-11» и «Аполлоном-12», оказались вулканического происхождения, так что Дейв пребывал на седьмом геологическом небе.
В некоторых отношениях работа оказалась отнюдь не легкой: они, по существу, находились в заключении, и над ними довлела необходимость получить достоверные данные о едва ли не самых дорогостоящих и значимых образцах, когда-либо собранных. С другой стороны, их невероятно воодушевляло то, что они оказались среди первых представителей человечества, работающих с образцами горных пород и грунтом инопланетного происхождения – космической материей, которая наконец объяснит нам происхождение Луны.
Мое первое знакомство с Луной произошло, когда Дейв вернулся в MIT. Помню, как открылись двери лифта на 12-м этаже Зеленого корпуса. И вот появился Дейв, невысокий очкарик в сопровождении двух здоровенных, вооруженных охранников в форме агентов ФБР. Они, конечно, охраняли не столько Дейва, сколько лунные образцы, которые на тот момент могли стоить миллионы долларов на рынке коллекционеров. Учет велся до миллиграмма. Дейв выглядел усталым и напряженным: он долгое время провел в командировке, находился под постоянным наблюдением, и работа была далека от завершения.
Когда речь заходит о лунных образцах, большинство представляет их себе как нечто увесистое, вроде камней, что можно подержать в руках. Но большая часть материала, доставленного «Аполлонами», состояла из лунного грунта, реголита. Мелкозернистые частицы реголита являются рыхлой породой, раскрошившейся на такие мелкие фрагменты, что их трудно разглядеть даже под микроскопом – следствие космических атак: от ударов увесистых метеоритов до непрерывного воздействия солнечного ветра. Эта сверхмелкая пудра обладает необычными свойствами, например, липнет ко всему, к чему прикоснется, как красящий порошок для ксерокса. Дейву предстояло пересыпать часть этой пудры из флакона размером с небольшой стакан в три-четыре баночки размером примерно с пальчиковую батарейку, чтобы распределить по соседним лабораториям.
Вроде бы задача нетрудная. Высыпьте порошок из флакона на листок гладкой бумаги. Осторожно пересыпьте ложечкой небольшие порции порошка в маленькие баночки. Дейв сотни раз проделывал такие операции, и это не должно было занять больше минуты. Но здесь слишком велика была ответственность. По бокам его стояли два угрюмых охранника, да в придачу кучка любознательных студентов. И вот, когда Дейв наклонил флакон, рука у него слегка дрогнула. Порошок прилип к стенкам и не высыпался. Дейв постучал по флакону указательным пальцем. Ничего. Снова постучал. И вдруг вся эта драгоценная лунная пыль (на самом деле всего лишь небольшая кучка размером с шоколадный трюфель, но в тех обстоятельствах она показалась огромной) высыпалась сразу – пуфф! Пыль разлетелась, налипла Дейву на пальцы и просыпалась через край бумаги на стол. По-моему, все мы вдохнули вместе с воздухом распыленные частички. Никто не произнес ни слова.
Ничего катастрофического не произошло, пыль сохранилась почти полностью, в конце концов, благополучно перекочевала в баночки, и федеральные агенты удалились, чтобы доставить их в соответствующие лаборатории. В общем, это было забавно. Пару дней спустя мы аккуратно заключили в рамку восьмисантиметровый квадратный кусок бумаги с отчетливым отпечатком Дейвова пальца в лунной пыли и повесили «картину» над лабораторным столом, на котором все это приключилось.
Вслед за первой последовали другие посадки «Аполлонов» на Луну. Самым грандиозным оказался в декабре 1972 г. полет «Аполлона-17», доставившего более 110 кг образцов из долины Таурус-Литтров, предполагаемой области вулканической деятельности. Это был последний полет; в последующие четыре десятилетия никто не высаживался на поверхность Луны. Как бы то ни было, образцы лунного грунта, тщательно сохраняемые в стерильных хранилищах Дома лунных образцов в Космическом центре НАСА в Хьюстоне (для надежности на базе ВВС в Сан-Антонио, штат Техас, хранится запасная коллекция), продолжают привлекать пристальное внимание ученых и предоставляют им богатый материал для исследований.
Несколько лет спустя после завершающей миссии «Аполлона» именно эти образцы послужили отправной точкой моего послужного списка, когда я получил свою первую должность в качестве исследователя-стажера в Геофизической лаборатории Института Карнеги. В мои задачи входило исследование различных видов «лунных частиц» с «Аполлона-12», «Аполлона-17» и «Луны-20» (одной из трех советских автоматических межпланетных станций, доставившей 55 г лунного грунта). Лунная пыль состояла главным образом из частиц размером с шарики или песчинки, и я должен был просматривать тысячи этих частиц, одну за другой. Я проводил целые часы за микроскопом, всматриваясь в эти изумительные зеленые и красные кристаллики и крошечные золотистые шарики, похожие на цветное стекло, – осколки разрушенных взрывом горных пород, которые на протяжении миллиардов лет подвергались метеоритному обстрелу.
Отобрав несколько дюжин перспективных крупинок, я подвергал каждую необычную частицу трем видам анализа. Вначале я использовал монокристаллическую рентгеновскую дифракцию, чтобы определить, с каким типом кристаллов я имею дело. Чаще всего мне попадались обычные разновидности оливина, пироксена и шпинели. Если мне встречался интересный кристалл, я тщательно ориентировал его грань и измерял спектр оптического поглощения (способность кристалла поглощать световые волны различной длины). Например, зеленые кристаллы оливина обычно поглощают волны красной области спектра; красные кристаллы шпинели, напротив, больше поглощают волны зеленого цвета. Я также измерял спектр необычных стеклянных частиц, прослеживая выбросы и колебания оптического спектра, которые указывали на присутствие редких элементов – например, хрома или титана. Небольшой скачок в 625 нм, еле заметное поглощение в оранжево-красной части спектра, характерное для лунного хрома, но не для хрома, который встречается на Земле, становилось памятным открытием.
По завершении рентгеновской и оптической обработки я брался за фантастический прибор под названием электронный микрозонд, чтобы определить точное соотношение элементов в моих образцах. Раз за разом я подтверждал то, что уже отмечалось до меня: минералы с поверхности Луны, в целом подобные аналогичным веществам на Земле, в деталях существенно отличаются от них. Например, в них содержится гораздо больше титана; различны они и по содержанию хрома.
Эти и ряд других данных, полученных при исследовании образцов, существенно ограничили круг теорий происхождения Луны. Прежде всего обнаружилось, что Луна значительно отличается от Земли, в частности, гораздо меньшей плотностью; она не обладает твердым, плотным железо-никелевым ядром. Ядро Земли составляет почти треть массы планеты, в то время как ядро Луны едва достигает 3 % от ее массы. Во-вторых, в лунных породах практически не встречается летучих элементов – тех, что испаряются в момент нагревания. В лунной пыли отсутствуют такие распространенные на Земле элементы, как азот, сера и водород. Их отсутствие означает, что в отличие от Земли, покрытой жидкой водой и изобилующей такими насыщенными водой веществами, как глина или слюда, среди минералов, доставленных с Луны «Аполлонами», не обнаружено веществ, содержащих воду. По каким-то причинам поверхность Луны подверглась взрыву или спеканию, что уничтожило летучие элементы, в результате чего Луна отличается крайней сухостью.
Третьим важнейшим фактором, обнаруженным в результате полетов «Аполлонов», стал кислород, точнее, распределение его изотопов. Каждый химический элемент определяется числом положительно заряженных протонов в его ядре. Это число всегда уникально: например, кислород известен как «атом с восемью протонами». Кроме того, атомные ядра содержат другой вид элементарных частиц – не несущие электрического заряда нейтроны. Более 99,7 % всех атомов кислорода во Вселенной имеют в составе ядра восемь нейтронов (вместе с восемью нейтронами они составляют изотоп, известный как кислород-16), а более редкие изотопы с девятью или десятью нейтронами (кислород-17 и кислород-18) исчисляются долями процента.
Кислород-16, кислород-17 и кислород-18 практически одинаковы по химическим свойствам (можно дышать любым, не ощущая никакой разницы), но отличаются по массе. Кислород-18 тяжелее кислорода-16. Соответственно при переходе кислородосодержащих соединений в другое состояние, например из твердого в жидкое или из жидкого в газообразное, менее массивный кислород-16 может удаляться гораздо быстрее. В период бурного рождения Солнечной системы такие переходы из одного состояния в другое совершались сплошь и рядом, что привело к изменению количества изотопов кислорода. Выяснилось, что соотношение кислорода-16 и кислорода-18 отличается на разных планетах и зависит от удаленности планеты от Солнца в момент ее формирования. Образцы лунного грунта показали, что пропорции изотопов кислорода на Луне и на Земле практически одинаковы. Иными словами, Луна и Земля в момент формирования находились почти на одном расстоянии от Солнца.
Как же сказались все эти открытия на трех соперничающих гипотезах о происхождении Луны? С самого начала под большим сомнением находилась теория совместного образования Земли и Луны из одного протопланетного сгустка, или совместной аккреции. Если бы Луна образовалась из остатков земного вещества, тогда их строение было бы примерно одинаково. Конечно, Луна схожа с Землей в том, что касается изотопов кислорода, но теория совместного формирования не в состоянии объяснить фундаментальные различия в содержании железа и летучих веществ. В целом состав лунного вещества значительно отличается от земного.
Различие в составе вещества ставит неразрешимые проблемы и перед гипотезой захвата. Теоретические модели движения планет предполагают, что захваченная планетезималь должна была сформироваться примерно на том же расстоянии от Солнца, что и Земля, а значит, совпадать с ней по составу. Луна не совпадает. Конечно, небесное тело размером с Луну могло образоваться и в другой части газово-пылевого облака и уже потом приблизиться к земной орбите, но компьютерное моделирование орбитальной динамики подсказывает, что в этом случае Луна должна была обладать высокой скоростью относительно Земли, а значит, и сценарий захвата тоже не выдерживает критики.
Остается Джордж Говард Дарвин и его теория разделения. Она успешно объясняет как сходство в соотношении изотопов кислорода (Земля и Луна являются единой системой), так и различие в содержании железа (ядро Земли к тому моменту уже сформировалось; сгусток вещества, образовавший Луну, представлял собой часть уже расслоившейся, бедной железом мантии Земли). Она прекрасно согласуется с тем, что Луна постоянно повернута к Земле одной стороной: вращения Луны вокруг Земли и вокруг собственной оси синхронны и совпадают по направлению движения. Однако при этом остается нерешенной важная проблема: куда же исчезли летучие элементы, отсутствующие на Луне?
Против теории разделения свидетельствуют и общие законы физики. Примерно ко времени программы «Аполлон» компьютерное моделирование формирования планет достигло такого уровня, что позволило теоретикам с уверенностью исследовать динамику быстрого вращения жидких сфероидов, равных по размеру Земле. Коротко говоря, разделение не может произойти. Гравитационная сила Земли слишком велика, чтобы позволить сгустку расплавленной породы оторваться и выйти на собственную орбиту. По существу, расплавленная Земля должна была бы вращаться вокруг собственной оси с невероятной скоростью, совершая полный оборот примерно за час, чтобы от нее оторвался равный Луне сгусток. Система Земля – Луна просто не обладает для этого достаточным моментом импульса.
Подведем итог: ни одна из трех господствующих теорий образования Луны не соответствует данным, полученным в результате полетов «Аполлона». Требуется иное объяснение.
Правообладателям!
Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.Читателям!
Оплатили, но не знаете что делать дальше?