Текст книги "Основы общей психологии"
Автор книги: Сергей Рубинштейн
Жанр: Общая психология, Книги по психологии
Возрастные ограничения: +16
сообщить о неприемлемом содержимом
Текущая страница: 30 (всего у книги 92 страниц) [доступный отрывок для чтения: 30 страниц]
Однако пассивный и активный абсолютный слух лишь в крайне редких случаях даны в таком противопоставлении. В реальной жизни в большинстве случаев между ними нет разрыва. Б. М. Теплов поэтому предлагает смягчить антитезу В. Келера и считает характерным для представителей пассивного типа не то, что он опирается только на тембровые критерии, а то, что эти последние играют у него заметно бо́льшую роль, чем у представителей активного типа. Активный абсолютный слух, таким образом, является по отношению к пассивному абсолютному слуху не столько другим видом, сколько высшей ступенью. Абсолютный слух является, по-видимому, в значительной мере прирожденной способностью. Для лиц с абсолютным слухом звуки представляются как бы определенными индивидуальностями. (См. в романе Ромена Роллана «Жан-Кристоф» описание первого знакомства Кристофа с роялем.)
Абсолютный слух считался многими педагогами высшей музыкальной способностью. Более глубокий анализ показал, однако, ошибочность этой точки зрения. С одной стороны, абсолютный слух не является необходимым признаком музыкальности: многие гениальные музыканты (П. И. Чайковский, Р. Шуман и др.) им не обладали. С другой стороны, обладание самым блестящим абсолютным слухом не является гарантией будущих музыкальных успехов. С. М. Майкапар описывает в своей книге «Музыкальный слух» одного учащегося с феноменальным абсолютным слухом, очень плохо подвигавшегося вперед. В. Келер также описывает студентов консерватории с прекрасным абсолютным слухом, очень мало, в сущности, развитых музыкально. Таким образом, не следует преувеличивать значение абсолютного слуха. Вместе с тем следует отметить, что узнавать высоту звука с известной степенью точности может каждый человек. Путем специальных упражнений можно степень этой точности сильно увеличить (В. Келер, Е. А. Мальцева). Но психологическая природа и характер этого узнавания (которое Б. М. Теплов предложил называть «псевдоабсолютным слухом») остаются качественно отличными от того, которое наблюдается у людей с абсолютным слухом, поскольку при отсутствии абсолютного слуха высота узнается либо по тембровому признаку, либо косвенно с помощью относительного слуха. Это узнавание требует поэтому некоторого времени, в течение которого мысленно совершается ряд операций, между тем как люди с абсолютным слухом узнают звук сразу.
Человеку с относительным слухом требуется какая-то отправная точка – данный в начале испытания тон. Отправляясь от него, соотнося его высоту с высотой последующих звуков, он оценивает отношения между звуками. Относительный слух в очень значительной мере поддается развитию, и обладание им несравненно важнее наличия абсолютного слуха.
Основой относительного слуха является, по-видимому, так называемое ладовое чувство. При восприятии мелодии или гармонических комплексов мы слышим их в определенном ладу. Звуки мелодико-гармонических последовательностей обнаруживают известные функциональные соотношения. Ладовое чувство и заключается в восприятии одних звуков как опорных, устойчивых, других – как неустойчивых, куда-то стремящихся.
Для ладового чувства характерно, что оно упорядочивает восприятие мелодии чувством объединяющего лада; при отсутствии такого объединяющего чувства получается эстетически неприятное впечатление неоформленности и непонятности; при этом впечатление законченности мелодии зависит не только от качества последнего звука как такового, но и от того пути, которым приходят к этому звуку от общей структуры мелодии.
Следующей линией дифференцировки слуха является различение мелодического и гармонического слуха. Ряд экспериментальных исследований (С. Н. Беляева-Экземплярская, М. Антошина и др.) показал в полном согласии с педагогической практикой, что гармонический слух развивается позднее мелодического. Маленькие дети и даже взрослые с совершенно не развитым гармоническим слухом бывают безразличны к фальшивой гармонизации; порой она даже нравится им больше правильного сопровождения. Как показали опыты Б. М. Теплова, это объясняется тем, что на самых начальных ступенях развития гармонического слуха мелодия легче может быть выделена слухом из фальшивого сопровождения, чем из правильного, образующего много консонирующих созвучий.
Далее различают внешний и внутренний слух. Кроме способности воспринимать предлагаемую для слушания музыку (внешний слух), можно обладать способностью представлять музыку мысленно, в слуховых представлениях, не получая извне никаких реальных звуковых впечатлений (внутренний слух). Внутренний слух может функционировать или как способность представлять только звуковысотную и ритмическую ткань музыкального произведения, или как способность внутренне слышать музыкальные произведения в конкретных тембрах и с определенной динамикой звучания. Внутренний слух, по-видимому, отличается от внешнего не только отсутствием внешнего звука, но и по своей структуре, аналогично тому как внутренняя речь отличается от внешней.
В развитии внутреннего слуха, имеющего очень большое значение для общего музыкального развития, можно наметить ряд ступеней. Сначала внутренние слуховые представления отрывочны, смутны и схематичны. Они должны находить опору во внешнем слухе. Припоминая пути собственного роста, проф. С. М. Майкапар пишет по этому поводу: «Первые (написанные без инструмента) хоры представлялись воображению в виде отвлеченной четырехголосной гармонии, и только в последующих работах, чем дальше, тем больше, внутреннему слуху стали слышаться действительные, реальные человеческие голоса, каждый в своей характерной хоровой индивидуальности и все вместе в общей хоровой звучности. Таким образом, мы можем предположить, что работа внутреннего слуха идет при своем развитии от отвлеченного к воплощенному представлению и что чем более развит в известном направлении внутренний слух у данного лица, тем реальнее и жизненнее его звуковые и внутренние представления»[75]75
Майкапар С. М. Музыкальный слух. Его значение, природа, особенности и метод правильного развития. М., 1900. С. 214–215.
[Закрыть].
В итоге: музыкальный слух – явление весьма сложное. Создаваясь в историческом процессе развития человеческого общества, он представляет собой весьма своеобразную психическую способность, резко отличную от простого биологического факта слышания у животных. На самой низшей ступени развития восприятие музыки было весьма примитивным. Оно сводилось к переживанию ритма в примитивных плясках и пении. В процессе своего развития человек научается далее ценить звук натянутой струны. Возникает и совершенствуется мелодический слух. Еще позднее возникает многоголосная музыка, а вместе с нею и гармонический слух. Таким образом, музыкальный слух представляет собой целостное, осмысленное и обобщенное восприятие, неразрывно связанное со всем развитием музыкальной культуры.
Роль зрительных ощущений в познании мира особенно велика. Они доставляют человеку исключительно богатые и тонко дифференцированные данные, притом огромного диапазона. Зрение дает нам наиболее совершенное, подлинное восприятие предметов. Зрительные ощущения наиболее отдифференцированы от аффективности, в них особенно силен момент чувственного созерцания. Зрительные восприятия – наиболее «опредмеченные», объективированные восприятия человека. Именно поэтому они имеют очень большое значение для познания и для практического действия.
Зрительные ощущения вызываются воздействием на глаз света, т. е., по воззрениям современной физики, электромагнитных волн, длиною от 390 до 780 нанометров (нм; нанометр – одна миллиардная доля метра).
Световые волны различаются, во-первых, длиною волны, или числом колебаний в секунду. Чем число колебаний больше, тем длина волны меньше, и, наоборот, чем меньше число колебаний, тем больше длина волны.
Если солнечный луч пропустить через призму, то он преломится на составляющие лучи, имеющие различную длину волны, и даст на экране, поставленном за призмой, спектр. В спектре различают семь цветов: красный, оранжевый, желтый, зеленый, голубой, синий и фиолетовый.
Наиболее длинные волны, с наименьшим числом колебаний в секунду, дает красный цвет; наиболее короткие, с наибольшим числом колебаний, – фиолетовый цвет. Различные волны промежуточной длины дают ощущения различных цветов, а именно:
Таким образом, длина световой волны обусловливает цветовой тон.
Световые волны различаются, во-вторых, амплитудой их колебаний, т. е. их энергией. Она определяет яркость цвета.
Световые волны отличаются, в-третьих, формою световой волны, получающейся в результате смешения между собой световых волн различных длин. Форма световой волны обусловливает насыщенность цвета.
Предметы, не испускающие собственного света, отражают некоторую часть падающего на них света и поглощают остальную его часть. Если все световые лучи поглощаются в тех же отношениях, в каких они даны в спектре, то такое поглощение называется неизбирательным. Если световые лучи поглощаются в иных отношениях, чем они представлены в спектре, то такое поглощение называется избирательным.
Число, выражающее отношение количества поглощенных поверхностью световых лучей к количеству падающих на нее лучей, называется коэффициентом поглощения. Число, выражающее отношение количества отраженных поверхностью световых лучей к количеству падающих на нее лучей, называется коэффициентом отражения. Поверхность, почти не отражающая падающего на нее света, имеет черный цвет. Поверхность, почти целиком отражающая падающий на нее свет, имеет цвет белый. Цветная поверхность отражает волны различной длины. Поэтому каждая цветная поверхность имеет свой спектр отражения.
Функция глаза
Органом зрения является глаз – рецептор световых раздражений. Глаз человека состоит из глазного яблока и отходящего от него глазного нерва. Стенку глазного яблока образуют три оболочки: наружная (белочная), сосудистая и сетчатая.
Схематический разрез глаза
Белочная оболочка в передней части глазного яблока переходит в прозрачную роговицу. Под белочной оболочкой находится сосудистая, переднюю часть которой образует радужная оболочка. Цвет радужной оболочки глаза зависит от количества пигментных клеток в ней: при большом количестве пигмента глаза имеют карий и даже черный цвет, при недостаточном его количестве – цвет глаза зелено-серый и голубой. Голубые тона обусловлены главным образом просвечиванием черного пигмента сетчатой оболочки глаза на задней стороне радужной. Посреди радужной оболочки помещается зрачок – отверстие, через которое свет проникает в глаз. Благодаря работе мышц радужной оболочки зрачок может расширяться и суживаться, играя роль диафрагмы фотографического аппарата. Изменение величины отверстия зрачка совершается рефлекторно в зависимости от количества света, падающего на глаз, и называется зрачковым рефлексом. Зрачковый рефлекс представляет собой целесообразное биологическое приспособление, при помощи которого регулируется количество поступающего в глаз света. При слишком большом свете зрачок суживается, и уменьшается световой поток, при слабом свете зрачок расширяется, и увеличивается световой поток, падающий на сетчатую оболочку глаза.
Сетчатая оболочка, или сетчатка (ретина), самая внутренняя из трех оболочек глазного яблока, является разветвлением по дну глаза концевых аппаратов зрительного нерва.
Нервные волокна зрительного нерва заключают в себе три пучка: а) от височной половины сетчатки, б) от носовой и в) от центральной ее области. В месте перекреста зрительных нервов (хиазма) зрительные пучки частично пересекаются: нервные волокна от височных половин сетчатки идут в соответственные стороны головного мозга, волокна же от носовой части идут в противоположные части полушария, волокна центральной части идут и в соответственные и в противоположные части полушарий. Проходя сначала в промежуточные зрительные центры, находящиеся у основания мозговых полушарий (в заднюю часть зрительного бугра, переднее четыреххолмие и наружное коленчатое тело), они направляются в высшие центры зрения в затылочных долях коры головного мозга.
Схема зрительных путей и центров
Строение сетчатки очень сложно: под микроскопом в ней можно увидеть десять слоев (см. рис. ниже). В состав этих слоев входят нервные элементы, обусловливающие зрительную функцию ретины. Периферические концы светочувствительных зрительных клеток подразделяются на палочки и колбочки. В сетчатке человеческого глаза находится около 130 миллионов палочек и около 7 миллионов колбочек; в середине сетчатки преобладают колбочки, на периферии – палочки.
Строение сетчатки глаза. I, II, III – первый, второй и третий невроны: 1 – пигментный слой, прилежащий к сетчатке; 2 – слой палочек и колбочек; 3 – наружная пограничная перепонка; 4 – внешний зернистый слой; 5 – внешний межзернистый слой; 6 – внутренний зернистый слой; 7 – внутренний межзернистый слой; 8 – ганглиозные клетки зрительного нерва; 9 – волокна зрительного нерва; 10 – внутренняя пограничная перепонка. Справа изображено опорное волокно Мюллера
Палочки содержат так называемый зрительный пурпур, который под действием света обесцвечивается, а в темноте регенерирует. В колбочках зрительного пурпура не найдено.
Согласно теории Шульца, развитой Крисом, колбочки являются аппаратом дневного зрения, а палочки – аппаратом сумеречного зрения. Между дневным и сумеречным зрением существует антагонистическая иннервация. Раздражение центральной части сетчатки угнетающе действует на чувствительность периферической части – и обратно.
В месте выхода зрительного нерва из глазного яблока нет ни палочек, ни колбочек; раздражение, падающее на это место, ощущений не вызывает. Это место называется слепым пятном. Вследствие существования слепого пятна в поле нашего зрения всегда имеется некоторая «дыра». О величине этой «дыры» можно судить по тому, что на расстоянии 1 м ее диаметр равен 11 см, а на расстоянии 10 м – 1,1 м.
Однако «дыры» в поле своего зрения человек не замечает. Происходит это по нескольким причинам: 1) хорошо видны лишь объекты, изображение которых падает на желтое пятно сетчатки, все остальное видно неясно, и впечатление от объектов, находящихся в стороне от зрительной оси, значительно более слабое; и 2) при бинокулярном зрении тот объект, изображение которого на сетчатке одного глаза приходится на слепое пятно, представлен на сетчатке другого глаза изображением на видящем ее участке.
Наиболее важным местом сетчатой оболочки глаза является желтое пятно, заполненное главным образом колбочками. В середине желтого пятна находится центральная ямка (fovea centrails) – место наиболее ясного видения.
Для ясного видения необходимо, чтобы на сетчатке получилось отчетливое изображение рассматриваемого предмета. Отчетливость изображения обусловлена функцией расположенного за зрачковым отверстием хрусталика – прозрачной и двояковыпуклой линзы, выполняющей в глазу роль объектива в фотографической камере. Прозрачные среды хрусталика (и роговицы), преломляя падающий через зрачковое отверстие свет, отбрасывают на сетчатку изображение – обратное и уменьшенное – того, что находится перед глазом.
Так как расстояние от хрусталика до сетчатой оболочки глаза остается неизменным, то для получения четкого изображения на сетчатке изменяется кривизна хрусталика: при приближении предмета кривизна увеличивается, а при отдалении его уменьшается. Изменение кривизны хрусталика осуществляется рефлекторным сокращением ресничной (аккомодационной) мышцы и называется аккомодацией глаза. Нормальному глазу аккомодационные движения требуются только для получения четкого изображения близких предметов; изображения удаленных предметов падают на сетчатку без специальной аккомодации.
Если лучи, идущие в глаз от отдаленного предмета, собираются в фокус не на сетчатке, а впереди или позади нее, то нормальное зрение нарушается. Глаз, в котором вследствие чрезмерной преломляющей силы глаза или большой длины глазного яблока параллельные лучи, идущие в глаз от удаленного предмета, собираются перед сетчаткой, называется близоруким. Глаз, в котором вследствие ослабленной преломляющей силы глаза или малой длины глазного яблока параллельные лучи, идущие в глаз от удаленного предмета, собираются за сетчаткой, называется дальнозорким.
Вследствие относительно значительной величины зрачкового отверстия через него проходят лучи не только близкие к оптической оси, но и сравнительно от нее отдаленные; это вызывает явление сферической аберрации. Оно выражается в том, что точечное раздражение дает на сетчатой оболочке глаза некоторый круг светорассеяния. Поэтому границы изображений на сетчатой оболочке глаза никогда не бывают абсолютно резкими. Помимо сферической, существует хроматическая аберрация. Она вызывается тем, что параллельный пучок белого света, проходя через хрусталик и другие преломляющие среды глаза, дает различные углы преломления, а именно – лучи с короткой волной преломляются сильнее, чем лучи с длинной волной. Вследствие этого точечное изображение дает на сетчатой оболочке глаза цветной круг светорассеяния.
Сферическая и хроматическая аберрации глаза являются, по мнению Гельмгольца, причиной иррадиации, вследствие которой белые предметы кажутся преувеличенными из-за кругов светорассеяния.
Степень четкости восприятия границ предметов называется остротой зрения. Острота зрения определяется тем минимальным промежутком между двумя точками, который еще замечается. За единицу остроты зрения принимают величину промежутка в одну угловую минуту.
Это не значит, конечно, что у всех людей минимальный угол зрения равен всегда одной угловой минуте. Многие люди видят раздельно две точки даже тогда, когда они видимы под углом зрения в 20 и даже 10 угловых секунд. Яркие точки, например звезды, видны под еще меньшим углом зрения.
По сути дела следует различать 3 вида остроты зрения: 1) когда глаз видит нерасчлененное пятно (minimum visibile), 2) когда глаз ясно видит промежуток между двумя точками (minimum separabile) и 3) когда предмет делается узнаваемым (minimum cognoscibile).
Зрительное ощущение, возникающее в результате воздействия на глаз света, всегда обладает тем или иным цветовым качеством. Но обычно нами воспринимается не цвет «вообще», а цвет определенных предметов. Предметы эти находятся от нас на определенном расстоянии, имеют ту или иную форму, величину и т. д. Зрение дает нам отражение всех этих многообразных свойств объективной действительности. Но отражение предметов в их пространственных и иных свойствах относится уже к области восприятия (см. дальше), в основе которого частично лежат также специфические зрительные ощущения.
Все воспринимаемые глазом цвета могут быть подразделены на две группы: ахроматические и хроматические. Ахроматическими цветами называется белый, черный и все располагающиеся между ними оттенки серого цвета; они отличаются друг от друга только светлотой. Все остальные цвета – хроматические; они отличаются друг от друга цветовым тоном, светлотой и насыщенностью.
Цветовой тон – это то специфическое качество, которым один цвет, например красный, отличается от любого другого – синего, зеленого и т. д. при равной светлоте и насыщенности. Цветовой тон зависит от длины воздействующей на глаз световой волны.
Светлота – это степень отличия данного цвета от черного. Наименьшей светлотой обладает черный, наибольшей – белый цвет. Светлота зависит от коэффициента отражения. Коэффициент отражения равен единице минус коэффициент поглощения. (Например, поверхность черного бархата поглощает 0,98 световых лучей и отражает 0,02 световых лучей.) Чем больше коэффициент поглощения световых лучей какой-нибудь поверхностью и чем соответственно меньше свойственный ей коэффициент отражения, тем ближе ее цвет к черному; чем меньше коэффициент поглощения какой-нибудь поверхности и соответственно больше свойственный ей коэффициент отражения, тем ближе ее цвет к белому.
От светлоты предметов следует отличать их яркость, которая зависит от энергии световой волны, или амплитуды ее колебаний. Яркость характеризуется произведением освещенности на коэффициент отражения. Освещенность же предметов характеризуется количеством лучистой энергии, падающей в течение одной секунды на единицу поверхности. Светлота – цветовое свойство поверхности, яркость же характеризуется количеством лучистой энергии, отражаемой от данной поверхности. Это количество лучистой энергии зависит от двух причин: с одной стороны, от коэффициента отражения от данной поверхности, а с другой – от количества лучистой энергии, падающей на данную поверхность. Поэтому яркость сильно освещенного черного бархата может быть больше яркости белой бумаги, находящейся в тени.
Насыщенность – это степень отличия данного цвета от серого цвета, одинакового с ним по светлоте, или, как говорят, степень его выраженности. Насыщенность цвета зависит от отношения, в котором находится количество световых лучей, характеризующих цвет данной поверхности, к общему световому потоку, ею отражаемому. Насыщенность цвета зависит от формы световой волны.
Глаз чувствителен к ничтожным количествам лучистой энергии. Так, например, при достаточной темновой адаптации глаз видит (аппаратом палочек) на расстоянии 1 км свет, сила которого может быть выражена тысячными долями свечи[76]76
Кравков С. В. Глаз и его работа. М., 1936.
[Закрыть] при полной прозрачности атмосферы (нижний порог). Чувствительность аппарата колбочек меньше.
Верхним порогом цветоощущения является та яркость света, которая «ослепляет» глаз. Эта величина в значительной мере зависит от степени адаптации глаза, от размера слепящего пятна и т. д. Слепящая яркость при размере слепящего поля в 4° равна 22,5 стильба[77]77
Данные Неттинга, обработанные Кравковым. Стильб – единица яркости, равная международной свече в 1 кв. см.
[Закрыть].
Побочные раздражители в некоторых случаях изменяют характер зрительной чувствительности. Согласно экспериментальным данным С. В. Кравкова, звук повышает чувствительность глаза к зеленым и синим лучам и понижает чувствительность глаза к оранжевым и красным лучам.
Чувствительность глаза к световым волнам различной длины не одинакова. Наиболее яркими кажутся человеческому глазу лучи, длины волн которых соответствуют желто-зеленой части спектра (556 нм). В сумерки наиболее ярким кажется не желто-зеленый цвет, а зеленый цвет, имеющий длину волны 510 нм. С наступлением темноты красно-фиолетовые цвета темнеют, а зелено-голубые цвета светлеют. Это явление носит название явления Пуркинье.
Общее количество различаемых глазом цветных тонов максимальной насыщенности доходит до 150.
Смешение цветов
Воспринимаемые нами в природе цвета получаются обычно в результате воздействия на наш глаз волн различной, а не одной какой-нибудь длины. Эти различные волны, совместно воздействуя на глаз, и порождают тот или иной видимый нами цвет. Видимые нами в естественных условиях цвета являются, таким образом, результатом смешения цветов.
На основе работ И. Ньютона Г. Грассманом были выведены следующие основные законы смешения цветов:
Первый закон. Для каждого хроматического цвета имеется другой цвет, от смешения с которым получается ахроматический цвет. Такие пары цветов называются дополнительными. Дополнительными цветами являются: красный и голубо-зеленый; оранжевый и голубой; желтый и индиго-синий; желто-зеленый и фиолетовый; зеленый и пурпуровый.
Второй закон. Смешивая два цвета, лежащие ближе друг к другу, чем дополнительные, можно получить любой цвет, находящийся в спектре между данными двумя цветами.
Третий закон. Две пары одинаково выглядящих цветов дают при смешении одинаково выглядящий цвет, независимо от различий в физическом составе смешиваемых цветов. Так, серый цвет, полученный от смешения одной пары дополнительных цветов, ничем не отличается от серого цвета, полученного от любой другой пары.
Говоря о смешении цветов, разумеют прежде всего оптическое смешение, возникающее в результате того, что различные цветовые раздражители одновременно или в очень быстрой последовательности раздражают один и тот же участок сетчатки.
Помимо этого смешения цветов, надо учесть еще пространственное смешение цветов, которое получается при восприятии различных цветов не во временной, а в пространственной смежности.
Если посмотреть на определенном расстоянии на небольшие, соприкасающиеся друг с другом цветные пятна, то эти пятна сольются в одно пятно, которое будет иметь цвет, получившийся от смешения этих малых цветовых пятен. Причиною слияния цветов является светорассеяние и другие явления, возникающие вследствие несовершенства оптической системы человеческого глаза. Вследствие этого несовершенства границы цветных пятен размываются, и два или более цветных пятна раздражают одно и то же нервное окончание сетчатой оболочки. В силу этого, когда мы смотрим, например, на какую-нибудь ткань в мелких цветных полосках или крапинках, она нам кажется одноцветной, окрашенной в цвет, получающийся в результате смешения различных представленных в ней цветов. На этом пространственном смешении цветов основывается впечатление, которое производят ткани, сплетенные из разноцветных нитей. На этом же пространственном смешении цветов основывается и эффект, которым пользуются художники пуантеллисты (от слова point – точка) и импрессионисты, когда они дают цвет поверхностей посредством цветных точек или пятен.
Эксперименты Б. М. Теплова показали, что законы этого пространственного смешения цветов, имеющего большое применение в живописи и в ткацком деле, те же, что и законы оптического смешения цветов.
Существенный интерес представляет и так называемое бинокулярное смешение цветов.
Бинокулярным смешением цветов называется получение некоторого третьего цвета в результате раздражения каждого из глаз различными цветами. Если смотреть одним глазом на один цвет, а другим глазом на другой цвет, то мы увидим некоторый третий цвет, получившийся от бинокулярного смешения обоих цветов. Однако если оба цвета весьма несходны друг с другом (в особенности по светлоте), то бинокулярного смешения цветов не возникает, а получается своеобразная игра, в которой оба цвета воспринимаются поочередно. Это последнее явление называется борьбой полей зрения.
Если поверхность не является абсолютно гладкой, то ее микрорельеф можно рассматривать как большое число плоскостей, повернутых к наблюдателю под разными углами. Так как для правого и левого глаза углы различны и так как под разными углами зрения цвет поверхности изменяется, то возникает «бинокулярное смешение цветов» или же борьба полей зрения, создающая специфическое ощущение мерцания, блеска и колебания цвета в зависимости от микрорельефа поверхности. Восприятие фактуры обусловлено в значительной степени именно описанными явлениями. Фактура тканей – бархата, шелка, полотна, шерсти – воспринимается в специфическом качестве, представляющем комплекс ощущений, возникающих вследствие бинокулярного смешения цветов и борьбы полей зрения в каждой отдельной точке воспринимаемой поверхности. Восприятие природы насыщено этими ощущениями, которые придают особую динамичность, игру и живость нашим зрительным образам.
Психо-физиологические закономерности
В зрительных ощущениях отчетливо сказываются все основные психо-физиологические закономерности рецепторной деятельности – адаптация, контрастность, последействие, так же как и взаимодействие.
Адаптация глаза заключается в приспособлении глаза к воздействию световых раздражителей. Различают темновую адаптацию (адаптацию к темноте), светловую (адаптацию к свету) и цветовую (адаптацию к цвету).
Темновая адаптация возникает вследствие того, что в темноте возрастает концентрация зрительного пурпура. Это влечет за собой повышение чувствительности глаза к световым раздражениям. Чувствительность глаза может быть увеличена благодаря темновой адаптации более чем в 200 000 раз (после одного часа пребывания в темноте). Увеличение чувствительности глаза продолжается в течение 24 часов пребывания в темноте, однако темновую адаптацию можно считать установившейся уже после 60–80 минут пребывания в ней. После длительного пребывания в темноте при переходе на свет опять-таки яркий свет сначала слепит глаз, и мы плохо видим окружающее. Затем, в результате адаптации глаза к свету, мы начинаем видеть нормально.
Интересно отметить, что – как показали исследования лаборатории психофизиологии Института психологии – слабое раздражение органов чувств способно сократить весьма значительно длительность процесса темновой адаптации. Этот процесс, связанный с восстановлением зрительного пурпура – родопсина – в палочках глазной сетчатки, ускоряется под влиянием раздражений других органов чувств (рецепторов холода, вкуса и т. д.) с 30–45 минут до 4–5 минут. Это обстоятельство особенно важно для лиц тех специальностей, которым приходится быстро переходить от света к темноте, например для пилотов ночных истребителей. Одновременно с чувствительностью ночного зрения улучшается и точность глубинного зрения (Кекчеев).
Световая адаптация заключается в понижении чувствительности глаза под влиянием света.
Цветовая адаптация, или цветовое приспособление, выражается в понижении чувствительности глаза к определенному цветному раздражителю вследствие продолжительности его действия. Она не бывает столь значительна, как световая, но зато увеличивается скорее. Согласно данным С. В. Кравкова, наиболее адаптирующим глаз является сине-фиолетовый цвет, средним – красный цвет и наименее адаптирующим глаз – зеленый цвет.
Как возникновение ощущения, так и его исчезновение не происходит внезапно и одновременно с окончанием действия раздражителя. Необходимо некоторое время на соответствующий фотохимический процесс. Поэтому после прекращения действия раздражителя в глазу остается «след», или последействие, раздражения, которое дает «последовательный образ». Когда этот след соответствует по светлоте и цветовому тону первоначальному ощущению, он называется положительным последовательным образом, когда же он изменяется в обратных отношениях, он называется отрицательным последовательным образом.
Вследствие различного характера адаптации отдельных участков сетчатой оболочки глаза возникает явление последовательного контраста.
Под последовательным контрастом разумеются временные изменения в цветовом ощущении, которые возникают вследствие предварительного действия на определенные участки глаза световых раздражителей. Последовательный контраст представляет собой по существу отрицательный последовательный образ. Последовательный контраст может быть световым.
Контрастные цвета близки к дополнительным цветам, однако от них отличаются.
Внимание! Это не конец книги.
Если начало книги вам понравилось, то полную версию можно приобрести у нашего партнёра - распространителя легального контента. Поддержите автора!Правообладателям!
Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.Читателям!
Оплатили, но не знаете что делать дальше?