Текст книги "Built. Неизвестные истории известных зданий"
Автор книги: Рома Агравал
Жанр: Архитектура, Искусство
Возрастные ограничения: +16
сообщить о неприемлемом содержимом
Текущая страница: 5 (всего у книги 15 страниц) [доступный отрывок для чтения: 5 страниц]
Глава 5. Металл
В городе Дели в Индии есть железный столб, который не ржавеет. Эта колонна прячется внутри исторического комплекса Кутб – достопримечательности, полной необыкновенных образцов исламской архитектуры. Напоминающая пещеру гробница Илтутмиша, в которой каждый сантиметр стен с арками украшен петлями и завитками, и массивная ребристая башня Кутб-Минар, которая при высоте в 72,5 м является самым высоким кирпичным минаретом в мире, просто захватывают дух. С первого взгляда темно-серая колонна – толщиной со ствол дерева и около семи метров в высоту – кажется незначительной и неуместной, как бродячий кот в зоопарке с экзотическими животными. Но на меня она произвела огромное впечатление.
Эта колонна появилась здесь раньше всех остальных построек. Ее возвел около 400 года один из царей династии Гупта в честь бога Вишну – индуистского бога, который считается Хранителем Вселенной. Изначально на вершине колонны располагалась статуя Гаруды (получеловека-полуптицы, на котором ездит Вишну и который, по преданию, может закрыть собой солнце). Раньше люди подходили к колонне, становились к ней спиной и пытались обнять ее руками так, чтобы руки встретились, и это знак удачи, но теперь от рук туристов колонну защищает забор. Меня удача не очень интересовала, но меня поразило еще одно удивительное свойство колонны: несмотря на свои природные свойства, железо не заржавело за полторы тысячи лет.
Железный век пришел на смену бронзовому, который подошел к концу из-за того, что медь и олово, из которых производят этот металл, стало крайне сложно добыть. Считается, что железный век начался около 1200 года до н. э. в Индии и Анатолии (современной Турции). При исследовании руин Кодуманала, небольшой деревушки в центре штата Тамилнада на юге Индии, археологи обнаружили траншею, которая датируется около 300 года до н. э., на юге этой деревушки. Там нашли печь, в которой сохранилось немного железного шлака (побочного продукта, который образуется при выплавке металлов). Индийское железо, которое упоминается в трудах Аристотеля и «Естественной истории» Плиния Старшего, славилось своим превосходным качеством. Его экспортировали даже в Египет, где им пользовались древние римляне, но рецепт бережно хранили в секрете.
Железный столб, который не ржавеет, в комплексе Кутб в городе Дели в Индии
Для возведения Железной колонны древние индийцы изготовили диски из железа, которые затем сковали (нагрели и молотом соединили вместе), а потом выковали внешнюю часть колонны, чтобы она стала гладкой. Железо, из которого соорудили колонну, было необыкновенно чистым, за исключением более высокого, чем обычно, содержания фосфора. Это результат процесса экстракции, который применяли кузнецы. Как раз фосфор и предотвращает ржавение. Ржавчина образуется на железе при воздействии на него кислорода и влаги. Сначала металл должен был подвергнуться коррозии, но в сухом климате Дели на поверхность металла тонким слоем вышел фосфор, который преградил путь ржавчине. Этот слой фосфора не дал воздуху и влаге взаимодействовать с железом. Так что колонна не стала ржаветь. Современную сталь не изготавливают с таким высоким содержанием фосфора, потому что тогда она растрескается при «горячей обработке», которая входит в обычный процесс производства стали и при которой металл деформируется при высоких температурах. Взгляните на постройки из железа или стали, которые подвержены воздействию атмосферы, и увидите, что для предотвращения ржавчины, которая может их повредить, на них наносят краску. А стальные балки и колонны в помещениях, где контролируется подача воздуха, оставляют без краски – если только она не выполняет огнеупорную функцию, – потому что при недостаточной влажности они не заржавеют.
Пока древние народы познавали чудеса железа, из него в основном изготавливали бытовые емкости, украшения и оружие, потому что добываемое железо было слишком мягким для строительства, и люди не знали, как укрепить его настолько, чтобы можно было построить целый дом или мост. Но встречаются и редкие примеры использования железа в строительстве: в «Записи о буддийских царствах» китайский монах Фасянь описал висячие мосты в Индии, которые поддерживались железными цепями примерно в то же время, когда в Дели возвели Железную колонну. А в монументальных мраморных воротах в Акрополе в Афинах, или Пропилеях (построенных примерно в 432 г. до н. э.), есть железные прутья, укрепляющие потолочные балки. Так инженеры древности использовали металл: в небольших количествах для укрепления каменных и кирпичных сооружений. Прежде чем железо (и его двоюродную сестренку сталь) начнут использовать в больших масштабах, ученым и инженерам предстоит получше узнать его характер.
Кирпичи и строительный раствор легко трескаются при растяжении, а металлы – нет. Они принципиально отличаются своей молекулярной структурой. Как и бриллианты, металлы состоят из кристаллов – только не таких больших и блестящих, которые сверкают на платьях гламурных актрис Болливуда. Металлические кристаллы крошечные – они такие маленькие, что невооруженным глазом их не разглядеть, а еще они непрозрачные.
Эти кристаллы притягиваются друг к другу и образуют кристаллическую решетку. Однако, когда металл накаляется, кристаллы колеблются все быстрее и быстрее, пока их связи не ослабнут. Тогда металл становится податливым, и при достаточно высокой температуре его можно даже расплавить до жидкого состояния. Благодаря гибкости связей в кристаллической решетке металлы пластичны, а это значит, что они могут в определенной степени растягиваться и деформироваться, при этом не ломаясь. Процесс термической обработки, о котором говорилось выше, помогает убедиться в сохранении данной характеристики. Толстый стальной лист, толщиной, например, в 100 мм, можно раскатать в тонкий лист толщиной до 0,1 мм, и он не порвется (как это обычно происходит, когда я раскатываю тесто). Кристаллическую решетку и связи в ней можно расслабить, придать ей другую форму или сдвинуть.
Еще одно свойство, которое придают металлам эти связи, – упругость. Если металл растянуть или раздавить под воздействием силы (определенной величины), то он возвращается в первоначальную форму, когда сила прекращает действовать. Это напоминает явление, когда отпускаешь растянутую резинку, а она возвращается к первоначальному размеру и форме, если только ее не растянуть слишком сильно, чтобы она деформировалась. То же самое может произойти и с металлами.
В сочетании эти характеристики – пластичность, упругость и связи в кристаллической решетке – делают металлы устойчивыми к трещинам. У них появляется особое свойство, благодаря которому они идеальны для строительства: они хорошо выдерживают растяжение. Именно это свойство металлов привело к революции в строительстве. Раньше здания конструировали таким образом, что на материалы воздействовала только сила сжатия, но с началом применения металлов мы стали создавать проекты, в которых действуют большие силы и сжатия, и растяжения.
Чистое железо хорошо выдерживает растяжение, но плохо справляется с большими нагрузками в крупных постройках, потому что связи в его кристаллической решетке довольно текучи и гибки. Поэтому инженеры прошлого изготавливали из него декоративные колонны, но для несущей функции в сложных проектах железу не хватало сил. Его нужно было каким-то образом укрепить. Кристаллы, из которых состоит железо, представляют собой решетку, поэтому ученые и инженеры стали искать способы ее упрочнить.
Один из способов это сделать – добавить в решетку дополнительные атомы. Простой (и вкусной) иллюстрацией этому послужит эксперимент, который можно провести у себя дома: если взять много шариков «Мальтизерс» и покатать их ладонью по столу, то можно заметить, что они катаются очень легко. Но если добавить к ним немного изюма в шоколаде, то они уже не будут так легко кататься. Ладно, теперь эксперимент можно съесть, а смысл в том, что «примеси» – изюм – словно путаются под ногами и не дают шарикам «Мальтизерс» перемещаться. Аналогичное явление происходит при добавлении атомов углерода в кристаллическую решетку железа.
Здесь важен баланс. Если добавить слишком мало атомов углерода, то железо будет по-прежнему мягким. Если слишком много, то решетка станет слишком жесткой, потеряет текучесть, и материал будет хрупким, он легко растрескается. Как будто еще недостаточно сложно – в железе и так от природы содержится примесь углерода (и других элементов, например кремния), и иногда его даже слишком много, но его содержание бывает разным, а потому и качество железа тоже разное. Ученым было очень непросто определить точное количество углерода, которое нужно убрать, чтобы железо получилось не слишком мягким, но и не слишком хрупким. В результате их экспериментов получился чугун (который, будучи устойчивым к износу, хорош для изготовления кастрюль, но не используется в строительстве, потому что слишком хрупок, как итальянское бисквитное печенье), кованое железо (которого уже почти нет в продаже и напоминающее текстурой роскошные шоколадные чипсы, которые я ела в детстве в Америке), а также сталь. Хотя кованое железо оказалось приличным строительным материалом – из него построена Эйфелева башня, – идеальным компромиссом между прочностью и пластичностью стала сталь. Конструкционная сталь – это железо с 0,2 % примеси углерода. Процесс снижения содержания углерода в железе до 0,2 % сначала был очень дорогим, так что, пока кто-то не додумался до способа дешевого производства стали в промышленных масштабах, ей не удавалось произвести фурор в строительстве. Инженер Генри Бессемер наконец решил эту давнюю проблему и произвел революцию в изготовлении стали, что способствовало развитию железных дорог во всем мире и позволило нам начать строить дома до неба.
Энтони, отец Генри Бессемера, управлял фабрикой по производству гарнитур для печатного станка, которые держал за семью замками. Такие меры были необходимы для того, чтобы конкуренты не узнали его секретов, но юный Генри часто проникал туда и пытался их разгадать. Понимая, что непослушный сын непреклонен в своем намерении изучать его дело, Энтони уступил и стал обучать его работе на фабрике. В 1828 году Генри исполнилось пятнадцать, он окончил школу и стал работать с отцом. Он обожал свою работу: преуспел в металлообработке, обладал природным талантом к рисованию и вскоре стал делать свои собственные изобретения.
Во время Крымской войны (1853–1856 гг.) Генри Бессемер занялся оружием, которое французы и британцы использовали в сражениях с русскими. Главным недостатком ружей было то, что из них можно было сделать всего один выстрел, после чего их нужно было перезаряжать. Удлиненный патрон, в котором помещалось больше взрывчатого вещества, казалось, улучшит положение, поэтому Генри стал тестировать это новшество в саду у своего дома в Хайгейте, на Севере Лондона (к большому неудовольствию своих соседей). Однако британских военных руководителей его проект не заинтересовал, и тогда он показал его французскому императору Наполеону Бонапарту III и его офицерам.
Новые патроны произвели большое впечатление, но офицеры заметили, что из-за дополнительного взрывчатого вещества хрупкие чугунные ружья могут взрываться. Для таких ружей патроны слишком велики. Бессемер не согласился: проблема ведь была в ружьях, а не в патронах, поэтому поставил себе задачу придумать лучший способ изготовления ружей.
Он решил улучшить качество железа, отливая его другим способом. Он официально приступил к экспериментам с железом, которое отливал прямо в печи у себя дома, но изобретение, по-настоящему сделавшее ему имя, произошло почти по ошибке.
Однажды в своей мастерской Бессемер нагревал в печи куски железа. Несмотря на максимальный нагрев, несколько кусочков на верхней полке отказывались плавиться. Бессемера это расстроило, и он стал нагнетать горячий воздух в верхнюю часть печи, а затем пошевелил кочергой куски железа, чтобы узнать, расплавились ли они наконец. К его величайшему удивлению, они оказались не такими хрупкими, как чугун, а пластичными и гибкими. Заметив, что это как раз те куски, что находились ближе всего к потоку горячего воздуха, Бессемер понял, что кислород воздуха, должно быть, среагировал с углеродом и другими примесями железа и удалил их из металла.
До того момента все пытались очистить железо от примесей, нагревая его на углях и другом топливе в открытой печи. Бессемер решил использовать закрытую печь с проходящим через нее потоком теплого воздуха, без какого-либо топлива. По сути, нагревание происходит за счет горячего воздуха, который нагнетается в емкость с крышкой, в отличие от нагревания в открытой кастрюле на газовой конфорке. Кажется, что горящий газ создает больше тепла, чем горячий воздух, но это не так.
Бессемер, должно быть, с опаской наблюдал, как из печи полетели искры, когда началась химическая реакция. Потом в печи начался настоящий ад: в ней тут и там происходили маленькие взрывы, от которых разлетались капли расплавленного металла. Он даже не мог подойти к этой машине, чтобы ее выключить. Спустя десять минут кошмара взрывы прекратились. Бессемер обнаружил, что в результате в печи осталось чистое железо.
Бессемеровский процесс: метод производства стали, который использовался в промышленных масштабах и привел к радикальным изменениям в строительной отрасли
Адские взрывы в печи были результатом экзотермической реакции – химической реакции, в ходе которой выделяется энергия (обычно в виде тепла) при окислении примесей. Когда кислород тихонько поглотил примесь кремния, он среагировал с углеродом, в результате чего выделилось огромное количество тепла. От этого тепла железо нагрелось куда больше, чем это могла позволить сама печь, так что Бессемеру не нужны были дополнительные источники тепла.
Чем горячее становилось железо, тем больше примесей загоралось, а эта реакция, в свою очередь, еще сильнее нагревала железо, в результате чего загоралось еще больше примесей. Такой позитивный цикл создавал чистое расплавленное железо.
Теперь можно было работать с чистым железом, и Бессемеру легко удалось добавить в него нужное количество углерода, чтобы создать сталь. До этого изобретения запредельные затраты на производство стали позволяли использовать ее только для изготовления ножей и кухонной утвари, а также пружин, и на этом все. Бессемер преодолел эту невероятную преграду.
Он представил свою работу на совещании Британской ассоциации в Челтнеме в 1856 году. Процесс изготовления стали вызвал большой резонанс, так как он позволял производить ее в шесть раз дешевле, чем все остальное. Бессемер получал десятки тысяч фунтов от заводов по всей стране за право использовать его процесс в производстве. Но тот факт, что он не понимал химии процесса, чуть его не погубил.
Когда другие производители попытались воспроизвести его метод, у них ничего не вышло. Они разозлились на него за то, что потратили уйму денег на лицензию, и подали на него в суд, а ему пришлось вернуть им все деньги. Следующие два года он пытался разобраться, почему процесс прекрасно проходит в его кирпичной печи, но не получается в других. Наконец он разгадал секрет: в железе, которое он использовал, была очень незначительная примесь фосфора. А его коллеги использовали железо с высоким содержанием фосфора, которое, очевидно, не проявляет подобных свойств в кирпичной печи. Бессемер стал экспериментировать с печами и пришел к выводу, что ответ кроется в замене обычного кирпича на известковый.
Однако недоумение и финансовые потери, которые вызвал оригинальный процесс Бессемера, привели к всеобщему недоверию, так что на этот раз ему уже никто не поверил. Наконец он решил открыть свой собственный завод в Шеффилде для массового производства стали. На опровержение подозрений ушло еще несколько лет, а потом заводы начали изготавливать сталь в промышленных масштабах. К 1870 году 15 компаний производили 200 тысяч тонн стали в год. Когда Бессемер умер в 1898 году, во всем мире производилось уже 12 миллионов тонн стали в год.
Сталь высокого качества преобразила железнодорожную сеть, потому что рельсы теперь стало можно производить быстро и дешево, а служили они в десять раз дольше, чем железные рельсы. В результате начали строиться более крупные, тяжелые и скорые поезда, и в транспортных артериях закипела новая жизнь. Благодаря более низкой стоимости сталь начали применять в строительстве мостов и зданий, которые выросли до небес.
Без бессемеровской стали я не смогла бы спроектировать пешеходный мост Нортумбрийского университета, основанный на способности стали выдерживать силу растяжения. Этот мост – мой первый проект, к которому я приступила сразу после окончания университета. Я все так же ясно помню первый день на работе, когда я ехала в переполненном метро на Ченсери-лейн в Лондоне, и как толпа спешащих на работу пассажиров в офисных костюмах буквально подхватила меня и вынесла на станцию. Я волновалась, нервничала и ощущала себя в деловой одежде очень неловко, шагая по тротуару к месту назначения – пятиэтажному офисному зданию, облицованному белым камнем.
Моим новым начальником стал Джон, стройный мужчина среднего роста, с прямыми короткими темными волосами, в очках без оправы и со страстной любовью к крикету (до которой мне, хоть я и выросла в Индии, было очень далеко). Мы заполняли документы, и процесс этот иногда оживляли его ироничные и забавные замечания. Однако я умолчала о том, что сегодня мой 22-й день рождения. Затем он показал мне эскиз нового пешеходного моста, который собирались построить в Ньюкасле. Уверенные отметки карандаша показывали, что на восточном конце моста высокая башня будет поддерживать три пары тросов. Тросы, в свою очередь, будут поддерживать основное полотно моста. Чтобы уравновесить нагрузку, которую вес моста оказывает на эту башню, сзади ее будут держать еще несколько тросов. Мы сидели там с Джоном и рассматривали эти рисунки, и я тихонько ликовала. Как по мне, так это лучший подарок на день рождения, который только может получить девушка. Меня просто переполняли эмоции, оттого что моим первым проектом станет такая элегантная и необычная постройка. И, помимо очаровательной эстетики этого моста, в нем было несколько нюансов, которые делали его в моих глазах еще прекраснее.
Этот мост – вантовый. Есть еще один известный пример мостов такого типа – Виадук Мийо во Франции. Его слегка изогнутое полотно поддерживают семь столбов, от которых расходятся тросы, образуя паруса и создавая впечатление, что мост парит в 270 метрах над долиной реки Тарн. У вантовых мостов одна или несколько высоких колонн, к которым крепятся тросы. Полотно стремится вниз под воздействием гравитации, а тросы тянут его наверх и таким образом постоянно испытывают силу растяжения. Сила растяжения передается от тросов колонне. Колонна, в свою очередь, испытывает силу сжатия, которая передается в основание моста. Основание распределяет силы и передает их земле.
Рабочий эскиз пешеходного моста Нортумбрийского университета руки Джона Паркера
Для свежеиспеченного инженера проектирование тросов моста Нортумбрийского университета (которые, кстати, толщиной с мой кулак) стало настоящим вызовом. Если взять металлическую линейку и представить, что это стальное полотно, а три пары резинок приладить вместо тросов, то окажется, что их нужно натягивать со строго определенной силой, чтобы они все пришли в одинаковое растяжение и равномерно поддерживали линейку. Если слишком сильно натянуть резинки с одной стороны, то полотно опрокинется набок. Если слишком сильно натянуть пару резинок в середине, то мост выгнется вверх. А теперь представьте, что это может произойти и с настоящим большим мостом.
Виадук Мийо во Франции – элегантный пример вантового моста
В специальных компьютерных программах я создала трехмерную модель тросов, идущих под мост, и тросов, натянутых между полотном и мачтой. Затем я смоделировала воздействие гравитации. Кроме того, я учла вес всех людей, которые будут находиться на этом мосту, притом что они могут собираться группами то в одной, то в другой части моста. Например, во время Большого северного забега, когда атлеты пробегают по трассе под мостом, толпы болельщиков теснятся с одной стороны моста, встречая их, а потом переходят на другую сторону, чтобы посмотреть, как они убегают. Мне нужно было продумать «вероятностную нагрузку», и я смоделировала людей, которые образуют разные группы на разных сторонах моста. Независимо от того, где стоят люди, тросы должны сохранять растяжение, чтобы поддерживать полотно. Если тросы потеряют растяжение, то станут гибкими, и полотно потеряет поддержку. Чтобы этого не произошло, я искусственно добавила тросам растяжения.
Тросы можно натянуть сильнее с помощью разъема, который представляет собой трубку с застежками с обеих сторон. В каждом тросе есть как минимум один промежуток, куда можно установить такой разъем. Застежки съедают немного троса с обеих сторон промежутка. Можно установить разъем так, чтобы он стягивал концы ближе (чтобы сильнее натянуть трос) или дальше друг от друга (чтобы его расслабить), и таким образом ими можно регулировать величину силы, воздействующей на трос. Если рассмотреть тросы, которые веером расходятся от мачты на моем пешеходном мосту, то можно увидеть на них места соединения, которые немного толще самих тросов: это как раз те места, где временно были установлены разъемы. Принцип такой же, как если бы мы заменили резинки в нашем домашнем эксперименте на более короткие, а потом натянули бы их до той же длины, что и первые. Так они растянутся сильнее, и сила растяжения в них будет больше.
Секрет постройки вантового моста содержится в балансе. Если взять тонкую картонку и сделать из нее полотно, подвесив на резинках, то она попросту полетит вверх. Если вместо картонки положить книгу, то резинки придут в растяжение, не деформируя книгу. Как только мы отрегулируем вес и прочность полотна и откалибруем растяжение тросов, можно измерить силу, приложенную к тросам. Когда я выполняла чертежи моста, то делала пометки, где указывала, насколько нужно натянуть каждый трос, чтобы он не ослаб.
Работа инженера очень напоминает вращение тарелочек. Нужно одновременно предусмотреть множество проблем и проконтролировать их решение. Возьмем, к примеру, температуру: как и на многие постройки, на мой мост она тоже влияет. В течение года при разных температурах (в зависимости от времени года) он нагревается и охлаждается. У стали есть «коэффициент теплового расширения», равный 12×10-6. Это означает, что с каждым градусом изменения температуры каждый миллиметр стали расширяется или сжимается на 0,000012 мм. Кажется, что это очень мало, но длина моего моста – около 40 м, а колебания температуры предусмотрены в диапазоне 40 градусов. Здравый смысл подсказывает, что лето в Великобритании жарче зимы не на 40 градусов, и это верно, но сама сталь нагревается гораздо больше воздуха, когда поглощает тепло от солнца. Так что это диапазон температур для стали, а не для воздуха, и мы предусмотрели самые экстремальные (но разумные) их колебания.
При таких показателях расширение достигает около 20 мм. Если бы я закрепила концы моста так, чтобы им было некуда расширяться и сжиматься, то на полотно при нагревании действовала бы большая сила сжатия, а при охлаждении – сила растяжения. Проблема в том, что за всю жизнь моста сжатие и растяжение происходит тысячи раз, и постоянное чередование сил повредило бы не только полотно, но и опоры с обоих концов.
Чтобы этого не произошло, с одной стороны я оставила мосту пространство для движения. (У мостов гораздо большего размера и мостов с большим количеством опор такие «суставы» располагаются в нескольких местах. Иногда их можно почувствовать, если ехать по мосту на машине.) Так как движение на мосту относительно небольшое, для его амортизации я использовала резиновые опоры. Стальные балки, образующие полотно, установлены на этих опорах размером примерно 400 мм в ширину, 300 мм в длину и 60 мм в толщину. Когда сталь сжимается или расширяется, опоры меняют форму и дают мосту двигаться.
Инерционный демпфер, похожий на демпферы пешеходного моста Нортумбрийского университета
Кроме того, мне нужно было учесть вибрацию и резонанс. Я уже объясняла, как землетрясение может заставить здание резонировать, на примере того, как оперная певица может разбить винный бокал, если возьмет нужную ноту. При проектировании моста меня интересовал вопрос, может ли резонанс моста заставить пешеходов почувствовать себя неуютно. Тяжелые мосты, например бетонные, как правило, не страдают от этой проблемы, потому что при таком весе не так-то просто заставить их вибрировать. Но стальное полотно легкое, и его естественная частота близка к частоте движущихся пешеходов, а значит, есть опасность, что мост войдет в резонанс. Поэтому к нижней части полотна с помощью сильных пружин мы присоединили настроенные на нужную частоту массивные амортизаторы. Принцип их работы схож с гигантским маятником в башне «Тайбэй» – они поглощают колебания и не дают полотну сильно вибрировать. Эти амортизаторы не видно, если только не присмотреться к полотну повнимательнее, стоя на дороге под мостом (пока делаешь растяжку во время Большого северного забега, например). Так вы заметите три объекта в стальных ящиках, которые прячутся между ярко-синими балками.
Как только я убедилась, что в последней конфигурации мост сохраняет стабильность, я приступила к разработке метода его постройки. Так как он слишком большой для транспортировки в Ньюкасл в готовом виде, я отправилась на сталелитейный завод в Дарлингтоне. На фоне водопада искр, летящих от сварки, мы обсудили несколько возможных вариантов. Нам нужно было доставить детали моста на стройплощадку на грузовиках, поэтому мы хотели разделить его на несколько секций и продумать, как эти секции установить и безопасно подпереть, пока не натянут тросы. Таким же образом нужно продумывать, как подпереть скульптуру, пока она не полностью собрана.
Кроме того, нужно было принять во внимание, как минимизировать неудобства для населения. Так как мост проходит над автомобильной дорогой, мы решили, что лучшим решением будет разделить его на четыре части и привезти их на стройплощадку, затем соединить, а потом с помощью подъемного крана установить на место. Для этого мы взяли гигантский, буквально монстроподобный, подъемный кран.
Благодаря нескольким месяцам планирования установка моста прошла без сучка без задоринки. Сначала сам кран прибыл на место по частям, а было это в начале праздничных выходных, и, пока его собирали, дороги перекрыли. Тем временем из Дарлингтона на ближайшую парковку доставили четыре стальные секции моста, и там их собрали, как детали пазла, и получилось полотно.
Мы планировали установить стальное полотно на место, а потом присоединить тросы. Я спроектировала полотно таким образом, что для сопротивления собственному весу и весу пешеходов нужны все три комплекта тросов. Это значит, что, пока тросы не натянули, во время стройки полотну нужна дополнительная опора, поэтому я также рассчитала, что полотно выстоит, если поставить дополнительную опору посередине (нагрузка на мост была меньше, потому что пешеходный проход на него был закрыт). Мы поставили временную стальную колонну на разделительной полосе автомагистрали.
Автомагистраль перекрыли. Кран взялся за работу. Полотно подняли с парковки и поставили на место, где его концы поддерживали временные бетонные опоры, а посередине его подпирала стальная колонна. Затем полотно отцепили от крана, а движение по трассе открыли. Все эти сложные манипуляции заняли всего три дня.
За следующие несколько недель мост собрали целиком. Мачту поместили на свое место с помощью крана, а затем прикрутили к бетонному основанию болтами. Потом все важные тросы закрепили попарно, начав с одного конца моста. Каждый раз, когда подсоединяли новую пару тросов, их растяжение регулировали с помощью разъема. Как только они все оказались на месте и последний из них отрегулировали, автомагистраль снова перекрыли, убрали временную стальную колонну, и мост был готов.
Обычно я не в восторге от ранних подъемов, но в тот день я вскочила в пять утра и поехала в Ньюкасл посмотреть на свой готовый мост, который уже открыли для пешеходов. Сначала я сделала малюсенький шаг на мост, но мне показалось, что это был гигантский прыжок, а потом я несколько раз прошла по мосту туда и обратно. Я бегала и прыгала. Прочные стальные балки, тугие тросы, резиновые амортизаторы, инерционные демпферы – все они напомнили мне о том времени, всего несколько месяцев назад, когда я их так кропотливо проектировала. Детали, которые, наверное, никто, кроме меня, не разглядел бы, приводили меня в восторг.
На одном конце моста стояла скамейка. Я уселась на скамейку и какое-то время, довольно улыбаясь, наблюдала за тем, как студенты с затуманенными взглядами ходят по мосту с одной лекции на другую, и никто из них и не догадывался о том, как приятно ощущать свой первый физический вклад в этот мир.
Внимание! Это не конец книги.
Если начало книги вам понравилось, то полную версию можно приобрести у нашего партнёра - распространителя легального контента. Поддержите автора!Правообладателям!
Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.Читателям!
Оплатили, но не знаете что делать дальше?