Электронная библиотека » Сергей Нечаев » » онлайн чтение - страница 2


  • Текст добавлен: 26 мая 2022, 15:09


Автор книги: Сергей Нечаев


Жанр: Прочая образовательная литература, Наука и Образование


Возрастные ограничения: +12

сообщить о неприемлемом содержимом

Текущая страница: 2 (всего у книги 11 страниц) [доступный отрывок для чтения: 3 страниц]

Шрифт:
- 100% +

«Этот геометр, собрав солнечные лучи на зеркале, с помощью этих лучей, собранных и отраженных затем толщиной и гладкостью зеркала, воспламенил воздух и разжег большое пламя, которое он затем направил на корабли, входившие в сферу его действия. Корабли были все обращены в пепел».

В своей «Истории» другой византиец конца XII века Цеци уточняет: Архимед действовал «шестиугольным зеркалом, составленным из небольших четырехугольных зеркал, которые можно было двигать при помощи шарниров и металлических планок».

Долгое время этому оставалось только верить. Но вот в XVII веке немецкий астроном Иоганн Кеплер (1571–1630) и французский математик Рене Декарт (1596–1650) обосновали невозможность создания таких фантастических зеркал.

С другой стороны, в 1747 году знаменитый французский естествоиспытатель Жорж-Луи де Бюффон (1707–1788) в своем труде «Изобретение зеркал для воспламенения предметов на больших расстояниях» сообщил, что произвел опыты и соорудил составное зеркало, которое подожгло дерево на расстоянии 50 метров. Этими опытами он подтвердил тот факт, что Архимед вполне мог создать грозное орудие – мощный гелиоконцентратор или «солнечный лазер». К сожалению, это могло быть лишь теоретически, ибо во времена Архимеда еще не существовало зеркал такого качества, с которыми проводились опыты де Бюффона.

После этого некоторые итальянские историки высказали предположение, что зеркала Архимеда существовали, но были предназначены не для поджога, а для наведения на цель. Они якобы били в глаза римлянам отраженным солнечным светом и «скрывали» от них полет зажигающих стрел сиракузцев.

Естественно, это всего лишь предположение, и стопроцентно доказать ничего невозможно. Впрочем, и того, что реально дошло до нас, совершенно достаточно, чтобы обессмертить память об Архимеде.

Недаром древнеримский политик и философ Марк Туллий Цицерон, величайший из ораторов древности, дал Архимеду следующую оценку:

«Этот сицилиец обладал гением, которого, казалось бы, человеческая природа не может достигнуть».

Ньютоново яблоко

Исаак Ньютон (1643–1727), знаменитый английский математик, астроном и физик, а также известный алхимик и толкователь библейских пророчеств, родился в деревушке Вульсторп в Линкольншире. Он появился на свет поразительно хилым, и окружающие были уверены, что младенец не выживет. Однако Ньютон не только выжил, но и дожил до глубокой старости.

Исаак Ньютон


Семья Ньютонов была небогата, но Исаак ходил в начальную школу, а потом в общественную школу в Грантэме и в Тринити-колледж. В 1665 году он получил степень бакалавра изящных искусств (словесных наук) в Кембридже, одном из лучших университетов Европы.

В Кембридже наставником Ньютона стал профессор Исаак Барроу (1630–1677), знаменитый богослов, физик и математик, автор известного интегрального соотношения, называемого теперь теоремой анализа или формулой Ньютона-Лейбница (кстати сказать, сам Ньютон никогда не оспаривал приоритет Барроу в открытии этой формулы).

Первые научные опыты Ньютона были связаны с исследованиями света. Он, например, доказал, что при помощи призмы белый цвет можно разложить на составляющие его цвета. Кроме того, изучая преломление света в тонких линзах, Ньютон наблюдал интерференционную картину в виде концентрических колец, получившую впоследствии название «кольца Ньютона».

А в 1666 году в Кембридже разразилась эпидемия чумы, и Ньютон удалился в родную деревню Вульсторп. Там, не имея под рукой ни книг, ни приборов, он стал жить отшельником, предаваясь глубоким философским размышлениям, плодом которых стало гениальнейшее из его открытий – учение о всемирном тяготении.


Строго говоря, мысль о том, что тела падают на землю не просто так, а вследствие притяжения их земным шаром, была далеко не нова: это знали еще древние ученые, например, ученик Сократа и учитель Аристотеля Платон. Но как измерить силу этого притяжения? Везде ли на земном шаре оно одинаково и как далеко оно простирается? Эти вопросы до Ньютона смущали ученых и философов.

В частности, немецкий астроном Иоганн Кеплер, открывший законы движения планет (законы Кеплера), в 1619 году издал свою знаменитую «Гармонию мироздания», в которой практически подошел к закону о всемирном тяготении, но все-таки не открыл его. Он приписал движения планет некоторому взаимному притяжению, но предположил, что оно обратно пропорционально не квадратам расстояний, а самим расстояниям. Считается, что законы планетной кинематики, открытые Кеплером, послужили Ньютону основой для создания учения о всемирном тяготении. Более того, Ньютон математически доказал, что все законы Кеплера являются следствиями закона всемирного тяготения.

Иоганн Кеплер


Много лет спустя Ньютон написал, что математическую формулу, выражающую закон всемирного тяготения, он вывел из изучения законов Кеплера. Приняв за основу гипотезу о движении планет вокруг Солнца, Ньютон стал ее проверять, провел множество математических вычислений и, таким образом, превратил гипотезу в грандиознейшую по своему значению систему мироздания.

Непосредственным предшественником Ньютона в рассматриваемой области был его соотечественник Уильям Гилберт (1540–1603). Он тоже учился в Кембридже, а затем в Оксфорде. В 20 лет он получил степень бакалавра, в 24 года – магистра, а в 29 лет – доктора медицины, а потом и философии. Широта его интересов простиралась от химии до астрономии.

Особенно Гилберта интересовали магниты, и именно он сделал гениальное предположение (до Гилберта об этом никто даже не подозревал) о том, что вся Земля – гигантский магнит, а полюсы земного шара – полюсы магнита.

В 1600 году в Лондоне вышел фундаментальный труд Гилберта «О магните, магнитных телах и о большом магните – Земле». В другом сочинении ученого, напечатанном уже после его смерти, было сказано, что Земля и Луна влияют друг на друга как два магнита, и притом пропорционально своим массам.

Открытие закона всемирного тяготения связано сегодня с распространенным преданием: якобы однажды летним днем Ньютон сидел в своем саду, и его размышления были прерваны падением яблока. Это яблоко и привело Ньютона к вопросу: везде ли на земном шаре падение тел происходит одинаково и с одинаковой скоростью?

Родственник Ньютона (муж его племянницы) Джон Кондуитт пишет об этом так:

«В то время как он размышлял в саду, ему в голову пришло, что сила тяжести (которая заставляет яблоко падать на землю) не ограничена определенным расстоянием от Земли, а что сила должна распространяться гораздо дальше, чем обычно думают. Почему бы не до Луны? – сказал он себе, и если так, это должно влиять на ее движение и, возможно, удерживать ее на орбите. Вследствие чего он решил вычислить, каков мог бы быть эффект такого предположения; но поскольку у него не было тогда книг, он использовал общеупотребительное суждение, распространенное среди географов и наших моряков до того, как Норвуд[3]3
  Ричард Норвуд (1590–1675) – британский математик; измерил сегмент меридиана между Лондоном и Йорком.


[Закрыть]
измерил Землю, и заключающееся в том, что в одном градусе широты на поверхности Земли содержится 60 английских миль. Расчет не совпал с его теорией и заставил его довольствоваться предположением, что наряду с силой тяжести должна быть еще примесь той силы, которой была бы подвержена Луна, если бы она переносилась в своем движении вихрем».

Ньютон и знаменитое яблоко


Приоритет открытия закона всемирного тяготения долгое время оспаривал Роберт Гук (1635–1703) – соотечественник и современник Ньютона.

Имя Роберта Гука, ученого XVII века, сегодня мало известно, хотя он за свою жизнь сделал около 500 научных и технических открытий. Эти открытия составляют основу многих отраслей современной науки, но по разным причинам они приписываются совершенно другим людям. Скорее всего, это было связано с особенностями характера и чрезвычайно широким кругом интересов Гука, что не давало ему доводить свои открытия до логического завершения.

В 1658 году, например, Роберт Гук изобрел и построил воздушный насос, экспериментируя с которым, открыл знаменитый закон газового состояния: pV = const, где р – давление газа, а V – объем газа. Сообщение об этом законе с указанием имени автора впервые опубликовал в 1660 году британский физик и химик Роберт Бойль (1627–1691), у которого Роберт Гук работал ассистентом. Сегодня этот закон, вошедший во все школьные и университетские курсы физики, называется законом Бойля или законом Бойля-Мариотта.

Роберт Гук был прирожденным экспериментатором. Например, он изобрел основные метеорологические приборы, установил зависимость барометрического давления от состояния погоды, впервые оценил высоту атмосферы. Он же придумал измерять силу тяжести посредством качания маятника и сообщил в «Королевском обществе» о том, что сила, удерживающая планеты в их орбитах, должна быть подобна той, которая производит круговое движение маятника.

В марте 1666 года Гук прочитал на заседании лондонского «Королевского общества», созданного королем Карлом II (фактически, это была британская Академия наук), отчет о своих опытах над изменением силы тяжести в зависимости от расстояния падающего тела относительно центра Земли.

Роберт Гук


Первое столкновение Гука с Ньютоном произошло в 1673 году по поводу природы света, которую Ньютон считал корпускулярной (свет – это поток частиц, или по-латински «корпускул»), а Гук – волновой (свет – это волны в эфире). Кстати сказать, эти две теории попеременно брали верх, но в конце концов, когда придумали квантовую механику, обнаружили, что они обе отчасти правильные. Свет состоит из квантов (фотонов), а квантам свойственен корпускулярно-волновой дуализм, то есть они в разных ситуациях могут вести себя либо как волны, либо как частицы.

В конце 1679 года, когда Роберт Гук стал секретарем «Королевского общества», между ним и Ньютоном произошел обмен письмами, в которых Гук изложил свою гипотезу закона тяготения. Он считал, что сила притяжения между двумя телами, в соответствии с законами Кеплера, должна быть обратно пропорциональна квадрату расстояния между ними. Однако Ньютон переписку с Гуком оборвал и дискутировать с ним отказался. С этого момента и началась вошедшая в историю полемика между этими двумя учеными. Нужно отметить, что в конце концов Ньютон признал, что идея об обратной пропорциональности силы притяжения квадрату расстояния принадлежит, помимо него самого, также астроному Эдмонду Галлею (1656–1742) и Роберту Гуку.

Если рассматривать формулировку основных принципов, необходимых для решения какой-либо проблемы, достаточной для суждения о приоритете, то право на него, несомненно, имеет Роберт Гук. Но если рассматривать эту формулировку без сопровождающего ее математического доказательства недостаточной, то прав Ньютон.

И все же нельзя не признать, что именно Роберт Гук подсказал Ньютону основные идеи закона всемирного тяготения, который имеет следующую формулировку: между любыми двумя материальными частицами действует сила притяжения (направленная вдоль прямой, соединяющей частицы), величина которой пропорциональна массе каждой из частиц и обратно пропорциональная квадрату расстояния между ними.

Известный русский просветитель Ф. Ф. Павленков (кстати, основатель знаменитой книжной серии «Жизнь замечательных людей») называл Гука «самым опасным противником Ньютона» и считал, что по своему таланту он «если и не равнялся Ньютону, то, во всяком случае, стоял в ряду первоклассных светил тогдашней науки».

А, скажем, такой признанный авторитет, как академик С. И. Вавилов, в своей превосходной биографии Ньютона констатирует: «Написать “Начала натуральной философии” в XVII веке никто, кроме Ньютона, не мог, но нельзя оспаривать, что план “Начал” был впервые набросан Гуком».

На 1665–1667 годы пришелся пик творческой активности Ньютона. Он одновременно с Готфридом-Вильгельмом Лейбницем (1646–1716) и независимо от него разработал важнейшие разделы математики (дифференциальное и интегральное исчисления), начал эксперименты по оптике.

В 1669 году Ньютон принял руководство кафедрой математики, оставленной ему профессором Барроу. Он читал лекции, в которых излагал свои главные открытия относительно анализа световых лучей; но ни одна из его научных работ еще не была опубликована.

Готфрид-Вильгельм Лейбниц


Известность он приобрел в 1673 году, построив и собственноручно изготовив первую модель телескопа-рефлектора, за что и был тогда же избран членом «Королевского общества».

После этого Ньютон вдруг на время бросил науку и занялся алхимией, которую к науке не причисляли (настоящей химии тогда еще не было). А еще страстью Ньютона стала Библия и стремление разработать систему толкования ее пророчеств, которая бы позволила предсказывать будущее человечества. Более того, если верить письмам самого Ньютона, именно расшифровку библейских пророчеств он и стал считать главным делом своей жизни. Отметим, что результаты этих исследований изложены в его объемном труде «Обозрение пророчеств Даниила и Апокалипсиса Святого Иоанна», изданном в Лондоне в 1733 году. В этой книге, помимо всего прочего, Ньютон уделяет большое внимание срокам, когда должен будет настать «конец времен» (по его логике, все должно произойти в промежуток с 2015 по 2060 год).

В 1682 году Ньютон использовал данные, полученные французским астрономом Жаном-Феликсом Пикаром (1620–1682), который первым точно определил дугу меридиана. Зная длину меридиана, Ньютон вычислил диаметр земного шара и тут же ввел новую информацию в свои вычисления. Тем самым он математически доказал, что Земля не совсем круглая, а представляет собой шар, расширенный у экватора и сплюснутый у полюсов (согласно теории Ньютона, центробежная сила вращения Земли должна приводить к появлению небольшого сжатия у полюсов и выпуклости у экватора). Кроме того, он доказал зависимость приливов и отливов от действия Луны и Солнца.

А еще Ньютон расчетным путем подтвердил один из законов Кеплера, гласящий, что центры планет описывают эллипсы и что в фокусе их орбит находится центр Солнца. После этого все сложнейшие движения планет стали для Ньютона вполне ясными, и появилась возможность научного предсказания передвижений всех тел Солнечной системы.

Это была поистине новая картина мира, согласно которой все планеты, находящиеся друг от друга на огромных расстояниях, оказываются связанными в одну систему. А дальнейшие исследования позволили Ньютону определить массу и плотность планет и Солнца.

В частности, он установил, что наиболее близкие к Солнцу планеты отличаются наибольшей плотностью.

В 1701 году Ньютон был избран членом Парламента, а в 1703 году он стал президентом «Королевского общества». На этом посту Ньютон оставался до конца жизни. В 1705 году королева Англии возвела его в дворянское достоинство, пожаловав звание лорда.

Умер Исаак Ньютон 31 марта 1727 года, и в день его похорон в стране был объявлен национальный траур. Прах Ньютона покоится в Вестминстерском аббатстве, рядом с самыми выдающимися людьми Англии, а надпись на его памятнике гласит:

«Здесь покоится сэр Исаак Ньютон, дворянин, который божественным разумом первый доказал с факелом математики движения планет, пути комет и приливы океанов. Он исследовал различие световых лучей и появляющиеся при этом различные свойства цветов, чего ранее никто не подозревал. Прилежный, мудрый и верный истолкователь природы, древности и Святого Писания, он утверждал своей философией величие всемогущего Бога, а нравом выражал евангельскую простоту. Пусть смертные радуются, что существовало такое украшение рода человеческого».

Взрывчатка Лавуазье и Бертолле

Трудно найти других столь же близких по духу и столь же разных по характеру людей, чем Антуан-Лоран де Лавуазье (1743–1794) и Клод-Луи Бертолле (1748–1822). В любом современном учебнике или справочнике о них написано буквально одними и теми же словами – «великий французский ученый», «основатель современной химии», «член Академии наук» и т. д. Но эти два современника, два научных единомышленника, два друга, наконец, были совершенно разными людьми, и потому им выпала настолько разная судьба.

Антуан-Лоран де Лавуазье


Антуан-Лоран де Лавуазье родился в одной из богатейших семей Франции. Его отец был королевским адвокатом и хотел, чтобы сын тоже стал юристом и по окончании коллежа Мазарини поступил на юридический факультет Парижского университета. Юноша так и сделал, но одновременно с этим, без всякой видимой необходимости стал весьма серьезно изучать естественные науки.

В 1767 году Лавуазье вместе с известным минералогом и другом семьи Жаном-Этьеном Геттаром (1715–1786) совершил геологическую экспедицию по нескольким горным районам Франции, собрал и изучил образцы пород и даже отметился тем, что составил первую геологическую карту Франции.

В 1768 году в жизни Лавуазье произошли два важных события: во-первых, он был избран в члены Парижской академии наук, во-вторых, вступил в Генеральный откуп – компанию очень богатых и влиятельных финансистов, арендовавшую у правительства право взимания всевозможных налогов, а также право монопольной торговли вином, солью и табаком. Входя в откуп, он внес в качестве вступительного взноса весь свой личный капитал. Это место приносило огромные доходы, но большую их часть ученый тратил на научные эксперименты. Так, например, только опыты по определению состава воды стоили ему около 50 ООО ливров.

Лавуазье занялся делами откупа со свойственной ему методичностью, в деталях изучив табачное и соляное дело, законы торговли и финансов. И в этом деле, как и во всем остальном, проявился его неутомимый характер. Вскоре, по предложению генерального контролера (министра) финансов Франсуа де Лаверди, он был введен в состав административного комитета, руководившего всеми делами откупа.

После этого Лавуазье добился от правительства осуществления серьезного проекта – окружения всего Парижа решетчатой оградой для борьбы с теми, кто уклонялся от уплаты ввозных пошлин. Ни одно мероприятие Генерального откупа не вызывало такого всеобщего негодования и возмущения: ведь после постройки ограды резко выросли цены на рынках, а имя Лавуазье стало ненавистным для парижан. К сожалению, эти люди в большинстве своем даже и не подозревали, что «проклятый откупщик» Лавуазье был прежде всего гениальным ученым, величайшим химиком своей эпохи.

Когда 25-летний Лавуазье был избран в Парижскую академию наук, он почти не имел научных заслуг. Скорее всего в число академиков он попал благодаря влиятельным знакомым, а главное – прекрасным рекомендациям известных ученых, сумевших оценить трудолюбие и талант молодого исследователя.

До Великой французской революции Парижская академия наук состояла из двенадцати почетных членов, выбираемых из знати и пользовавшихся исключительным правом занимать посты президента и вице-президента Академии, а также восемнадцати «пенсионеров» (то есть действительных членов, получавших за свое звание «пенсию» – денежное вознаграждение). Правом решающего голоса пользовались только почетные члены и «пенсионеры». Кроме них в Академии наук имелись кооптированные (то есть введенные дополнительно) члены, члены-корреспонденты и адъюнкты, напоминавшие наших теперешних аспирантов-докторантов. Места в Академии освобождались лишь в случае смерти кого-либо из академиков. (Собственно, поэтому академиков в шутку называли «бессмертными».)

За избрание Лавуазье в адъюнкты Академии по химии хлопотали друзья его отца – академики Анри-Луи Дюамель де Монсо (1700–1781) и Этьен Миньо де Монтиньи (1714–1782). Именно по их рекомендации для Лавуазье король утвердил в Академии дополнительное место.

Но Лавуазье очень быстро оправдал выданные ему авансы. Уже на следующий год после избрания в Академию он провел блестящее гидрохимическое исследование «О природе воды». Самое главное в этой работе – метод. Лавуазье раз и навсегда отказался от принятых до того общих рассуждений и провозгласил точное взвешивание основой любого исследования. Поэтому дату опубликования этой работы – 1769 год – можно смело считать началом современной химии (недаром на памятнике Лавуазье в Париже ученый изображен с весами в руках).

В 1771 году в возрасте 28 лет Лавуазье женился на Марии Польз, дочери Генерального откупщика Франции Жака Польза, ведавшего всеми табачными фабриками страны. Брак этот был заключен по расчету, однако он, как ни странно, оказался счастливым, хотя и бездетным. Лавуазье получил за дочерью Польза 80 000 ливров приданого – сумму небольшую по сравнению с его собственным капиталом.

Мария была молода, умна, красива и прекрасно образована. До самой смерти Лавуазье она была ему идеальной женой и образцовой хозяйкой дома, умевшей достойно принять и очаровать остроумной беседой лучших людей Франции и всей Европы.

Однако жена Лавуазье была не только светской дамой, но и неутомимой труженицей. В течение двадцати лет она проработала в лаборатории бок о бок со своим выдающимся мужем. Многие ценнейшие для науки записи в рабочих дневниках Лавуазье сделаны ее рукой. К тому же, она была прекрасной рисовальщицей и собственноручно иллюстрировала многие сочинения Лавуазье.

В частности, многие чертежи сложнейших приборов, которые использовались в экспериментах ее мужа, выполнены Марией Лавуазье.

Лавуазье и его жена


После смерти отца 30-летний ученый оказался на вершине общественной лестницы в королевской Франции. В это же время он стал быстро продвигаться и в академической карьере: в 1778 году – «академик-пенсионер», а в 1785 году был назначен директором Академии наук. По поручению правительства и Академии Лавуазье принимал участие в работе многочисленных комиссий и комитетов: в 1783 году он был членом комиссии по усовершенствованию тюрем, в том же году принял участие в комиссии по животному магнетизму, а в 1786 году – в комиссии по улучшению аэростатов и т. д.

Лавуазье в своей лаборатории


В 1778 году Лавуазье купил себе имение (а в дальнейшем еще несколько имений), заявив своим коллегам, что «можно оказать большую услугу местным землевладельцам, давая им пример культуры, основанной на лучших принципах». По-видимому, хозяйство в этих имениях ему удалось организовать достаточно хорошо, так как в 1785 году Лавуазье занял должность секретаря комитета земледелия и принял непосредственное участие в организации образцовых мастерских для производства тканей из льна и пеньки.

Для химии революционное значение имели работы Лавуазье, посвященные изучению горения. Сегодня каждому известно, что горение – это «физико-химический процесс превращения компонентов горючей смеси в продукты сгорания», что это реакция бурно идущего окисления, присоединения кислорода. Но эта истина стала азбучной лишь благодаря открытиям Лавуазье. Когда же он только начинал свои исследования, ни об окислении, ни об окислах, ни даже о кислороде вообще ничего не было известно[4]4
  Строго говоря, кислород открыл в 1774 году британский естествоиспытатель Джозеф Пристли (1733–1804). Однако он не понял, что открыл новое простое вещество. Он считал, что выделил одну из составных частей воздуха, и назвал этот газ «дефлогистированным воздухом». Лавуазье же, сжигая в нем различные тела, ясно увидел, что это и есть тот самый газ, который соединяется при горении с горящими телами. Поэтому Лавуазье и назвал сначала этот газ «огненным воздухом», а когда увидел, что он входит в состав почти всех кислот, – кислородом.


[Закрыть]
.

В химии господствовала теория флогистона, созданная столетием ранее немецким врачом и химиком Георгом-Эрнстом Шталем (1659–1734), который полагал, что все горючие вещества состоят из «земли», или «известки» (сейчас ближе всего к этим понятиям подходят окислы), и из некоей легкой материи – флогистона. Как утверждал Шталь, при горении вещество разлагается на «землю» и флогистон. Уголь, например, содержит много флогистона и потому сгорает почти без остатка – весь флогистон улетучивается. Теория флогистона хорошо объясняла горение угля, серы и тому подобных веществ. Продукты их сгорания газообразные, а взвешивать газ тогда никому не приходило в голову.

Труднее обстояло дело с нелетучими продуктами окисления. Было известно, что при обжиге металлов их вес увеличивается, хотя по теории должно было быть наоборот: ведь флогистон-то при обжиге улетучивается. Но и тут сторонники Шталя не растерялись и выдвинули предположение, что флогистон обладает отрицательным весом, и при его удалении тело становится тяжелее.

Сейчас теория флогистона кажется карточным домиком, который легко рассыпать одним движением мизинца, однако в те времена она была неприступной крепостью, не имевшей ни одного уязвимого места. Лавуазье начал штурм этой крепости в 1772 году, и начал он с изучения процессов окисления фосфора и серы. Двумя годами позднее он опубликовал работу «Об обжиге олова в закрытых сосудах». Трудно поверить, что работа со столь неприметным названием имела историческое значение, но именно в ней впервые был приведен количественный состав атмосферы и дано четкое и однозначное объяснение роли кислорода при окислении и горении. В эти же годы Лавуазье дал истолкование процессу дыхания как разновидности окисления.

Лавуазье производит химический опыт


В 1777 году появилась статья «О горении вообще», и, наконец, в 1783 году – «Размышления о флогистоне».

Более десяти лет Лавуазье «раскачивал» казавшуюся незыблемой теорию, прежде чем одержал уничтожающую победу. Он доказал, что горение не есть разложение, а представляет собой процесс взаимодействия веществ с кислородом. Термины же типа «соединение известки с флогистоном» и «испорченный дефлогистированный воздух» благодаря ему канули в Лету. Химия приобрела, наконец, стройную и ясную систему: существуют элементы, у элементов есть окислы (соединения с кислородом), окислам соответствуют кислоты, основания, соли…

Эти новые, вполне современные взгляды Лавуазье изложил в «Начальном курсе химии», который подвел итог его великим открытиям и послужил отличной школой для химиков последующих поколений. Но эта новая теория была слишком революционна, и даже такой крупный ученый, как Клод-Луи Бертолле, признал ее лишь через десять лет. Вслед за ним в лагерь Лавуазье перешло еще несколько известных химиков, и среди них Антуан-Франсуа Фуркруа (1755–1809) и Луи-Бернар Гитон де Морво (1737–1816). Большинство же ученых того времени до самой своей смерти остались сторонниками теории флогистона. А в Германии, например, последователи Шталя, руководствуясь исключительно «патриотическими» соображениями (случай, к сожалению, нередкий), даже публично сожгли портрет Лавуазье.

Лавуазье выполнил в области химии и физики множество фундаментальных работ, которые просто трудно перечислить. Он, в частности, разложил водяной пар на водород и кислород и снова синтезировал из них воду. Он ввел понятие теплотворной способности топлива и теплоемкости тел. Вместе с астрономом, математиком и физиком Пьером-Симоном Лапласом (1749–1827) он изобрел калориметр (прибор для измерения количества теплоты, выделяющейся или поглощающейся при различных физических, химических, биологических или промышленных процессах) и т. д. и т. п.

В 1785 году Лавуазье возглавил Академию наук, которая под его руководством быстро превратилась в авторитетнейшее и влиятельнейшее научное учреждение Франции.

Значение работ Лавуазье для развития взрывчатых веществ заключается, прежде всего, в разработке теории горения: ведь не зная, что такое горение, невозможно понять сущность взрыва. Практическая деятельность великого ученого также оказала огромное влияние на мировое пороховое производство.

Отметим, что, помимо Генерального откупа, во Франции существовал еще особый Пороховой откуп. Пороховые откупщики усердно занимались своим обогащением, но плохо снабжали страну порохом. В мае 1775 года по предложению Лавуазье Пороховой откуп был упразднен, и пороховое дело передали в руки государства. Лавуазье был назначен одним из руководителей вновь созданного Управления порохов и селитр. Это управление, существующее, кстати сказать, и поныне, в течение двух веков своей деятельности сыграло важную роль в организации производства взрывчатых веществ.

Лавуазье демонстрирует коллеге свои опыты


Взяв пороховое дело в свои руки, Лавуазье использовал для его реорганизации весь свой талант химика, инженера и финансиста. Глава Академии, председатель многочисленных комитетов и комиссий, могущественный откупщик, он, тем не менее, считал отныне пороховое дело главной своей обязанностью. С 1775 года Лавуазье даже поселился в здании Арсенала – официальной резиденции Управления порохов и селитр. Он не только устроил там себе квартиру, но и оборудовал прекрасную личную лабораторию, в которой выполнил основные исследования. Эта лаборатория стала фактически научным центром Парижа, в ней он проводил демонстрации опытов, на которые приглашал не только химиков, но и простых людей, пробуждая у широких народных масс интерес к науке. Его рабочий день продолжался с шести утра до десяти вечера.

Под энергичным руководством Лавуазье производство пороха во Франции быстро увеличилось вдвое и, что самое главное, резко возросло его качество. Страна стала обладать лучшим в мире порохом, и враги Франции очень скоро получили возможность убедиться в этом. Например, в войне Соединенных Штатов с Англией за независимость, в которой Франция приняла участие на стороне американцев, артиллерия союзников оказалась недосягаемой для англичан.

Благодаря Лавуазье Франция теперь не покупала, а продавала порох – главным образом в Соединенные Штаты. Первый посол США во Франции, знаменитый ученый, «покоритель молнии» Бенджамин Франклин (1706–1790) стал близким другом Лавуазье, и эта дружба оказалась очень полезной для молодой страны, боровшейся за свою независимость. Лавуазье не только снабжал Соединенные Штаты порохом, но и направлял туда опытных специалистов, обучавших американцев тайнам его изготовления. Специально для США он написал руководство «Искусство производства селитры». В Америку эмигрировали ученики Лавуазье, братья Дюпон де Немур, основавшие там компанию по производству взрывчатых веществ. Одноименная фирма ныне – один из крупнейших химических концернов мира.


Клод-Луи Бертолле не был уроженцем Франции (его предки эмигрировали оттуда во время религиозных войн), однако мало кто сделал для ее величия столько же, сколько этот выдающийся ученый. Он вошел в историю как создатель теорий химического равновесия и химического сродства (сродство – это способность каждого простого тела соединяться с другими элементами и образовывать с ними сложные тела), первооткрыватель многочисленных соединений, организатор науки и промышленности Франции.

Бертолле родился пятью годами позднее Лавуазье (9 декабря 1748 года) близ местечка Аннеси, принадлежавшего тогда Швейцарии, а образование завершил в Италии. Окончив в 1768 году Туринский университет и получив степень доктора наук, Бертолле четыре года работал в аптеках Пьемонта. В 1772 году он покинул Италию и переселился в Париж, где занял должность лейб-медика при дворе герцога Орлеанского. Молодой врач был не слишком обременен своими обязанностями и с увлечением отдался изучению естественных наук и исследованиям в области химии. Последние быстро принесли ему славу. В 1780 году он уже получил кресло в Академии наук.


Страницы книги >> Предыдущая | 1 2 3 | Следующая
  • 0 Оценок: 0

Правообладателям!

Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.

Читателям!

Оплатили, но не знаете что делать дальше?


Популярные книги за неделю


Рекомендации