Электронная библиотека » Роберт Зубрин » » онлайн чтение - страница 7


  • Текст добавлен: 9 июня 2017, 22:36


Автор книги: Роберт Зубрин


Жанр: Прочая образовательная литература, Наука и Образование


Возрастные ограничения: +12

сообщить о неприемлемом содержимом

Текущая страница: 7 (всего у книги 33 страниц) [доступный отрывок для чтения: 10 страниц]

Шрифт:
- 100% +
Миссия «Доставка марсианского грунта»

Священный Грааль автоматических программ по исследованию Марса – это миссия по доставке марсианского грунта (ДМГ). Если бы образцы, полученные «Викингом», оказались в одной из наших лабораторий, мы бы подвергли их серии тестов и испытаний, которые бы развеяли все сомнения. Что ж, почему бы не привезти образцы марсианского грунта? Сравнительно недавно при обсуждении планов по исследованию Солнечной системы НАСА запланировало именно такую миссию на 2020 год. Есть три способа реализовать этот проект. Первым и самым простым в идейном плане является метод грубой силы. В этом случае будет использована тяжелая ракета-носитель, способная доставить на орбиту 30 тонн груза, которая отправит на поверхность Марса очень большую полезную нагрузку, в том числе миниатюрную ракету массой около 500 килограммов, с достаточным количеством топлива для взлета с Марса и возвращения на Землю. Также на борту посадочного модуля будет автоматический ровер, который отправится исследовать окрестности (при помощи дистанционного управления) и собирать геологические образцы. Затем образцы погрузят в капсулу на борту ракеты. Когда примерно через год-полтора после прибытия откроется окно для запуска с Марса, ракета отправится обратно на Землю. Спустя восемь месяцев при подлете к Земле капсула отделится от остальной части корабля и на высокой скорости войдет в плотные слои атмосферы, во многом напоминая пилотируемые капсулы «Аполлона», а затем приземлится в намеченном пустынном районе. В зависимости от конструкции торможение капсулы будет происходить с помощью парашюта или сминающегося материала, наподобие пробкового дерева или пенопласта, чтобы смягчить удар. Идея этой миссии довольно проста, но проблема заключается в том, что, вероятнее всего, она будет очень дорогой, как обычные беспилотные исследовательские миссии. Потребуется ракета-носитель, превосходящая по возможностям существующие тяжелые ракеты класса «Атлас-V». Разработка и ракеты, и большого взлетно-посадочного модуля, необходимого для доставки такого тяжелого груза на поверхность Марса, вероятно, обойдутся очень дорого. Таким образом, метод грубой силы всегда приводил к оценкам стоимости, которые обрекали миссию на провал. В надежде снизить затраты также были рассмотрены некоторые другие методы. Один из самых популярных вариантов – проект марсианского орбитального рандеву (МОР). В этой схеме на Марс отправляют два космических аппарата, каждый запускается с помощью сравнительно недорогой (55 миллионов долларов каждая) ракеты-носителя «Дельта-2». Одна из ракет доставляет на околомарсианскую орбиту возвращаемый на Землю аппарат и спускаемую капсулу, а другая доставляет на поверхность Красной планеты полностью заправленный марсианский взлетный модуль (МВМ), в котором будет ровер и контейнер для образцов грунта. Ровер приступит к сбору образцов, которые поместит в контейнер. Когда задание будет выполнено, МВМ стартует с поверхности Марса на орбиту, где он в автоматическом режиме пристыкуется к ВЗА. Контейнер с образцами будет перемещен из МВМ в спускаемую капсулы на борту ВЗА. Затем два корабля расстыкуются, МВМ больше нужен не будет, а ВЗА останется ждать на марсианской орбите, пока не откроется окно для возвращения на Землю, а в нужный момент запустит свой двигатель и возьмет курс на Землю. Остальная часть миссии выполняется так же, как было описано выше.

Следует отметить, что план МОР обойдется значительно дешевле по сравнению со методом грубой силы. Так как МВМ должен только долететь до Марса, а его возвращение на Землю не предусмотрено, и его задача – поднять на орбиту только контейнер с образцами, а не многоразовый спускаемый аппарат, он может иметь сравнительно скромные размеры. То есть посадочный модуль, который доставит МВМ на Красную планету, можно сделать меньше, легче и дешевле и для запуска на Марс использовать менее мощную ракету-носитель. Тем не менее существуют серьезные проблемы, связанные с планом МОР. В первую очередь нужны две ракеты-носителя, что удваивает риск неудачного запуска и, значит, провала миссии. Кроме того, нужны два полноценных космических аппарата, каждый из которых должен быть спроектирован, построен, проверен на стадии сборки, а также потребуется предполетная подготовка (при запуске космический корабль подвергается сильным вибрациям и акустическим нагрузкам, которые до запуска воссоздаются в дорогостоящих установках), и каждый аппарат должен быть встроен в ракету-носитель. По сути, все эти работы удваивают стоимость миссии. Далее, стыковочные детали двух космических аппаратов должны сохранять идеальную точность после запуска и многих лет космического полета, несмотря на перепады температур в космосе и на поверхности Марса. Изготовители не могут этого гарантировать, поскольку такие нагрузки нельзя воссоздать при испытаниях. Наконец, технологии для стыковки в автономном режиме и передачи образцов на орбите Марса еще не разработаны, поэтому обойдутся очень дорого и также не могут быть проверены до начала миссии. Это еще больше увеличивает риск провала и без того почти неосуществимой миссии.

В попытке сделать план МОР более привлекательным его сторонники прибегли к оригинальным методикам, позаимствованным в бухгалтерском учете, например распределению стоимости двух необходимых запусков на отдельные миссии. В более экзотических вариантах ровер доставляет на Марс некая предшествующая миссия, так что расходы на его отправку и обслуживание можно списать на других исполнителей. В этом случае посадочный модуль, несущий МВМ, должен выполнить посадку в непосредственной близости от ровера. Возможность этого, опять же, нельзя проверить заранее, а в настоящее время мы умеем сажать беспилотные спускаемые аппараты на поверхность Марса только с погрешностью до 100 километров. Видимо, чтобы привнести элемент новизны, сторонники орбитального рандеву также предложили перенести место встречи с марсианской орбиты в межпланетное пространство. Это сэкономит топливо для ВЗА, потому что теперь ему не нужно будет выходить на орбиту Марса или сходить с нее. Однако потребуется больше топлива для МВМ, к тому же он должен будет взлететь в строго определенное время (что также невозможно заранее протестировать), чтобы успеть произвести стыковку с ВЗА в глубоком космосе. При этом ВЗА будет удаляться от Марса со скоростью 5 километров в секунду. Такую точность тяжело гарантировать с учетом работы инженерных систем одного только МВМ, не говоря уже о возможных плохих погодных условиях в назначенный день взлета.

Так что же остается, если план грубой силы слишком дорогостоящ, а схема МОР слишком рискованна?

Есть третий план, который я и мои коллеги-инженеры: Джим Френч, Кумар Рамохалли, Роберт Эш, Дайан Линн и еще несколько человек – развиваем уже несколько лет. Он называется «Доставка марсианского грунта с использованием топлива, произведенного на Марсе» (ДМГ).

В плане ДМГ используется одна ракета-носитель «Дельта-2», которая доставит на Красную планету один незаправленный марсианский взлетный модуль вместе с ровером. Пока ровер будет собирать образцы грунта, МВМ запустит у себя на борту небольшой химический завод, чтобы перерабатывать газ, закачиваемый из марсианской атмосферы в ракетное топливо (я предпочитаю комбинацию метан/кислород, хотя также возможен вариант угарный газ/кислород), и заполнить баки МВМ. Ко времени открытия стартового окна для полета обратно на Землю будет заготовлено необходимое количество топлива, и МВМ с образцами взлетит с Марса и направится прямо к Земле – так же, как в плане грубой силы. Непосредственное возвращение на Землю можно осуществить с помощью спускаемого модуля, использованного при запуске ракеты «Дельта», потому что «Дельта» и ее спускаемый аппарат должны будут всего лишь доставить на поверхность Марса незаправленный МВМ (предположительно массой порядка 70 килограммов) вместо гораздо более тяжелого заправленного МВМ.

Миссия ДМГ на сегодняшний день является самой дешевой из обсуждаемых планов такого типа, потому что вместо использования новой ракеты-носителя, способной доставить на орбиту 30 тонн и несущей один большой космический аппарат, или двух ракет «Дельта» с двумя маленькими космическими аппаратами можно запустить одну «Дельту» с одним небольшим космическим кораблем. Риск этой миссии значительно ниже, чем у плана МОР, потому что необходимое технологическое новшество – завод по производству ракетного топлива на Марсе (ЗПТМ) – может быть полностью протестировано заблаговременно на Земле в камере, где смоделированы марсианские условия. В дополнение к этому завод представляет собой не самый сложный прибор (основанный на идеях химической инженерии XIX века) по сравнению с бортовой электроникой, необходимой для автономной стыковки аппаратов во время рандеву на орбите Марса, не говоря уже о стыковке в космическом пространстве. Как отмечалось ранее (и как будет детально описано позже), в «Мартин Мариетта» мы построили и продемонстрировали успешную работу полномасштабной копии ЗПТМ, производящей метан и кислород. Она обошлась в 47000 долларов – незначительная сумма на фоне остальных затрат на миссию ДМГ. Разумеется, аппарат для производства топлива, изготовленный в «Мартин Мариетта», был экспериментальным образцом, не готовым к полету, но нужно понимать, что риски связаны не с готовностью оборудования, а с возможностью его протестировать. Поскольку технологию производства топлива на Марсе можно отработать и проверить заранее, связанный с ней риск будет заметно ниже, чем в случае с технологиями, необходимыми для космического рандеву. Кроме того, если НАСА примет решение реализовать план ДМГ с использованием двух космических кораблей, они будут одинаковыми (и, следовательно, обойдутся дешевле, чем два разных космических аппарата в случае миссии МОР), и если хотя бы один вернется на Землю, то миссия окажется успешной. И наоборот, если в миссии МОР хотя бы один космический аппарат потерпит неудачу, неудачной будет признана миссия целиком.

Как мы увидим, использование топлива, произведенного на Марсе, – единственная возможность для человечества исследовать Красную планету. Когда речь идет о планировании миссии ДМГ, следует продумать убедительную стратегию. Ценность миссии ДМГ резко возрастет, если с ее помощью продемонстрировать ключевые технологии, необходимые для полетов людей на Марс. Посудите сами: миссия ДМГ позволит доставить лишь приблизительно один килограмм образцов грунта с поверхности Марса, которые при удачном стечении обстоятельств будут собраны в нескольких километрах от места посадки аппарата. Поскольку маловероятно, что сейчас на поверхности Марса существует жизнь, поиски биологической активности на Марсе в значительной степени сведутся к поиску окаменелостей. Роботизированные роверы с их ограниченной подвижностью при большой временной задержке (до 40 минут из-за скорости распространения радиосигналов) при передаче команд с Земли на Марс будут очень плохим подспорьем в таких поисках. Если вы в этом сомневаетесь, представьте, что ровер вроде «Спирита» или «Кьюриосити» отправили в Скалистые горы. Скорее наступит следующий ледниковый период, чем ровер найдет останки динозавра. Поиск ископаемых требует мобильности, проворства и развитой интуиции, чтобы немедленно уловить даже еле заметные подсказки. Другими словами, нужны исследователи-геологи и старатели. Охота за ныне существующей жизнью повлечет за собой установку и запуск буровых машин, рытье шахт глубиной до сотни метров, сбор образцов, а затем проращивание культур в питательной среде, фотографирование и анализ результатов в лаборатории. На все это роверы не способны. Если Марс создан, для того чтобы открыть нам свои секреты, «люди, которых не отпугнут однообразные мрачные просторы космоса», должны отправиться туда сами.

Глава 3
Разработка плана

Через тернии к Марсу

20 июля 1989 года президент Джордж Буш-старший стоял на ступеньках Национального музея авиации и космонавтики в Вашингтоне. Позади него в прохладных залах музея располагались артефакты величайших космических достижений Америки. Среди них были напоминающий формой желейную конфету космический аппарат «Колумбия» и командный модуль «Аполлона-11». Люди, которые добирались на «Колумбии» домой с лунной орбиты, – Нил Армстронг, Майкл Коллинз и Базз Олдрин, экипаж «Аполлона-11» – стояли рядом с президентом, который готовился по случаю двадцатой годовщины первой высадки человечества на Луне объявить о смелой космической кампании.

Буш говорил о проблемах и пользе освоения космоса, о том, что нации следует взять на себя обязательство – осуществить длительную программу освоения человеком Солнечной системы, и даже о том, чтобы заселить космическое пространство. Это были слишком громкие слова, пусть они и прозвучали через двадцать лет после того, как астронавты США впервые ступили на поверхность другого мира. Президент продолжал речь, говоря о необходимости выработать план на срок более 10 лет, о долгосрочных обязательствах по исследованию космоса. Затем Буш озвучил свою программу: «Во-первых, в следующем десятилетии – в 1990-е годы – орбитальная станция «Фридом»… И потом – в новом веке – возвращение на Луну… После него – в более далеком будущем – путешествие на другую планету – пилотируемый полет на Марс».

Так родилась программа, которая стала известна как «Инициатива исследования космоса» (ИИК). Начало было хорошее, но потом все пошло под откос.

Обширная команда, представляющая все подразделения НАСА, которую поддержали все крупные аэрокосмические подрядчики, начала выяснять, как можно осуществить программу Буша. Через три месяца команда представила документ под названием «Отчет о 90-дневном изучении возможностей исследования Луны и Марса человеком», который вскоре стали просто называть «90-дневный отчет» [11]. В отчете говорилось, что перед тем, как человечество сможет отправиться на Марс, американцам потребуется тридцать лет на разработку космической инфраструктуры и это будет самая большая и самая дорогостоящая программа правительства США со времен Второй мировой войны.

НАСА собиралось построить спроектированную ранее космическую станцию, но теперь планируемый размер хотели увеличить втрое, добавив «сдвоенные кили» с большими ангарами для строительства межпланетных космических кораблей. Также требовалось построить множество дополнительных орбитальных объектов: отдельные криогенные хранилища топлива, доки для технического обслуживания, подсобные помещения для экипажа и так далее. Такой огромный и сложный комплекс вспомогательных сооружений был необходим для создания и обслуживания кораблей для полета на Луну (для доставки каждого из них на орбиту Земли потребуются три ракеты-носителя тяжелого класса и один шаттл). Те, кто помнит, что для каждого из «Аполлонов» требовался всего один запуск, почешут в затылке и подумают: «В прошлый раз долететь до Луны было не так тяжело…» В течение десяти лет эти лунные корабли должны были переместить на Луну все необходимые материалы и оборудование, чтобы создать обширную лунную базу. Вместе с орбитальными сооружениями она стала бы основой для строительства серии действительно громадных кораблей – тяжелее 1000 тонн – как «Звездный крейсер "Галактика"» – для полетов на Марс. Эти корабли работали бы на реактивной тяге и за счет других технологий, совершенно отличных от тех, использовались бы в лунных кораблях и, следовательно, потребовали бы больших затрат на разработку и на дополнительную инфраструктуру. В первых миссиях на Марс дорога заняла бы около полутора лет, причем на орбите Марса экипаж мог бы провести около одного месяца. Затем на поверхность планеты должен был спуститься маленький космический аппарат, способный поддерживать жизнь и работу небольшой команды исследователей в течение примерно двух недель, тем самым давая возможность астронавтам установить флаг США и совершить некоторые другие действия. Космические корабли вылетали бы к Марсу тяжело нагруженными и возвращались на орбиту Земли совсем легкими, сбросив все лишнее после каждой миссии (пустые топливные баки, марсианские роверы, подушки аэроторможения), таким образом навязывая дополнительные расходы на каждую последующую операцию вроде установки флага на Марсе. «90-дневный отчет» не включал оценки стоимости программы, однако в итоге эта информация просочилась в прессу. Минимальная оценка составляла 450 миллиардов долларов.

Вряд ли при такой стоимости программу можно было воспринимать всерьез. Длительность получалась большой, а разрекламированные преимущества колонизации космоса не вызывали энтузиазма у публики, заинтересованной в космических исследованиях. Предложения, озвученные в «90-дневном отчете», также были восприняты скептично. До тех пор пока предложенную стоимость программы в 450 миллиардов долларов не удалось бы значительно уменьшить, ИИК была нежизнеспособна. Это стало очевидно в последующие месяцы и годы, когда Конгресс продолжал отклонять каждый финансовый проект НИК, который попадал на рассмотрение.

На самом деле в «90-дневном отчете» не было ни внутренней логики, ни по-настоящему новых идей. Скорее, это был пересказ навязчивых идей, перекликавшийся с Die Marsprojekt – шестидесятилетней давности проектом пилотируемых миссий на Марс, который немецкий конструктор ракет Вернер фон Браун и его коллеги начали разрабатывать в конце 1940-х годов. Его техническая часть легла в основу программы пилотируемого полета к Марсу в рамках миссии «Аполлон», которая была предложена НАСА, но отклонена в 1969 году. Для фон Брауна и его сотрудников пилотируемая межпланетная миссия была поводом для самых смелых конструкторских фантазий: огромный межпланетный космический корабль (или еще лучше флот из огромных межпланетных космических кораблей), собранный на космической станции и запущенный с околоземной орбиты. Что происходило бы потом на поверхности Марса, было делом второстепенной важности. На базе этой навязчивой идеи – гигантские космические станции для сборки гигантских космических кораблей – обширный коллектив, работавший над «90-дневным отчетом», продолжал предлагать технологии, которые или уже существовали, или планировались в рамках программы технологического развития НАСА. Чтобы привлечь к процессу как можно больше людей, совет разработал самые сложные варианты архитектуры миссии, какие только можно было придумать, – вот пример того, как не нужно заниматься проектированием.

Создание логически последовательной Инициативы исследования космоса

К концу 1989 года для многих стало очевидно, что архитектура миссии, описанная в «90-дневном отчете», была внутренне противоречивой. В попытке разработать систематизированный критический анализ я написал следующий меморандум, который я впоследствии использовал в качестве введения к каждой большой серии статей о плане «Марс Директ» (см., например, [12]). По сути, этот меморандум обобщает рассуждения, которые привели к разработке миссии «Марс Директ», и я привожу его здесь в полном объеме.

В настоящее время существует необходимость разработать для Инициативы исследования космоса логически последовательную архитектуру. Под логически последовательной архитектурой следует понимать прозрачный и логичный набор целей и простой, четкий и экономически оправданный план их реализации. Выбранные цели должны вести к максимальному результату и возможности достигнуть еще более амбициозных целей в будущем. Чтобы упростить план, сделать его более надежным и дешевым, нужно отказаться от создания взаимозависимых миссий (то есть лунных, марсианских и околоземных орбитальных), поскольку в такой зависимости нет необходимости. В то же время план должен опираться на использование довольно разнообразных технологий, которые позволят достичь большого количества целей, – таким образом можно снизить расходы за счет многофункциональности оборудования. И, наконец, самое главное – следует выбрать технологии, которые повысят эффективность миссий. Недостаточно просто слетать на Марс, важно сделать что-то полезное, когда мы там окажемся. Миссии, не дающие весомых результатов, не имеют никакой ценности.

Несмотря на то что вышеизложенные принципы могут показаться очевидными, от них отступали много раз при разработке деталей ИИК (то есть «90-дневного отчета»), и, в результате ИИК стала такой дорогой и непривлекательной, что финансирование программы Конгрессом оказалось под сомнением. Высокая стоимость объясняется тем, что в плане предлагалось использовать совершенно разные ракеты-носители для полетов к Луне и к Марсу и принципиально разные

;устройства для передвижения по поверхности Луны и Марса. Кроме того, план навязывал полностью искусственную зависимость полетов на Марс от лунных миссий и требование связать лунные миссии с огромным орбитальным комплексом космической станции «Фридом», где производилась бы сборка и заправка космических кораблей. Более того, обе исследовательские миссии, и лунная, и марсианская, имели бы близкую к нулевой научную значимость, не было сделано серьезных попыток обеспечить мобильность аппаратуры на поверхности небесных тел, а исследователи Марса должны были провести на Красной планете меньше 5 % времени всего путешествия.

Чтобы сделать план внутренне согласованным, достаточно изменить структуру ИИК в нескольких строго определенных направлениях.

1. Простота и четкость требуют, чтобы лунные и марсианские миссии не зависели от любого рода инфраструктуры на низкой опорной орбите Земли. Помимо того что такую инфраструктуру чрезвычайно дорого проектировать, строить и обслуживать, она еще и крайне ненадежна, и ее трудно ремонтировать, а ее использование увеличивает риски для всех связанных с такой станцией межпланетных миссий, поскольку качество любой космической конструкции сложно проверить. Отказ от инфраструктуры на НОО приведет к использованию усовершенствованных разгонных блоков и/ или топлива, произведенного на планете назначения. Оба варианта позволят сократить массу миссии до такого значения, при котором сборка корабля на орбите вообще не требуется.

2. Низкая стоимость требует, чтобы для миссий к Луне, Марсу или даже другим планетам использовались одинаковые ракеты-носители, разгонные технологии и (по возможности) транспортные средства для исследования поверхности выбранного небесного тела. Также необходимо отказаться от инфраструктуры на земной НОО, так как запуск с ее помощью многоразовых ракет-носителей позволит сэкономить недостаточно средств, чтобы оправдать стоимость самой инфраструктуры. По текущим оценкам, она обойдется примерно в тысячу раз дороже, чем элементы будущего космического аппарата (двигатели, бортовая электроника) – то есть все то, на чем ремонт на орбите позволил бы сэкономить. Другими словами, потребуется подготовить к полету около тысячи миссий, прежде чем такой план окупится. Также, чтобы уменьшить расходы, мы всегда должны использовать наиболее экономичные траектории – то есть проводить запуски в те моменты времени, когда Марс находится в соединении с Землей (что означает экономию топлива и длительную экспедицию на поверхности Марса), – и отказаться от первоначально запланированных миссий с запуском во время противостояния Марса и Земли (большие затраты топлива, краткосрочное пребывание экипажа на поверхности Марса). Последние к тому же требуют принципиально иного оборудования.

3. Чтобы добиться высокой эффективности, астронавты должны получить три основных ресурса, как только достигнут места назначения. Эти ресурсы следующие.

A. Время.

B. Мобильность.

C. Энергия.

Само собой, время потребуется, если астронавтам предстоит выполнять какие-либо полезные исследования, что-то строить или экспериментировать с использованием ресурсов на поверхности планеты назначения. Это означает, что семейство марсианских миссий в противостоянии (полтора года полета и 20-дневное пребывание на поверхности Марса) не представляет интереса. Это также означает, что архитектура миссии с использованием лунного или марсианского орбитального рандеву (ЛОР, МОР) очень нежелательна по простой причине: если время пребывания на поверхности будет большим, то таким же будет время пребывания на орбите. Возникает затруднительное положение: или кого-то из членов экипажа придется оставить без дела в основном корабле на орбите на время длительной высадки на поверхность, подвергая воздействию космических лучей и суровых условий невесомости; или оставить основной корабль беспилотным на долгое время и надеяться на то, что он сохранит свою функциональность к возвращению экипажа. Если корабль окажется хотя бы частично поврежден, положение астронавтов безнадежно.

Альтернативой ЛОР и МОР являются такие варианты, где предусмотрено прямое возвращение с Марса на Землю. Это возможно, если речь идет о полете на Луну с использованием топлива земного производства, однако содержательную часть такой миссии можно было бы значительно расширить, если использовать для возвращения на Землю жидкий кислород, произведенный на Луне. Непосредственное возвращение астронавтов на Землю с поверхности Марса возможно только при использовании топлива марсианского производства.

Мобильность абсолютно необходима, если на небесном теле размером с Марс или даже Луну запланирована любая полезная исследовательская деятельность. Мобильность также требуется для транспортировки природных ресурсов из отдаленных мест на базу, где их можно переработать, и для того чтобы экипаж мог посетить удаленные объекты, такие как группа оптических и радиотелескопов на Луне. Ключ к мобильности как на Луне, так и на Марсе – производство топлива из местных ресурсов для заправки энергоемких роверов и реактивных летательных аппаратов. Самый важный ресурс для топлива на Луне – жидкий кислород, который может быть сожжен с земными компонентами топлива вроде водорода или метана. На Марсе комбинации химического топлива и окислителя, такие как смесь метана и кислорода или угарного газа и кислорода, можно производить как для устройств, передвигающихся по поверхности, так и для и летательных аппаратов, и, кроме того, можно использовать реактивные аппараты, работающие за счет «сырого» топлива – углекислого газа, нагретого тепловым ядерным двигателем.

В больших количествах энергию, необходимую для производства ракетного топлива из местных компонентов и на Луне, и на Марсе, можно генерировать только с помощью ядерных реакторов. Когда нужное количество топлива на Марсе будет заготовлено, реакторы станут очень удобным подспорьем для запасания ядерной энергии, тем самым обеспечивая исследователей ее мобильными источниками, например генераторами на 100 кВт, работающими независимо от двигателя внутреннего сгорания лунохода или марсохода. Наличие больших запасов энергии и на базе, и на удаленных объектах имеет принципиально важное значение для астронавтов, поскольку дает им возможность проводить широкий спектр научных исследований и использовать природные ресурсы. Таким образом, мы видим, что требования простоты, четкости, низкой стоимости и высокой эффективности приводят ИИК к варианту, который предполагает непосредственный запуск на Луну или Марс с помощью существующих средств запуска и передвижения в космосе, а также прямой возврат на Землю с поверхности планеты за счет топлива «местного» производства, которое также используется для передвижения по поверхности и служит мобильным источником энергии [12].

Такова цепочка рассуждений, которая привела к разработке принципиально нового плана миссии, известной как «Марс Директ».


Страницы книги >> Предыдущая | 1 2 3 4 5 6 7 8 9 10 | Следующая
  • 0 Оценок: 0

Правообладателям!

Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.

Читателям!

Оплатили, но не знаете что делать дальше?


Популярные книги за неделю


Рекомендации