Текст книги "Прикладная химия"
Автор книги: Роза Рыскалиева
Жанр: Химия, Наука и Образование
сообщить о неприемлемом содержимом
Текущая страница: 3 (всего у книги 13 страниц) [доступный отрывок для чтения: 4 страниц]
Главный недостаток ПЭС – их вынужденный режим. ПЭС дают свою мощность, когда этого требует потребитель, а в зависимости от приливов и отливов волны. По мнению академика Капицы, есть еще более серьезные последствия использования ПЭС: строительство ПЭС большой мощности (сотни гигаватт) – а именно такие нужны для компенсации дефицита горючих ископаемых, на доли секунды замедлит вращение Земли. Последствия этого трудно даже предположить.
ВЕТРОЭНЕРГЕТИКА. Ветер – движение воздуха относительно поверхности Земли, также имеет солнечное происхождение. Поверхность Земли в разных местах имеет различную степень черноты. Поэтому различные участки Земли под действием солнечной радиации нагреваются до различной температуры. Следовательно, и нижние слои атмосферы имеют неравномерный нагрев. Из-за этого неодинаково давление воздуха на одной и той же высоте, то естьь в атмосфере существует горизонтальное распределение давления. Это приводит к перемещению больших масс воздуха и возникает ветер. Наряду с энергией воды и домашних животных, ветер также используется с глубокой древности (ветряные мельницы). Сейчас используются ветротурбины. Чем больше площадь лопастей ветротурбин, тем больше энергии она позволяет получить. Очень эффективно использование комплексов небольших по размерам ветротурбин с размахом лопастей около 17 м и мощностью порядка 100кВт. От 50 до нескольких тысяч таких установок объединяют в ветроэлектростанцию (ВЭС). Например, в Калифорнии ВЭС в 17 тыс. ветротурбин суммарной мощностью 1500 МВт, заменяют полторы АЭС. Стоимость сооружения этих установок всего 1,25$ в пересчете на ватт, в то время как для ТЭС и АЭС расходы составляют 3 и 5$ соответственно.
Отрицательное воздействие ВЭС на окружающую среду проявляется в следующем:
1. для изготовления десятков тысяч ветряных колес и башен придется резко увеличить производство алюминия или стеклопластика, а это весьма грязные производства;
2. при мощности одной установки в 250 кВт возникает шум силой 50-80дБ;
3. ветряные колеса генерируют опасные инфразвуковые колебания, которые весьма неблагоприятно действуют на организм, причем до такой степени, что территория самой ВЭС и прилегающие к ней участки становятся непригодными для жизни людей и животных;
4. возникают сильные радиопомехи;
5. нарушаются траектории движения перелетных птиц, ликвидируются места традиционного обитания птиц;
6. из-за крупномасштабного использования энергии ветра, он может рассеиваться; изменится «роза ветров», и следовательно, может нарушится климатическое равновесие, перенос влаги и тепла не только в районе, где построена ВЭС, но и далеко за его пределами;
7. ветровые установки требуют огромных территорий.
Трудность использования энергии ветра заключается также в его непостоянстве, как по силе, так и по направлению.
ГЕОТЕРМАЛЬНАЯ ЭНЕРГЕТИКА. В недрах Земли в результате распада природных радиоактивные веществ идет постоянное высвобождение энергии. Поэтому внутренняя часть нашей планеты представляет собой расплавленную горную породу, которая время от времени вырывается наружу в виде вулканических извержений. Тепло земных недр и называется геотермальной энергией. Она практически неисчерпаема и вечна. Геотермальную энергию можно использовать и в тех местах, где с горячими горными породами соприкасаются грунтовые воды. Пар можно добывать, пробурив скважину от перегретых водоносных горизонтов, и с его помощью привести в движение турбогенераторы. К концу 90х годов общая мощность установок, работающих на геотермальной энергии, составляло около 5000 МВт. В общей сложности геотеплоэлектростанции (ГЕОТЭС) вырабатывают около 0,1 % от суммарной мощности электростанций мира.
На пути крупномасштабного использования геотермальной энергии есть проблемы. Горячие пар и вода, выносимые на поверхность Земли, содержат высокие концентрации солей и др. загрязнителей, в частности соединений серы. Эти примеси вызывают быструю коррозию турбин и др. оборудования, а выбрасываясь в конечном итоге в ОС, загрязняют воздух и воду. При закачивании воды фиксируются микроземлетрясения. Недавно обнаружилось, что ГЕОТЭС гораздо более радиоактивны, чем ТЭС в основном за счет радиоактивного радона и продуктов его распада. Установлено, что из всех естественных источников радиации радон является наиболее опасным. Он ответственен за 3/4 индивидуальной эффективной годовой дозы облучения, получаемой населением от земных источников радиации, и ½ дозы от всех естественных источников радиации. Кроме этого, мест с геотермальными водами невелико и многие из них расположены далеко от потребителя.
ВОДОРОДНАЯ ЭНЕРГЕТИКА. В 70-е годы впервые возникла идея о том, что для уменьшения загрязнения ОС в результате сжигания ископаемых топлив целесообразна замена их на Н2. О водороде стали все чаще говорить как о «топливе будущего». Это легко воспламеняющийся газ, который можно использовать в быту вместо природного; Н2 может служить автомобильным горючим. Теплотворная способность водорода Н2 – 120000 кДж/кг. Использование водорода гораздо чище с экологической точки зрения, так как единственным продуктом горения является вода Н2О. Таким образом, значительно сократилось бы загрязнение атмосферы. Водород самый распространенный элемент на Земле, но он практически не встречается в свободном виде, так как окисляется до воды. Это единственная серьезная преграда на пути крупномасштабного использования водорода в качестве горючего топлива. Следовательно, нужны перспективные методы его получения, хотя способов синтеза Н2 много. Простейшие из них – взаимодействие водных растворов кислот и оснований с металлами:
Zn + 2HCL → ZnCL2 + H2; Zn + 2NaOH → Na2ZnO2 + H2
Заслуживают внимания три варианта получения Н2 из органического сырья:
1. паровая конверсия метана СН4, являющегося главным компонентом природного газа:
СН4 + Н2О → СО + 3Н2 – 50 ккал
СО + Н2О → СО2 + Н2 + 10 ккал
СН4 + 2Н2О → СО2 + 4Н2 – 40 ккал – суммарное уравнение.
2. паракислородная конверсия метана СН4 – более совершенный вариант:
2СН4 + О2 → 2СО + 4Н2 + 16 ккал
СН4 + Н2О → СО + 3Н2 – 50 ккал
7СН4 + 3О2 + Н2О → 7СО + 15Н2 – 34 ккал – суммарное уравнение.
Как следует из уравнений, в обоих вариантах требуется затрата больших количеств дефицитного природного газа как исходного сырья.
3. газификация угля: 2С + О2 → 2СО + 55 ккал; С + Н2О → СО + Н2 – 30 ккал. Комбинацией этих двух реакций можно получить смесь водорода и угарного газа, называемого «водяным газом». В последнее время метод получения водорода из воды и угля считается одним из наиболее перспективных. Но уголь – ограниченный ресурс.
Очень перспективным, по мнению специалистов, является вариант использования водяного газа для восстановления окислов железа при 800-9000С: 2Fe3O4 + CO + H2 → 6FeO + H2O + CO2 – 22 ккал с последующей обработкой FeO водяным паром при 600-7000С. После конденсации паров воды можно получить чистый Н2: 3FeO + Н2О → Fe3O4 + Н2 + 16 ккал. Экономичность процесса здесь возрастает из-за того, что последняя реакция экзотермична и позволяет некоторое количество выделяющегося тепла использовать для нагрева водяного газа до температуры, при которых в соответствии с последней реакцией имеет место восстановления оксидов железа.
Казалось бы, самым простым и чистым способом получения водорода должен быть электролизный способ, непосредственно расщепляющий молекулу воду на водород и кислород. Но этот процесс сам требует много электроэнергии и экономически пока еще остается невыгодным.
Термолиз (термораспад) воды также нерентабельный процесс, так как при температуре 20000С выход водорода составляет 1 %. Но вместо термолиза напрямую предложили термохимические циклы, где водород получают в несколько стадий.
Один из циклов Mark – 1: 2CuBr2 + 4H2O → 2Cu(OH)2 + 4HBr (7300C);
4HBr + Cu2O → 2CuBr2 + H2O + H2 (1000C);
2CuBr2 + 2Cu(OH)2 → 2CuO + 2CuBr2 + 2H2O (1000C);
2CuO → Cu2O + 1/2O2 (1000C).
Отрицательное воздействие водородной энергетики на окружающую среду следующее:
• при горении водорода на воздухе развиваются температуры, достаточные для окисления азота. Поэтому кроме воды среди продуктов горения есть некоторое количество оксидов азота NхОу;
• добыча водорода из его природных соединений в соответствии с законом сохранения энергии требует столько же энергии (в реальных условиях несколько больше), сколько мы получим при окислении водорода. Следовательно, необходимо затратить эквивалентное количество первичной энергии, которая не является экологически чистой. Значит, загрязнение из одного региона (где водорода потребляют) переносится в другой (где его получают);
• низкая плотность, взрывоопасность, высокая диффузионная подвижность требуют для работы с водородом новых материалов и технологий, которые вряд ли будут экологически чистыми;
• еще одна проблема – это аккумулирование водорода. Расход водорода, как и любого другого энергоносителя, будет неравномерным. Следовательно, нужно заранее проектировать устройства для его аккумулирования. На сегодня лучшими являются интерметаллические аккумуляторы (трехкомпонентные сплавы на основе редкоземельных элементов). Следовательно, нужно увеличение производства редкоземельных элементов, что не безопасно с точки зрения охраны окружающей среды.
Таким образом, использование нетрадиционных возобновляемых источников энергии и энергосбережение, возможно, решат энергетические проблемы.
Немецкие ученые подсчитали мировой технический потенциал альтернативных источников энергии в год (млрд. тонн условного топлива):
биомасса – 5,6;
гидроэнергия – 2,8;
энергия ветра – 2,8;
геотермальная энергия – 1,9;
энергия приливов – 0,9;
энергия Солнца – 6,3;
всего – 20,3 млрд. тонн условного топлива.
Для сравнения – первичной энергии используется 9 млрд. тонн условного топлива.
Контрольные вопросы:
1. Проблемы энергетики и причины их возникновения.
2. Какова роль химии в решении энергетических проблем?
3. Классификация энергоресурсов.
4. Традиционные виды топлива, их характеристика.
5. Основные продукты переработки нефти.
6. Перспективы развития синтетического топлива.
7. Влияние энергетики на окружающую среду.
8. Что такое тепловыделяющие элементы, где их используют?
9. Проблемы ядерной энергетики.
10. Альтернативные источники энергии, их характеристика.
11. Какие существуют альтернативные источники энергии, в использовании которых преобладают химические процессы?
12. Какие способы получения водорода вам известны?
13. Что такое биогаз? Способы его получения.
ХИМИЧЕСКИЕ ОСНОВЫ СОЗДАНИЯ И ЭКСПЛУАТАЦИИ МАТЕРИАЛОВ
По составу материалы делят на:
• металлические материалы;
• материалы на основе высокомолекулярных соединений;
• неметаллические неорганические материалы;
• керамические материалы;
• композиты
МЕТАЛЛИЧЕСКИЕ МАТЕРИАЛЫ
Металлические материалы, как правило, обладают высокой тепло– и электропроводностью, механической прочностью, вязкостью, упругостью и хорошей пластичностью в сочетании с технологичностью обработки (ковкость, свариваемость, обрабатываемость режущими инструментами, существенные изменения эксплуатационных свойств в результате термической и химико-термической обработки). Наиболее распространенными являются металлические сплавы на основе железа (сталь и чугун), алюминия, магния, меди (бронза, латунь), никеля и хрома. Практически все переходные металлы и лантаниды, а также многие непереходные металлы выступают в качестве компонентов сплавов. Если металлы и сплавы в ряде случаев и уступают свои позиции неметаллическим материалам, то это связано в первую очередь с коррозией металлов, т.е. с их химическим разрушением под действием окружающей среды. Коррозии подвергаются и любые неметаллические материалы (например, полимеры, керамика и стекла), но чаще всего говорят о коррозии металлов, так как она наносит максимальный вред из-за относительно высокой скорости этого процесса, значительной стоимости металлических конструкций и ограниченности природных ресурсов металлов. Например, каждая шестая домна в России работает, чтобы возместить прямые потери металлов от коррозии.
Среди металлических материалов особое положение занимают сплавы на основе железа. Сплавы железа с содержанием углерода до 2 % принято называть сталью, а свыше 2 % – чугуном. Используемые в настоящее время в промышленности стали обычно делят на углеродистые и легированные.Создание новых и интенсификация существующих промышленных процессов заставляет все больше использовать легированные стали, которые обладают повышенной коррозионной стойкостью. Доля средне– и высоколегированных сталей в настоящее время составляет 20 % от общего количества производимых промышленностью черных металлов. Для легирования используют такие элементы, как никель, хром, молибден, вольфрам, ванадий, кобальт, марганец, медь, титан, алюминий. Сплавы железа с хромом составляют основу нержавеющих сталей, среди которых различают хромистые (Fe-Сr), хромоникелевые (Fе-Ni-Сr) и хромоникельмарганцевые (Fе-Сr-Ni-Мn). В зависимости от микроструктуры материала стали подразделяют на перлитные, мартенситные, аустенитные, ферритные и карбидные.
Несмотря на открытие и массовое применение значительного числа новых неметаллических материалов, металлы по-прежнему играют огромную роль в промышленности и в технике. Так, за последние 20 лет мировое производство меди увеличилось примерно в 2,3 раза, железа – в 2,7, никеля – в 4, алюминия – в 4,7, титана – в 17 раз. Очевидно, что и в будущем объемы производства металлов по-прежнему будут расти. Если представить себе, что среднегодовое потребление стали во всем мире приблизится к уровню развитых стран (примерно 500 кг на душу населения), и допустить, что дальнейшего роста объемов потреблений в этих странах не будет, то и тогда на земном шаре будет производиться около 2,5 млрд. т стали ежегодно. Такие примеры можно привести и применительно к цветной металлургия, которая производит металлы, требующие значительно больших количеств руды, электроэнергии, топлива и воды на тонну выпускаемой продукции.
Одной из основных задач развития материаловедения в области металлов является улучшение их качества. С этой точки зрения важное значение приобрела порошковая металлургия, в основу которой положено производство металлических порошков и спеченных из них изделий. В современной порошковой металлургии можно выделить два основных направления:
1. создание материалов и изделий с такими характеристиками (состав, структура, свойства), которые в настоящее время невозможно достичь известными методам и плавки;
2. изготовление традиционных материалов и изделий при более выгодных технико-экономических показателях производства.
Обработкой металлических порошков удается достичь важных для практических целей свойств материалов. Например, корольки плавленого вольфрама, которые получают в инертной атмосфере в вольтовой дуге, хрупки из-за присутствия различных примесей, в том числе межкристаллитных оксидных пленок, образующихся при застывании металла. Прессованием порошков вольфрама и последующим спеканием изделий в атмосфере водорода изготавливают прочные металлические бруски, которые можно ковать, катать из них листы, штамповать при нагревах ниже температур рекристаллизации.
Немаловажную роль в повышении качества металлических материалов играет разработка новых, в том числе жаростойких сплавов. Например, если в 50-х годах авиационный газотурбинный двигатель на 20 % изготавливали из алюминиевых сплавов, на 71 % из стали и на 9 % из никелевых сплавов, то спустя четверть века, алюминиевых сплавов осталось лишь 2 %, стали – 4 %, тогда как титановые сплавы составили 28 %, а количество никелевых сплавов, из которых выполняют основные несущие детали двигателя, увеличилось до 66 %.
Особо следует выделить сплавы, созданные на основе бинарной системы Тi–Ni. Интерметаллид Ni-Тi, обладающий памятью формы, имеет структуру CsCI, которая при температуре ниже 1100С подвергается обратимому мартенситовому превращению с образованием ромбоэдрических доменов. Температуру указанного превращения можно регулировать путем допирования сплава (введение Рd повышает Тм, а введение Fе, Сr или избытка Ni – напротив, понижает Тм). Сплав, открытый американскими исследователями в 1963 г., назвали «нитинол»: «ни» и «ти» – символы Ni и Тi, а «нол» – сокращенное название лаборатории, где работали авторы. Нитинолу можно придать любую форму, например, спирали, а затем стабилизировать ее кратковременным нагреванием. Нитинол «запоминает» первоначальную форму, даже если его после этого подвергнуть холодному формованию. При нагревании изделие вновь принимает форму спирали. Широкого применения нитинол пока не нашел. Но предполагают, что он может быть использован в качестве антенн космических кораблей и других устройств для работы в космосе, которые должны принимать заранее заданную форму, когда на них попадает интенсивное солнечное излучение. Уникальное сочетание памяти формы с высокой способностью к деформации и коррозийной устойчивостью открыло путь к использованию нитинола в качестве имплантата в хирургической практике. Эффект сверхупругости и запоминания формы в сплавах был предсказан академиком Г.В. Курдюмовым еще в 1948 г. («эффект Курдюмова»).
МАТЕРИАЛЫ НА ОСНОВЕ ВЫСОКОМОЛЕКУЛЯРНЫХ СОЕДИНЕНИЙ
Все неметаллические материалы делят на две группы – органические и неорганические. В каждой из этих групп выделяют природные и синтетически (искусственные) материалы. В группе органических материалов и те, и другие являются полимерами, т.е. высокомолекулярными соединениями.
Среди природных органических материалов важнейшим является древесина, потребление которой (свыше 1 млрд. т) заметно превосходит потребление стали. Сухая древесина на 40-50 % состоит из линейного полимера – целлюлозы, на 25 % из родственных ей соединений (гемицеллюлозы) и на 25 % из высоковязкой жидкости – лигнина. Каждая молекула целлюлозы содержит до 5000 колец глюкозы, соединенных атомами кислорода. Из молекул целлюлозы образованы и волокна, которые формируют стенки трубчатых клеток. Основной способ переработки дерева – традиционно был связан с изготовлением пиломатериалов. Часть древесины шла на получение технической целлюлозы для бумажной промышленности (80 %) или химических волокон (20 %). Но развитие химии и химической промышленности изменило традиционные способы использования древесины. Например, изготовление древесно-стружечных и древесно-волокнистых плит стало возможным благодаря широкому применению фенол– и мочевиноформальдегидных смол. Только в мебельной промышленности средний мировой уровень потребления древесно-стружечных плит составляет сейчас почти 50 %. Остальная часть продукции идет в строительство. При обработке аммиаком древесина становится пластичной, из нее можно прессовать различные профили.
К природным материалам органического происхождения помимо древесины можно отнести битумы и смолы, применяемые как антикоррозионные средства. Ферментация целлюлозных компонентов древесины открывает путь к получению глюкозы и многих других химически ценных продуктов и материалов.
Важнейшими видами синтетических полимерных материалов являются пластмассы, эластомеры, химические волокна и полимерные покрытия.
Из 50 видов производимых в настоящее время пластмасс 2/3 являются термопластами (обратимо размягчаются и твердеют с изменением температуры), а остальные реактопластами (не размягчаются при нагревании). Доля термопластов в производстве полимеров непрерывно растет, и ожидается, что в ближайшие годы она достигнет 75 %. Термопласты можно обрабатывать и перерабатывать методами литья под давлением, вакуумной формовкой, профильным прессованием или простой формовкой. К таким пластмассам относятся полиэтилен, поливинилхлорид, полистирол и так называемые АБС-сополимеры.Последние являются продуктами сополимеризации акрилонитрила (А), бутадиена (Б) и стирола (С). Первый обусловливает химическую устойчивость продукта, второй сообщает ему сопротивление удару, а третий делает материал твердым и термопластичным. Термическое поведение подобных пластиков можно регулировать введением наполнителей, например полифосфатов. Но наилучших результатов достигают введением специальных мономеров (полифенилсульфиды, ароматические полиэфиры, модифицированные фторполимеры). Со временем будут созданы пластмассы, конкурирующие по термостойкости с алюминием, но вероятность достичь термостойкости стали мала. Пластмассы, применяемые в качестве материалов, как правило, имеют сложный состав и включают, по меньшей мере, три группы веществ:
1. основу или связующий материал (искусственные полимерные смолы);
2. пластификатор, способствующий переходу материала в тестообразное состояние;
3. наполнитель, придающий механическую прочность, твердость и термостойкость (древесная мука, измельченный асбест, стекловолокно, графит).
В отдельных случаях в композицию вводят стабилизаторы, предохраняющие пластмассы от разложения в процессе переработки при световом или тепловом воздействии.
Синтетические высокомолекулярные материалы выгодно отличаются от металлов высокой устойчивостью в агрессивных средах, низкой плотностью, высокой стойкостью к истиранию, хорошими диэлектрическими и теплоизоляционными свойствами, способностью поглощать и гасить вибрацию, простотой изготовления деталей и аппаратов сложной конструкции. Некоторые полимеры характеризуются высокой стойкостью к низким температурам (вплоть до температуры жидкого азота), а другие – исключительными водоотталкивающими свойствами. Недостатком многих высокомолекулярных соединений является склонность к старению и, в частности, к деструкции – процессу уменьшения длины цепей и размеров макромолекул. Деструкция может быть инициирована механическими нагрузками, действием света, тепла, воды, ультразвука, особенно кислорода и озона. Большинство конструкционных материалов на органической основе нельзя применять при температурах выше 150-200 °C и в контакте с различными агрессивными средами, например с азотной кислотой. Органические растворители, такие как ацетон, сероуглерод, хлороформ, бензин и некоторые другие, также оказывают разрушающее действие на многие полимерные материалы.
Применяемые в настоящее время пластические массы можно разделить, в свою очередь, на два больших класса – пластмассы на основе поликонденсационных и полимеризационных полимеров. Среди первых наиболее известны материалы на основе фенолформальдегидных смол, в том числе оргалит, текстолит, текстофаолит. стеклопластики, а также фенолформальдегидные лаки и специальные мастики. Например, фаолит – волокнистый материал, изготовляемый из фенолформальдегидной смолы, т.е. смолы, полученной в присутствии щелочного катализатора и при избытке формальдегида и асбеста (фаолит-А) или асбеста с графитом (фаолит-Т). Фаолит-А стоек в кислотах, растворах солей, в органических растворителях (бензол) и в некоторых газах (хлор СL2, диоксид серы SO2), но разрушается азотной и плавиковой кислотами и щелочами. Фаолит-Т проявляет стойкость даже по отношению к плавиковой кислоте. Он имеет высокую теплопроводность и потому может использоваться для создания теплообменной аппаратуры. Текстолит - слоистый пластик на основе хлопчатобумажной ткани, пропитанной синтетическим связующим (фенолформальдегидной смолой). Текстолит прочнее фаолита и используется для изготовления внутренних деталей, например в химическом машиностроении (детали ректификационных колон, фильтров и т.д.). Текстофаолит – комбинированный материал, состоящий из внутреннего и наружного текстолитового слоев. Иногда такой материал делают многослойным, но в этом случае верхний слой всегда состоит из текстолита. Его используют в качестве обкладочного материала, защищающего металлические изделия от коррозии. Пропитывая фенолформальдегидной смолой асбестовую ткань и древесный шпон, получают соответственно асботекстолит и древеснослоистый пластик. Первый используют в качестве прокладочного материала для работы при достаточно высоких температурах (до 2500С), а второй – для изготовления деталей аппаратов, испытывающих значительные механические нагрузки. Стеклопластики – типичные конструкционные материалы, у которых в качестве связующего выступают поликонденсационные смолы, а наполнителем служат различные стекловолокнистые материалы. Стеклопластики по прочности не уступают стали, хорошо противостоят ударным и динамическим нагрузкам и гасят колебания элементов конструкций. Применение химически стойких стеклопластиков позволяет более рационально осуществить крупномасштабные технологические процессы, связанные с применением агрессивных сред при температурах не выше 150 °C (например, производство серной кислоты, хлора, минеральных удобрений и каустической соды). Наиболее перспективны многослойные стеклопластики. У них первые два слоя толщиной 2-З мм содержат соответственно 10 и 25 % по массе стекловолокна и выполняют роль термического барьера, препятствующего проникновению агрессивной жидкости в конструкционный (силовой) слой, содержащий 60-65 % стеклонаполнителя. Стекловолокнистый анизотропный материал, получаемый из ориентированных стеклянных волокон путем их параллельной укладки с одновременным нанесением связующего (поликонденсационной смолы), обладает исключительно высокой прочностью и используется, например, для строительства крупных хранилищ, трубопроводов и эстакад.
Силиконы или кремнийорганические полимеры, которые можно рассматривать как органические производные силикатов, получают путем проведения последовательно гидролиза мономеров и поликонденсации из алкил– и арилхлорсиланов и т.д. Они отличаются высокой термостойкостью, химической стойкостью и эластичностью. В зависимости от характера связи между молекулами и природы входящих в их состав радикалов силиконы можно получать в виде смол, каучукоподобных веществ, масел или жидкостей. На основе этих соединений производят жаростойкие лаки, жидкие смазки, силиконовые каучуки и слоистые пластики. Наибольшее значение имеют силиконовые полимеры, используемые в качестве покрытий, устойчивых во многих агрессивных средах, кислороде, озоне, влажной атмосфере, к действию ультрафиолетового облучения, а в комбинации с различными наполнителями – и к нагреву до 500 °C. В качестве наполнителей используют чаще всего порошкообразные алюминий, титан или бор. Силиконовые покрытия наносят на различные металлические конструкции для защиты их от коррозии.
Эпоксидные смолы - продукты поликонденсации эпихлоргидрина (СН2CL-СН-СН3) и многоатомных фенолов, обладают высокой химической стойкостью, незначительной усадкой при отверждении и высокой адгезией к различным материалам, включая металлы, бетон и керамику. Они применяются в виде лаков для защиты емкостей, трубопроводов и цистерн. Лаки на основе резольных смол, известные под общим названием бакелитов, обычно получают растворением резольной смолы в этиловом спирте. После термообработки бакелитовые покрытия становятся нерастворимыми и химически стойкими. Их существенным недостатком являются хрупкость и плохая адгезия пленки к металлу. Отметим, что прочность сцепления подобного лака с металлами значительно увеличивается при введении в него наполнителей, таких как графит или каолин.
Среди пластмасс, полученных на основе полимеризационных процессов, наиболее широко известны поливинилхлорид, поливинилхлоридные сополимеры хлорвинила, полиэтилены, фторопласты, полиизобутилены, и асбовинил. Исходным сырьем для получения поливинилхлоридных смол служит хлорвинил – газообразный мономер СН2=СНС1, который полимеризуется с образованием белой твердой массы, нерастворимой в воде, спирте и бензоле. Поливинилхлорид перерабатывают далее в твердые материалы типа винипласта и в мягкие пленочные и резиноподобные материалы типа пластиката.
Винипласт – термопластичный материал, состоящий в основном из макромолекул поливинилхлорида с молекулярной массой от 18 до 120 тыс., к которому для предотвращения термической деструкции добавлен стабилизатор. Винипласт удачно сочетает антикоррозионную способность с хорошими физико-механическими свойствами. Он не подвергается разрушению в минеральных кислотах (за исключением сильных окислителей), в щелочах, солевых растворах и во многих органических растворителях, кроме ароматических и хлорированных углеводородов. Ценным свойством винипласта является его пластичность при нагревании, которая позволяет легко изготавливать материалы, детали и конструкции любой формы штампованием или выдавливанием, так же как из металлов. К тому же его можно резать, строгать, сверлить и полировать, Изделия из винипласта можно сваривать токами высокой частоты и склеивать специальными клеями. К недостаткам относятся малая термическая устойчивость (выше 50°С), набухаемость в воде, низкая ударная вязкость, большой коэффициент термического расширения и постепенная деформация под нагрузкой.
Сополимеры винилхлорида и винилацетата, известные под общим названием винилитов, также обладают сравнительно высокой химической стойкостью и используются в качестве фильтрующих материалов для футеровки хранилищ кислот, а также в виде лаков как защитных покрытий.Широко известный в настоящее время материал – полиэтилен – термопластичная масса, получаемая полимеризацией этилена nСН2=СН2 → (-CH2-CH2-)n.
Полиэтилен низкой плотности получают при давлении 100-200 МПа и температуре 160-200 °C, а полиэтилен высокой плотности – при давлении 3-5 МПа и температуре 110-140 °C в присутствии катализаторов (Сг2О3, СrО3) или под давлением 0,2-0,6 МПа при 60-70 °C в присутствии ТiСI4 или триэтилалюминия, растворенных в ксилоле или хлорбензоле. При обычной температуре полиэтилен – твердый, упругий материал, выше 70 °C он переходит в пластичное состояние. Он сочетает хорошую прочность, низкий удельный вес, благоприятные технологические свойства и потому широко используется в антикоррозионных целях как заменитель цветных металлов и легированных сталей. Из полиэтилена методом вакуумного формования изготавливают крупногабаритную аппаратуру и детали арматуры. Неудовлетворительная адгезия полиэтилена к металлу затрудняет его использование в качестве защитного слоя аппаратуры методами обкладки и футеровки. Вместе с тем широкое применение нашли методы защиты различных трубопроводов полиэтиленовыми лентами, прикрепляемыми специальным клеем, а также металлических конструкций нанесением на их поверхности покрытий из тонкого порошка полиэтилена газопламенным или вихревым напылением. В последнее время получены новые виды полиэтилена с улучшенными физико-механическими и антикоррозионными свойствами. Например, хлорсульфированные полиэтилены (гипалоны), применяемые для обкладки химических аппаратов и в виде покрытий, наносимых распылением или погружением.
Правообладателям!
Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.Читателям!
Оплатили, но не знаете что делать дальше?