Электронная библиотека » Сборник » » онлайн чтение - страница 13


  • Текст добавлен: 28 сентября 2017, 11:22


Автор книги: Сборник


Жанр: Зарубежная образовательная литература, Наука и Образование


Возрастные ограничения: +16

сообщить о неприемлемом содержимом

Текущая страница: 13 (всего у книги 40 страниц) [доступный отрывок для чтения: 13 страниц]

Шрифт:
- 100% +

Жизнь развивается через общий генетический набор
Сейриан Самнер

Старший преподаватель поведенческой биологии Бристольского университета, Великобритания.

Гены и сети их взаимодействия определяют фенотип организма – то, как он выглядит и как себя ведет. Одна из самых крупных проблем в современной эволюционной биологии состоит в том, чтобы понять взаимоотношения между генами и фенотипами. Преобладает теория, согласно которой все животные созданы фактически из одного и того же набора регуляторных генов – генетического пакета – и что фенотипические вариации внутри видов и между ними возникают просто потому, что эти общие для всех гены используются по-разному. Но сейчас ученые добывают огромный объем геномных данных из самых различных организмов, и эти данные велят нам отправить на покой идею о том, что в основе всей жизни на Земле лежит один набор законсервированных генов. Вместо этого нам нужно исследовать роль геномных новаций в эволюции фенотипического разнообразия и обновления.

Идея законсервированного генетического набора жизни родилась в мире evo-devo[34]34
  Сокращение термина evolutionary developmental biology – эволюционная биология развития.


[Закрыть]
. Если коротко, то эта научная дисциплина предполагает, что эволюция во всех организмах использует одни и те же ингредиенты, но каждый раз ведет сложную работу с рецептами. Экспрессия генов в разное время развития и/или в разных частях тела приводит к тому, что одни и те же гены могут быть использованы в разных комбинациях – это делает возможным развитие, генерирует фенотипическое разнообразие и обновление. Животные выглядят по-разному не потому, что у них разные молекулярные аппараты, а потому, что разные части этих аппаратов активированы в разной степени в разное время, в разных местах и в разных комбинациях. Число комбинаций в самом деле огромно, и это дает правдоподобное объяснение развитию сложных и разнообразных фенотипов даже из малого числа генов. Например, в геноме человека всего лишь 21000 генов, однако мы представляем собой, пожалуй, один из самых сложных продуктов эволюции.

Хрестоматийный пример – это суперконтроллер развития, Hox-гены: набор генов, которые говорят телам в каждой основной животной группе, где им следует отращивать головы, хвосты, руки, ноги. Hox-гены есть у мышей, червей, людей… Они унаследованы от общего предка. Другие генные наборы отвечают за развитие глаз или за цвет волос (оперения). Генные наборы стары, они присутствуют во всех животных и делают для всех животных примерно одно и то же. Нельзя отрицать, что законсервированный геномный материал формирует важную часть молекулярных строительных блоков жизни.

Однако сейчас мы можем de novo, то есть с самого начала, секвенировать геномы и транскриптомы (гены, работающие здесь и сейчас) любого организма. У нас есть последовательности для водорослей, питонов, зеленых морских черепах, рыбы фугу, пестрых мухоловок, утконосов, коал, обезьян бонобо, гигантских панд, дельфинов-афалин, муравьев-листорезов, бабочек-монархов, тихоокеанских устриц, пиявок – список растет по экспоненте. И каждый новый геном несет в себе набор уникальных генов. У круглых червей 20 % генов уникальны. В каждой линии муравьев содержится примерно 4000 новых генов, но только 64 гена сохраняются во всех 7 муравьиных геномах, которые к настоящему времени прослежены.

Многие из этих уникальных («новых») генов оказываются важными в эволюции биологических инноваций. Морфологические различия между близкородственными пресноводными полипами Hydra могут объясняться маленькой группой новых генов. Новые гены оказываются важными у рабочих пчел, ос и муравьев. Гены, специфичные для тритонов, могут играть роль в их поразительной способности регенерировать ткани. У людей новые гены ассоциируются с такими тяжелыми заболеваниями, как лейкозы и болезнь Альцгеймера.

Жизнь геномно сложна, и эта сложность играет важнейшую роль в развитии многообразия жизни. Легко увидеть, как инновация может улучшаться путем естественного отбора: например, как только появился первый глаз, он сразу стал подвергаться суровому отбору, чтобы увеличить приспособленность (способность к выживанию) его хозяина. Сложнее объяснить, как появляются новации, особенно из законсервированного геномного набора. Дарвиновская эволюция объясняет, как организмы и их признаки развиваются, но не как они возникли. Как появился первый глаз? Или, более точно, как впервые появился главный регуляторный ген для развития глаза у всех животных? Способность к развитию новых фенотипических признаков – будь то морфологические, физиологические или поведенческие – играет решающую роль для выживания и адаптации, особенно в меняющейся (или новой) среде.

Законсервированный геном может генерировать новации через переустановку (внутри или между генами), перемены в регуляции или геномную дупликацию. Например, геном позвоночных был полностью повторен дважды за свою эволюционную историю, а у лососевых рыб в дополнение к этому произошло еще два полных удвоения генома. Удвоения выводят из-под отбора по функционированию одну из генных копий, позволяя этой копии мутировать и развиваться в новый ген, тогда как другая копия действует как обычно. Законсервированные геномы также могут хранить в себе много латентных генетических вариаций – исходного материала для развития новаций, – которые не подлежат отбору. Нелетальная вариация может пребывать в геноме в состоянии покоя, не экспрессируясь или экспрессируясь в такое время, когда это не повлечет летальный эффект для фенотипа. Молекулярный аппарат, регулирующий экспрессию генов и белков, опирается на минимальное количество информации, правил и инструментов: факторы транскрипции опознают последовательности только немногих базовых пар как связок, что дает им огромный потенциал пластичности в местах связки. Хорошим источником геномных обновлений являются плейотропные перемены во многих законсервированных генах с использованием разных комбинаций транскрипции, трансляции и/или посттрансляционной активности. Например, эволюция формы клюва у дарвиновских вьюрков контролируется плейотропными изменениями, вызванными изменениями в сигнальных схемах законсервированного гена, контролирующего развитие кости. Способность к комбинациям даже ограниченного генетического набора дает ему громадный потенциал для развития новаций на базе старого аппарата.

Однако наличие уникальных генов во всех исследованных на сегодня эволюционных линиях говорит нам о том, что в фенотипической эволюции рождение генов de novo важнее, чем перекомпоновка старых ингредиентов. Чрезмерное обилие некодирующих ДНК в геномах становится менее загадочным, если они представляют собой плавильный котел, в котором геномы исследуют и создают новые гены и генные функции – и, в конечном счете, фенотипические инновации. Сейчас принято считать, что геномы постоянно производят новые гены, но только немногие из них становятся действующими.

Наша история началась просто: вся жизнь является продуктом мягкого эволюционного обновления общего молекулярного набора. Сейчас настало невообразимое время, когда мы можем распаковать молекулярные строительные блоки любого существа. И эти новые данные потрясают. Сюрприз? Не совсем. Возможно, самый важный урок из всего этого состоит в том, что никакая теория не является совершенно правильной, что хорошие теории – это те, которые способны к развитию и восприимчивы к инновациям. Давайте развивать теории (сохраняя те их части, которые доказали свою правильность), а не отправлять их в отставку.

Совершенно случайные мутации
Кевин Келли

Старший отщепенец[35]35
  Senior Maverick. Вот как сам Келли объясняет, что это значит (комментарий на Quora.com): «Я придумал эту должность, потому что, когда журнал Wired был продан корпорации Conde Nast, им категорически не понравилось, что я называюсь „редактор-консультант“ (Editor at Large). Очевидно, они решили, что в журнале многовато редакторов. Вот я и придумал такую должность. У слова maverick много значений, но я выбрал именно такое».


[Закрыть]
в журнале Wired, автор книг Cool Tools: A Catalog of Possibilities («Крутой инструментарий: каталог возможностей»), The Inevitable: Understanding the 12 Technological Forces That Will Shape Our Future[36]36
  Кевин Келли. Неизбежно. 12 технологических трендов, которые определяют наше будущее. М.: Манн, Иванов и Фербер, 2017. (МИФ. Бизнес).


[Закрыть]
и других.

То, что обычно называют случайной мутацией, на самом деле не происходит по математически случайной схеме. Процесс генетической мутации чрезвычайно сложен, в нем множество путей, в него вовлечено больше чем одна система. Современные исследования предполагают, что большинство спонтанных мутаций – это ошибки в процессе ремонта поврежденных ДНК. Ни повреждения, ни ошибки в ремонте не бывают случайными; не случайно ни место, где произошла ошибка, ни время, ни то, как именно она произошла. Идея о том, что мутации случайны, – это, скорее, просто широко распространенное предположение неспециалистов (и даже многих учителей биологии). Этому нет прямых доказательств.

В то же время есть много свидетельств того, что генетические мутации различаются паттернами. Например, довольно широко признано, что частота мутаций увеличивается или уменьшается с увеличением или уменьшением стрессовой нагрузки на клетки. На частоту мутаций влияют и мутации, порожденные стрессом от хищников или конкуренции, а также мутации, вызванные факторами среды и эпигенетическими факторами. Кроме того, замечено, что мутации с большей вероятностью происходят близ того места в ДНК, где мутации уже происходили, создавая таким образом кластеры активных мутаций, – а это не случайная модель.

Хотя мы не можем сказать, что мутации случайны, мы можем сказать, что здесь все же есть значительный хаотический компонент – точно как при броске игральной кости. Но фальшивые игральные кости, налитые свинцом, не надо путать со случайностью, потому что в долгосрочной перспективе – а именно таковы временны́е рамки эволюции – сдвинутый центр тяжести костей повлечет заметные последствия. Поэтому поясню: есть доказательства, что в мутациях главную роль играет случай, и без случайностей не было бы естественного отбора. Но это не произвольные случайности. Это нагруженные случайности с множественными ограничениями, многопозиционными искажениями, многочисленными кластерами и смещенным распределением.

Почему же идея случайных мутаций так живуча? Предположение о «случайной мутации» было философской необходимостью для борьбы с более ранней ошибочной идеей унаследованных приобретенных свойств или с тем, что обычно называют эволюцией по Ламарку. Как грубое приближение первого порядка, случайная мутация довольно хорошо работает в качестве интеллектуальной и экспериментальной конструкции. Но нехватка прямых свидетельств действительно случайных мутаций достигла сейчас такого уровня, что эта идея должна быть отправлена в отставку.

Есть несколько взаимосвязанных причин, почему эта безосновательная идея продолжает эксплуатироваться при отсутствии доказательств в ее пользу. Во-первых, сказывается страх перед тем, что неслучайные мутации будут неправильно поняты и искажены креационистами, использованы как новый аргумент в отрицании реальности и важности эволюции путем естественного отбора. Во-вторых, если мутации не случайны и у них есть некий паттерн, то этот паттерн создает микронаправление в эволюции. А поскольку биологическая эволюция представляет собой не что иное, как микродействия, аккумулирующиеся в макродействия, то эти микропаттерны оставляют открытой возможность макронаправлений в эволюции.

И тут сразу поднимаются разные тревожные красные флажки. Если есть эволюционные макронаправления, то откуда они возникли? И что это за направления? Сегодня мало согласия относительно доказательств макронаправлений в эволюции, если не считать возрастающей сложности. Но сама идея хоть какого-то направления эволюции настолько противоречит нынешним догмам современной теории эволюции, что предположение о случайности остается в ходу.

Отправляя в отставку идею совершенно случайных мутаций, мы можем получить некоторые практические преимущества. Идею о том, что у мутаций есть тенденции, можно применять для того, чтобы с большей легкостью создавать генетические процессы, используя эти тенденции. Мы сможем лучше понять происхождение мутаций при болезнях и излечивать их. И с этим новым пониманием мы сможем успешнее разрешить некоторые неразгаданные тайны макроэволюции. При отказе от идеи случайных мутаций важно отдавать себе отчет в том, что элемент случайности, действующий в мутациях, не является «несовершенной» случайностью, а скорее, содержит в себе долю порядка, который является генеративным, – нечто маленькое, что может быть использовано либо нами, либо естественным отбором. Для чего это используется или может использоваться – этот вопрос остается открытым, но мы никогда не доберемся до использования, если будем цепляться за идею о случайности мутаций.

Один геном на особь
Эрик Тополь

Руководитель кафедры инновационной медицины Фонда Гэри и Мэри Уэст, профессор геномики Научно-исследовательского института Скриппса. Автор книг The Creative Destruction of Medicine («Созидательное разрушение медицины»), The Patient Will See You Now: The Future of Medicine Is in Your Hands[37]37
  Эрик Тополь. Будущее медицины. Ваше здоровье в ваших руках. М.: Альпина нон-фикшн, 2016.


[Закрыть]
и других.

Нас учили, что оплодотворенная яйцеклетка делится таким образом, чтобы в результате образовался человек целиком – человек, по последним оценкам, имеющий 37 триллионов клеток с аутентичной копией его генома в каждой. К сожалению, этот простой и, казалось бы, непреложный архетип в последнее время мутировал.

Хотя классическое учение – один геном на особь – начали ставить под вопрос десятилетия назад, оно было однозначно развенчано только недавно, когда мы научились выполнять секвенирование одной клетки и геномную гибридизацию высокого разрешения. Например, в 2012 году исследователи сообщили, что при аутопсии у 37 женщин из 59 в клетках мозга обнаружили ген DYS 14, специфичный для мужской Y-хромосомы[38]38
  William F. N. Chan et al. Male Microchimerism in the Human Female Brain, PLOS ONE, Sept. 26, 2012. DOI: 10.1371/journal.pone.0045592. – Примеч. авт.


[Закрыть]
. Многим трудно было в это поверить. Но недавно ученые в Институте Солка провели секвенирование одиночных клеток человеческих мозговых нейронов, взятых у покойников, и обнаружили, что поразительная доля клеток (до 41 %) имела структурные варианты ДНК.

Этот уровень так называемого мозаицизма в мозге оказался гораздо выше, чем ожидалось, и даже возник вопрос о возможных огрехах нашей технологии секвенирования одиночных клеток. Но дело не в этом, потому что слишком много независимых исследований пришли к схожим результатам в мозге или в других органах – коже, крови, сердце. В прошлом году группа ученых Йельского университета во главе с Ричардом Лифтоном и Мартиной Брюкнер обнаружили, что у большой доли детей с врожденным пороком сердца были мутации, не представленные ни у одного из родителей, – мутации, которые, возможно, ответственны за 10 % врожденных пороков сердца[39]39
  Samir Zaidi et al. De novo mutations in histone-modifying genes in congenital heart disease // Nature 498:7453 (2013). – Здесь и далее в этой статье – примеч. авт.


[Закрыть]
.

Эти спонтанные de novo (первичные) мутации клеток на протяжении жизни человека стали неожиданной проблемой для генетиков, которые думали, что наследственность передается между поколениями. Постоянно появляются сообщения о спорадических заболеваниях, вызванных этими de novo-мутациями, в их числе значатся боковой амиотрофический склероз (болезнь Лу Герига), аутизм и шизофрения. Мутации могут происходить во многих временны́х точках на протяжении человеческой жизни. Анализ 14 абортированных развивающихся человеческих эмбрионов показал, что у 70 % из них имеют место крупные структурные вариации, пусть даже они не были бы представлены в случае рождения[40]40
  James R. Lupski. Genome Mosaicism – One Human, Multiple Genomes // Science 341, 358 (2013) DOI: 10.1126/ science.1239503.


[Закрыть]
. На другом конце временного континуума, у 6 человек, чья смерть не была связана с раком, был отмечен обширный мозаицизм во всех проверенных органах, включая печень, тонкую кишку и поджелудочную железу[41]41
  Maeve O’Huallachain et al. Extensive genetic variation in somatic human tissues // Proc. Nat. Acad. Sci., 109:44, 18018–23 (2012).


[Закрыть]
.

Но мы до сих пор не знаем, представляет ли это только академический интерес или серьезно сказывается на возникновении болезней. Безусловно, мозаицизм, случающийся позже в жизни в «необратимо измененных» клетках, играет важную роль в развитии рака. А мозаицизм иммунных клеток, особенно лимфоцитов, является частью здоровой и прочной иммунной системы. А в остальном функциональное значение того, что в каждом из нас есть много геномов, во многом остается неясным.

А значение может быть очень большим. Когда мы берем анализ крови, чтобы оценить геном пациента, мы понятия не имеем о потенциальном мозаицизме, существующем в разных частях его тела. Потребуется большая работа, чтобы это выяснить, и теперь, когда у нас есть для этого необходимая технология, мы в последующие годы непременно продвинемся в понимании себя – замечательных себя с гетерогенными геномами.

Природа или воспитание?
Тимо Ханнэй

Исполнительный директор Digital Science, издательство Macmillan Publishers Ltd.; соорганизатор конференций SciFoo.

Какое-то число научных теорий оказываются поверженными в прах. Такое случается, когда вы работаете на границах человеческого невежества. Но в большинстве своем они в худшем случае представляют собой мелкие отвлечения или интеллектуальные отклонения, которые почти не проявляются вне академического лона. А вот такое ложное научное представление, которое вырвалось в реальный мир и приносит реальный ущерб, заслуживает пули в затылок. Возможно, сегодня наилучший пример такого представления – это спор «природа или воспитание».

Это обманчиво-соблазнительное противопоставление придумал Фрэнсис Гальтон – основатель евгеники, энциклопедист и двоюродный брат Чарльза Дарвина. К сожалению, как и евгеника – монументально неудачная теория Гальтона, – концепт «природа vs. воспитание» порождает порочную смесь концептуальной ошибочности и политического потенциала.

Самая элементарная ошибка, которую люди делают, толкуя о воздействии генов в отличие от воздействия среды, заключается в предположении, что их действительно можно отделить друг от друга. Дональд Хебб, блестящий канадский нейропсихолог, когда его спросили, что больше влияет на формирование личности – природа или воспитание, вроде бы сказал: «А что больше влияет на площадь прямоугольника – его длина или его ширина?»

Это остроумный ответ, но он, к сожалению, только усилил серьезное заблуждение, согласно которому генетика и среда – это взаимно перпендикулярные понятия, как ньютоновы пространство и время. А на самом деле они больше похожи на эйнштейново пространство-время – глубоко переплетенные, со сложными взаимодействиями, которые могут привести к парадоксальным результатам.

Конечно, специалистам это уже известно. Они, например, понимают, что большинство детей наследуют от своих родителей не только гены, но также и их среду – отсюда и исследования раздельно живущих однояйцевых близнецов (у которых общие почти все гены, но не среда). К тому же вот уже более 30 лет вполне понимается и принимается идея расширенного фенотипа – в котором организмы, побуждаемые своими генами, стараются модифицировать свою среду. И наука эпигенетика, которой, правда, еще предстоит пройти большой путь, уже продемонстрировала широкое разнообразие путей изменения действия генов под влиянием иных факторов, нежели их нуклеотидная последовательность, и показала, что это в большой степени определяется средой гена (которая, разумеется, частью состоит из других генов как в том же организме, так и вне его).

Опять же к сожалению, почти все это остается не замеченным журналистами и политиками – то есть людьми, которые хотят формировать наше общество. Почти все они, кажется, держатся наивного ньютонова взгляда на природу и воспитание, что толкает их во всевозможные интеллектуальные заблуждения.

Ярким примером может служить шумиха вокруг пространного доклада об образовании, написанного в октябре 2013 года Домиником Каммингсом, советником тогдашнего правоцентристского министра образования Великобритании. Он, в том числе, указал (правильно), что учебная успеваемость – вещь в значительной степени наследственная. Многие комментаторы, особенно левые, поняли это в том духе, что для Каммингса образование якобы вообще не имеет значения. В их ньютоновых вселенных с природой-или-образованием наследственность свойства – это непреложный закон, который делает людей – и, что еще хуже, детей – пленниками их генов.

Это чепуха. Наследуемость – это не противоположность мутабельности, и сказать, что наследуемость свойства высока, – не значит сказать, что среда не имеет никакого значения, потому что степень наследуемости сама зависит от среды. Возьмем рост человека. В богатых странах мира наследуемость роста составляет примерно 80 %. Но это только потому, что у нас в целом хорошее питание. В тех местах, где обычны недоедание и голод, доминируют факторы среды, и степень наследуемости роста оказывается гораздо ниже.

Сходным образом и высокая наследуемость учебной успеваемости не обязательно означает, что от образования мало что зависит. Как раз наоборот, это, по крайней мере отчасти, является результатом современного всеобщего школьного образования. Действительно, если бы каждый ребенок получил идентичное образование, наследуемость академической успеваемости поднялась бы до 100 % (потому что любые различия можно было бы объяснить только генами). Если смотреть на дело таким образом, то высокая наследственность учебной успеваемости – это не вера правых, а скорее, цель левых. Но попробуйте объяснить это газетному колумнисту с его дедлайнами или политику с его самоуверенностью. Ирония в том, что главной целью доклада Каммингса было доказать, что британская система образования производит беспомощную политическую элиту и столь же беспомощное общественное мнение, не замечающее подобных «технических» тонкостей. Критики Каммингса просто подтвердили его правоту.

Таким образом, порочная идея «природа vs. воспитание» заставляет умных, казалось бы, людей путать эгалитаризм с фашизмом, заблуждаться относительно последствий их собственной политики и приходить к необоснованным убеждениям касательно образования наших детей. Единственная форма эволюционной манипуляции, которая в таких обстоятельствах имеет смысл, – это согласованные усилия с целью устранить устаревшую и неправильную идею из нашего обихода.

Внимание! Это не конец книги.

Если начало книги вам понравилось, то полную версию можно приобрести у нашего партнёра - распространителя легального контента. Поддержите автора!

Страницы книги >> Предыдущая | 1 2 3 4 5 6 7 8 9 10 11 12 13
  • 0 Оценок: 0

Правообладателям!

Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.

Читателям!

Оплатили, но не знаете что делать дальше?


Популярные книги за неделю


Рекомендации