Текст книги "Ген. Очень личная история"
Автор книги: Сиддхартха Мукерджи
Жанр: Прочая образовательная литература, Наука и Образование
Возрастные ограничения: +16
сообщить о неприемлемом содержимом
Текущая страница: 9 (всего у книги 40 страниц) [доступный отрывок для чтения: 13 страниц]
Истины и их согласование друг с другом
Все изменилось, полностью изменилось:
рождается ужасная красота.[330]330
«Все изменилось, полностью изменилось»: Yeats W. B. Easter, 1916. London: Privately printed by Clement Shorter, 1916.
[Закрыть]Уильям Батлер Йейтс,«Пасха 1916 года»[331]331
Это стихотворение Йейтс посвятил памяти лидеров Пасхального восстания в Дублине (24–30 апреля 1916 года). Поэт, не приемлющий насильственного пути обретения Ирландией независимости, все же сочувствовал этим людям, некоторых знал близко и был потрясен тяжестью расплаты за их смелость. Восстание подавили английские войска, и по приговору суда казнили 16 человек. Однако «рождалась ужасная красота»: жестокая карающая мера не уничтожила, а, напротив, оживила ирландское республиканское движение. Стихотворение «вышло из подполья» и было опубликовано лишь в 1921 году, а в 1923-м Йейтс получил Нобелевскую премию по литературе.
[Закрыть]
Ген родился вне биологии. Я имею в виду следующее: среди горячих тем в биологических науках конца XIX века наследственность занимала не слишком высокое место. Людей, изучавших живые организмы, намного больше увлекали другие вещи: эмбриология, клеточная биология, происхождение видов и эволюция. Как функционируют клетки? Как из эмбриона развивается целый организм? Как возникают новые виды? Что лежит в основе разнообразия живого мира?
Тем не менее все попытки ответить на эти вопросы натыкались на одно и то же препятствие. Камнем преткновения была информация. Она нужна каждой клетке, каждому организму для работы их физиологических систем. Но откуда эта информация берется? Эмбриону нужны инструкции для развития во взрослый организм, но как он эти инструкции получает? И откуда, если на то пошло, представитель какого-то вида «знает», что сам относится именно к этому виду?
Замечательным свойством гена была потенциальная способность решить все эти проблемы одним грандиозным махом. Информация, необходимая клетке для выполнения метаболических функций? Ну конечно, она хранится в генах этой клетки. Инструкции, заложенные в эмбрионе? Опять-таки, все они зашифрованы в генах. Размножаясь, живой организм передает потомству инструкции, как создать эмбрион, как выстроить работу клеток, как наладить метаболизм, как исполнить ритуальный брачный танец, как произнести свадебную речь и произвести потомство своего вида – всё разом. Наследственность не может быть второстепенным вопросом биологии, ее место среди основных. В бытовом смысле наследственность для нас – передача от поколения к поколению особых черт: своеобразной формы носа, как у папы, или семейной предрасположенности к редкому заболеванию. Но настоящая загадка наследственности куда универсальнее: какова природа инструкции, которая описывает, как вырастить нос – любой нос – с нуля?
Запоздалое признание гена ответом на центральный вопрос биологии вылилось в интересное следствие: под генетику пришлось постфактум подгонять другие области биологии. Если ген – основная «валюта» биологической информации, то с позиции биологии генов должны объясняться все важнейшие свойства живого, а не только наследственность. Во-первых, феномен изменчивости: как объяснить с помощью дискретных единиц наследственности, что разнообразие человеческих глаз не ограничивается, скажем, шестью отдельными формами, а представляет собой непрерывный спектр из шести миллиардов вариантов? Во-вторых, эволюция: как через призму наследования генов объяснить огромное разнообразие форм и свойств, которое живые организмы со временем развили? И в-третьих, развитие: каким образом разрозненные блоки инструкций предоставляют единый криптографический план, в соответствии с которым из эмбриона вырастает взрослый организм?
Можно сказать, что согласование трех упомянутых явлений с концепцией единиц наследственности – это попытка объяснить через призму гена прошлое, настоящее и будущее природы. Эволюция – это прошлое: как живые существа возникли? Изменчивость – настоящее: почему сейчас они такие, какие есть? Эмбриогенез же стремится описать будущее: как из одной клетки развивается живое существо, которое в конечном счете приобретает свою особую форму?
За два поворотных десятилетия – с 1920 по 1940 год – первые два вопроса, касающиеся изменчивости и эволюции, будут решены благодаря уникальным союзам генетиков с анатомами, клеточными биологами, статистиками и математиками. Решение третьего вопроса – об эмбриональном развитии – потребует еще более согласованных усилий. Иронично, что современная генетика как дисциплина выросла из эмбриологии, однако именно согласование генов и генезиса оказалось гораздо более сложным научным вызовом.
В 1909 году молодой математик Рональд Фишер поступил в колледж Гонвилл-энд-Киз при Кембриджском университете[332]332
В 1909 году молодой математик Рональд Фишер: Reeve E. C. R., Black I. Darwin and Mendel United: The Contributions of Fisher, Haldane and Wright up to 1932 // Encyclopedia of Genetics. London: Fitzroy Dearborn, 2001.
[Закрыть]. Из-за наследственных проблем со зрением Рональд практически ослеп еще в раннем подростковом возрасте. Математику он изучал главным образом без пера и бумаги, благодаря чему приобрел способность до перенесения уравнений на лист визуализировать задачи в уме. В средней школе он делал большие успехи в математике, но в Кембридже плохое зрение стало помехой. Чувство приниженности от раздражения преподавателей его трудностями в чтении и написании формул сподвигло Фишера переключиться на медицину, но он провалил экзамены (как и Дарвин, Мендель или Гальтон – провалы в покорении общепринятых вех успеха красной нитью проходят через нашу историю). В 1914 году, когда в Европе вспыхнула война, Фишер устроился на работу статистическим аналитиком в лондонском Сити.
Днем Фишер анализировал статистику для страховых компаний. Ночью, когда мир для него почти полностью гас, он обращался к теоретическим аспектам биологии. Вторя его бытовым проблемам, Фишера волновала научная проблема увязывания биологического «разума» с биологическим «зрением». К 1910 году величайшие умы биологии признали, что дискретные частицы информации, расположенные на хромосомах, служат носителями наследственной информации. Однако всё видимое в биологическом мире представляло собой непрерывный спектр. Биометристы XIX века, в частности Кетле и Гальтон, продемонстрировали, что значения человеческих характеристик – хоть роста, хоть веса, хоть интеллекта – распределены в соответствии с плавными, непрерывными колоколообразными кривыми. Даже развитие организма – самым очевидным образом направляемое наследуемой цепью инструкций – выглядит не скачкообразным, а плавным: его стадии незаметно перетекают друг в друга. Путь от гусеницы к бабочке – гладкий подъем, а не крутая лестница. Если вы построите график длин клюва вьюрков, точки образуют непрерывную кривую. Как могли бы «частицы информации», эти пиксели наследственности, обеспечить наблюдаемую «плавность» мира природы?
Фишер догадался, что ответить на этот вопрос можно с помощью тщательно продуманного математического моделирования наследственных признаков. Он знал, что Мендель показал дискретность природы генов, потому что сам выбрал максимально отчетливые простые признаки и изначально скрещивал растения из чистых линий. Но что, если в природе признаки вроде роста или цвета кожи определяются не единственным геном с двумя возможными состояниями – включен или выключен, «высокий» или «низкий», – а несколькими генами? Скажем, рост контролируют пять генов, а форму носа – семь?
Фишер обнаружил, что для моделирования признака, за который отвечают пять или семь генов, требуется не такая уж сложная математика. В случае трех генов суммарно будет шесть аллелей, или вариантов: три от матери и три от отца. Простая комбинаторика позволяет рассчитать, что шесть вариантов генов дадут 27 уникальных сочетаний. Ученый выяснил, что если каждое сочетание по-своему отражается на росте, то значения выстраиваются уже в сглаженную кривую.
Если он брал пять генов, комбинаций оказывалось еще больше, и соответствующие этим комбинациям варианты роста формировали практически непрерывную кривую. Добавив эффекты окружающей среды – влияние питания на рост или солнечного света на цвет кожи, – Фишер мог представить еще больше уникальных комбинаций и их проявлений, дающих в итоге идеально плавные кривые. Вообразите семь листов прозрачной бумаги, окрашенных в семь цветов радуги. Группируя эти листы разными способами и накладывая их друг на друга, можно получить почти любой оттенок. «Информация» на листах остается дискретной. Цвета физически не смешиваются друг с другом, но в результате их наложения получается спектр, который кажется почти непрерывным.
В 1918 году Фишер представил результаты своего анализа в статье, озаглавленной «Корреляция между родственниками на основании допущений менделевской наследственности» (The Correlation between Relatives on the Supposition of Mendelian Inheritance)[333]333
В 1918 году Фишер представил результаты: Fisher R. The Correlation between Relatives on the Supposition of Mendelian Inheritance. Transactions of the Royal Society of Edinburgh. 1918; 52: 399–433.
[Закрыть]. Название было довольно-таки бессвязным, но суть – лаконичной: если предположить, что любой признак определяется тремя-пятью генами, у которых существуют варианты, можно получить почти непрерывный спектр фенотипов. По словам автора, «точную степень изменчивости по какому-то человеческому признаку» можно объяснить с помощью довольно очевидных расширений менделевской генетики. Индивидуальный эффект гена Фишер сравнил с точкой на картине пуантилиста[334]334
Пуантилисты – например, Жорж Сёра и Поль Синьяк – не смешивали цвета, а формировали изображение точечными, мелкими мазками разных цветов, предоставляя сетчатке зрителя самостоятельно интерпретировать сочетания красок и форм мазков.
[Закрыть]. С близкого расстояния мы можем увидеть отдельные точки. В природе же, издали, мы наблюдаем скопления точек – пиксели, сливающиеся в цельную картину.
Второе согласование – генетики и эволюции – требовало чего-то большего, чем математическое моделирование; здесь нужны были эксперименты. Дарвин доказывал, что эволюция идет за счет естественного отбора, но чтобы шел отбор, нужен «естественный» материал – то, из чего отбирать. В дикой природе у популяций живых организмов естественная изменчивость должна быть высока настолько, чтобы можно было выбирать победителей и проигравших. К примеру, в островной стае вьюрков должно быть большое разнообразие размеров клюва, чтобы в сезон засухи отбирались птицы с самыми крепкими или самыми длинными клювами. Уберите это разнообразие, заставьте всех вьюрков носить одинаковые клювы – и отбор останется с пустыми руками. Все птицы вымрут одним махом. Эволюция застопорится.
Но что за движущая сила создает изменчивость в дикой природе? Хуго де Фриз предположил, что ее порождают мутации[335]335
Хуго де Фриз предположил, что ее порождают мутации: de Vries H. The Mutation Theory; Experiments and Observations on the Origin of Species in the Vegetable Kingdom / Farmer J. B., Darbishire A. D. (trans.). Chicago: Open Court, 1909.
[Закрыть]: изменения в генах влекут за собой изменения форм, а формы могут процветать или отсеиваться под действием природных факторов. Но эта гипотеза родилась до описания гена на молекулярном уровне. Есть ли экспериментальные свидетельства связи мутаций, которые можно выявить в реальных генах, с вариабельностью? Мутации возникают спонтанно или же изначально в больших количествах «населяют» дикие популяции? И что происходит с генами под действием естественного отбора?
В 1930-х Феодосий Добржанский[336]336
В 1930-х Феодосий Добржанский: Kohler R. E. From Laboratory to Field: Evolutionary Genetics // Lords of the Fly: Drosophila Genetics and the Experimental Life. Chicago: University of Chicago Press, 1994.
[Закрыть], украинский биолог, эмигрировавший в Соединенные Штаты, задался целью описать разброс генетической изменчивости в диких популяциях. Добржанский работал с Томасом Морганом в Мушиной комнате Колумбийского университета. Однако он понимал: чтобы изучать «дикие» гены, нужно самому «одичать». Вооружившись сачками, садками для насекомых и гниющими фруктами, он отправился охотиться на диких мух вначале в окрестности лаборатории в Калтехе[337]337
Калифорнийский технологический институт.
[Закрыть], затем на хребет Сан-Хасинто и вдоль Сьерра-Невады в Калифорнии, ну а потом по лесам и горам на всей территории Штатов. Его коллеги, прикованные к своим лабораторным столам, думали, что он окончательно свихнулся. С тем же успехом Добржанский мог бы отплыть на Галапагосы.
Выбор диких мух в качестве объекта для изучения изменчивости оказался знаковым. К примеру, у одного из таких видов – Drosophila pseudoobscura – Добржанский нашел множество вариативных генов, влияющих на сложные признаки: продолжительность жизни, строение глаза, морфологию щетинок и размер крыльев. Изменчивость особенно бросалась в глаза у мух из одного региона, но с двумя абсолютно разными компоновками одних и тех же генов. Добржанский назвал эти генетические варианты расами. Используя разработанную Морганом методику картирования генов – определения их взаиморасположения на хромосоме, – Добржанский работал с тремя генами: A, B и C. У части мух они располагались на пятой хромосоме в такой последовательности: A-B-C. У других мух их последовательность была обратной: C-B-A. Несходство двух рас, обусловленное единственной хромосомной инверсией, оказалось самым ярким примером генетической изменчивости, которую ученые когда-либо наблюдали в природной популяции.
Но это было еще не все. В сентябре 1943 года Добржанский решил продемонстрировать изменчивость[338]338
В сентябре 1943 года Добржанский решил: Dobzhansky Th. Genetics of natural populations IX. Temporal changes in the composition of populations of Drosophila pseudoobscura. Genetics. 1943; 28 (2): 162.
[Закрыть], отбор и эволюцию в одном эксперименте – воссоздать Галапагосские острова в картонной коробке. Он заселил две запечатанные вентилируемые коробки мухами двух линий – ABC и CBA – в равном соотношении. Одну коробку держали в холоде, другую, с точно таким же составом мух, – при комнатной температуре. Это замкнутое пространство стало домом для многих поколений мух; им давали корм и питье, чистили жилище. Популяции то росли, то сокращались. Личинки рождались, становились взрослыми мухами и умирали в тех же картонных стенах. Рода и семьи – целые мушиные царства – процветали и приходили в упадок. Когда Добржанский через четыре месяца «собирал урожай», оказалось, что состав популяций кардинально поменялся. В «холодной» коробке численность линии ABC выросла почти вдвое, а CBA – сократилась. В коробке, которую держали при комнатной температуре, соотношение оказалось противоположным.
Добржанскому удалось собрать все необходимые ингредиенты, чтобы запустить эволюцию. На популяцию с исходной изменчивостью в компоновке генов он воздействовал фактором естественного отбора – температурой. Выживали «наиболее приспособленные» – лучше адаптированные либо к низким, либо к высоким температурам. По мере того как мухи рождались, отбирались и размножались, частоты вариантов менялись, и в итоге сформировались популяции с новым генетическим составом.
Чтобы формально описать взаимосвязь между генетикой, естественным отбором и эволюцией, Добржанский воскресил два важных термина: генотип и фенотип. Генотип – это генетический «состав» организма. Под этим термином можно понимать один ген, группу генов или даже целый геном. А фенотип – это совокупность физических или биологических характеристик организма вроде цвета глаз, формы крыльев, устойчивости к высоким или низким температурам.
С помощью этих понятий Добржанский переформулировал важную истину, открытую Менделем, «физическое свойство определяется геном», распространив эту идею на множество генов и свойств: «фенотип определяется генотипом».
Но для полноты картины в это правило требовалось внести две важные поправки. Во-первых, как отметил Добржанский, генотип – не единственный фактор, определяющий фенотип. Очевидно, среда тоже вносит вклад в физические характеристики живого организма. В форме носа боксера отражается не только его наследственность, но и специфика выбранной профессии с числом пойманных ударов по носовому хрящу. Если бы Добржанскому пришло в голову обрезать крылья всем мухам в коробке, он бы повлиял на их фенотип – форму крыльев, – совершенно не затрагивая их гены. Иными словами, «генотип + среда = фенотип».
А во-вторых, некоторые гены включаются под действием внешних стимулов или случайно. У мух, например, активность гена, влияющего на размер рудиментарных крыльев, зависит от температуры; вы не сможете предсказать форму крыльев только по генам или только по внешним условиям, нужно учесть и то, и другое. В таких ситуациях ни генотип, ни среда не определяют результат «единолично», все решает сочетание генов, среды и случая.
У людей мутации в гене BRCA1 повышают риск заболеть раком молочной железы, но рак развивается не у всех женщин с таким генотипом. Ген, работа которого зависит от случайности или от специфических внешних стимулов, называется геном[339]339
В этом абзаце под «геном» следует понимать какой-то его вариант (аллель), способный специфически сказаться на фенотипе. Это может быть, например, мутантный вариант, в котором заменен один нуклеотид по сравнению с «нормальным», самым распространенным в популяции вариантом гена, и эта мутация с какой-то вероятностью может вызвать болезнь.
[Закрыть] с частичной или неполной пенетрантностью: проявиться фенотипически он может, но не обязан. А еще у гена может быть вариабельная, неодинаковая, экспрессивность: степень его проявления варьирует от особи к особи. У одной женщины с мутацией BRCA1 к 30 годам разовьется агрессивная опухоль со множественными метастазами. У другой обладательницы той же мутации форма заболевания будет легкой, вялотекущей, а у третьей рак вообще не возникнет.
Мы до сих пор не знаем, почему одинаковая мутация у этих трех женщин проявляется так по-разному, но ясно, что играет роль комбинация факторов: возраста, внешних воздействий, влияния других генов и просто везения. Нельзя по генотипу – мутации BRCA1 – в точности предсказать развитие событий.
Получается, итоговая формулировка такова: «генотип + среда + специфические стимулы + случайность = фенотип».
В этой лаконичной, но могущественной формуле схвачена суть взаимоотношений между наследственностью, изменчивостью, случайностью, средой и эволюцией – факторами, определяющими облик и судьбу живого существа. В природных популяциях вариабельность генотипа всегда существует. На разные варианты генов воздействуют разные условия среды, специфические стимулы и случайности – и вместе они формируют особенности организма (например, большую или меньшую устойчивость к низким температурам у мух). Если фактор оказывает сильное селективное давление – так может действовать изменение температуры или острая нехватка питательных веществ, например, – отбираются особи с фенотипом, наиболее приспособленным к таким условиям. Если мухи с таким фенотипом выживают лучше других, они в итоге произведут больше личинок, которые частично унаследуют генотип каждого родителя. Новые мухи будут лучше адаптированы к такому давлению отбора. То есть отбор работает в первую очередь с физическими или биологическими свойствами, а уже вторично, в качестве побочного эффекта, отбираются кодирующие их гены. Кривизна носа может быть следствием особенно неудачного дня на ринге – то есть не иметь никакого отношения к генам, – но если на «брачном рынке» кандидатов оценивают только по симметрии носа, обладатель неправильной его формы отбор не пройдет. И даже если в клетках несчастного таится множество полезных в долгосрочной перспективе генов – вроде «гена стойкости» или «гена терпения мучительной боли», – вся эта плеяда будет обречена на исчезновение провалом в брачном соревновании. И всё из-за проклятого носа.
Фенотип, по сути, тянет за собой генотип – повозка тянет коня. Вечный парадокс естественного отбора в том, что он ищет одно (приспособленность) и невольно находит другое (гены, лежащие в основе приспособленности). Гены, повышающие приспособленность, постепенно распространяются в популяции за счет отбора по фенотипам; это позволяет организмам адаптироваться к окружающей среде все лучше и лучше. Здесь нет места совершенству, есть лишь неустанное, беспощадное, жадное стремление подогнать организм к его среде. Это стремление и есть двигатель эволюции.
Вишенкой на торте – финальным успехом Добржанского – стало раскрытие «тайны из тайн», не дававшей покоя Дарвину: происхождения видов. Эксперимент «Галапагосы в картонной коробке» показал, как эволюционирует популяция свободно скрещивающихся организмов[340]340
Первые эксперименты по репродуктивной несовместимости и видообразованию были проведены до экспериментов по отбору, но Добржанский с учениками продолжали разрабатывать оба направления в 1940-х и 1950-х. – Прим. автора.
[Закрыть] – например, мух. Но Добржанский осознавал: если в природной популяции, где есть вариабельность по генотипу, продолжается свободное скрещивание, новый вид никогда не сформируется. В конце концов, вид даже определяется неспособностью скрещиваться с другими видами.
Значит, чтобы возник новый вид, должен появиться какой-то фактор, который сделает невозможным скрещивание одной части популяции с другой. Добржанский предположил, что этот недостающий фактор – географическая изоляция. Представьте популяцию, где особи с разными вариантами генов свободно скрещиваются, как вдруг ее разделяет какое-то географическое препятствие. Шторм уносит стаю птиц на далекий остров, и они не могут вернуться на свой родной. Отныне две популяции эволюционируют независимо, по Дарвину, – пока в них не отберутся генетические варианты, биологически несовместимые с вариантами другой популяции. Даже если бы потомки унесенных птиц смогли вернуться на свою «историческую родину» – скажем, на кораблях, – им не удалось бы продолжить род с давно утраченными семиюродными братьями или сестрами: птенцы от таких генетически несовместимых родителей – носителей «искаженных сообщений» – либо не выжили бы, либо оказались бы бесплодными. Географическая изоляция приводит к генетической изоляции и в конце концов к изоляции репродуктивной.
Такой механизм видообразования был не просто гипотезой, Добржанский смог продемонстрировать его в эксперименте[341]341
Добржанский смог продемонстрировать его в эксперименте. Детали его эксперимента я воспроизвел по двум статьям: Dobzhansky Th. Genetics of natural populations XIV. A response of certain gene arrangements in the third chromosome of Drosophila pseudoobscura to natural selection. Genetics. 1947; 32 (1947): 142 и Wright S., Dobzhansky Th. Genetics of natural populations; experimental reproduction of some of the changes caused by natural selection in certain populations of Drosophila pseudoobscura. Genetics. 31: 125–156. Также полезно обратиться к статье Dobzhansky Th. Studies on Hybrid Sterility. II. Localization of Sterility Factors in Drosophila Pseudoobscura Hybrids. Genetics. 1936; 21: 113–135.
[Закрыть]. Он поселил двух мух разных рас в один садок. Мухи спаривались, производили потомство – но потомки вырастали бесплодными. Генетики с помощью анализа сцепления даже определили расположение эволюционно разошедшихся генов, из-за которых потомство стало нескрещиваемым. Так удалось найти недостающее звено в логике Дарвина: движущая сила видообразования – это репродуктивная несовместимость, возникающая вследствие несовместимости генетической.
К концу 1930-х Добржанский начал понимать, что его выводы относительно генов, изменчивости и естественного отбора распространяются на вопросы далеко за рамки биологии. Кровавая революция 1917 года, ураганом прошедшая по России, стремилась стереть все индивидуальные различия во имя коллективного блага. В Европе же принимающий чудовищные формы расизм, наоборот, раздувал и демонизировал индивидуальные различия. Ученый заметил, что и в том, и в другом случае на кону стояли прежде всего биологические вопросы. Чем определяется индивидуальность? Какой вклад в индивидуальность вносит изменчивость? Что значит «благо» для вида?
В 1940-х Добржанский будет прицельно атаковать эти вопросы и в конечном счете станет одним из самых ярых научных критиков нацистской евгеники, советского коллективизма и европейского расизма. Исследования природных популяций, изменчивости и естественного отбора к тому времени уже дали ему главные ответы на эти вопросы.
Во-первых, ему было очевидно, что в природе генетическая изменчивость – норма, а не исключение. Американские и европейские евгеники настаивали на искусственном отборе ради «блага» всего человечества – но в природе не бывает единого блага. Популяции могут сильно различаться по генетическому составу, но все эти генотипы спокойно сосуществуют и даже перекрываются в природе. Природа вовсе не так жаждет обнулить генетическую изменчивость, как предполагали евгеники. Напротив, Добржанский выяснил, что природная изменчивость – это настоящий сосуд жизни для вида. Ее выгоды намного перевешивают издержки: без изменчивости – без глубокого генетического разнообразия – вид может полностью утратить способность эволюционировать.
Во-вторых, мутации – по сути то же, что изменчивость. Добржанский отмечал, что в природных популяциях мушек ни один генотип не имел изначального превосходства над другими: какая из линий – ABC или CBA – выживет, определяла среда и ее взаимодействие с генами. То, что где-то назовут мутацией, в других обстоятельствах будет генетическим вариантом. В зимнюю ночь победит одна муха. В летний день – совсем другая. Ни один из вариантов не превосходит прочие ни биологически, ни нравственно; варианты могут различаться лишь по степени приспособленности к конкретной среде.
И наконец, отношения между физическими или психическими чертами и наследственностью оказались куда сложнее, чем ожидали. Евгеники вроде Гальтона надеялись отбирать людей по комплексным фенотипам – сочетанию интеллекта, высокого роста, красоты и нравственности. Они считали, что так проще всего культивировать гены этих качеств. Но фенотип не определяется однозначно одним геном. Отбор по фенотипам – это ущербный способ обеспечить генетический отбор. Если за конечные характеристики организма совместно отвечают гены, среда, разнообразные стимулы и фактор случайности, то для улучшения интеллекта или внешности будущих поколений евгеникам пришлось бы учитывать и регулировать вклад каждого из этих факторов.
Каждое из открытий Добржанского было мощным аргументом против злоупотреблений в генетике и человеческой евгенике. Гены, фенотипы, отбор, эволюция связаны друг с другом нитями довольно общих законов – но несложно представить, что эти законы можно понять неправильно или исказить. «Ищите простоты, но не верьте ей», – когда-то советовал своим студентам Альфред Норт Уайтхед, математик и философ. Добржанский стремился к простоте – но жестко предостерегал с позиций морали от чрезмерного упрощения генетической логики. Однако, погребенные в учебниках и научных статьях, эти открытия будут проигнорированы мощными политическими силами, которые вскоре пустятся в самые извращенные генетические манипуляции на людях.
Правообладателям!
Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.Читателям!
Оплатили, но не знаете что делать дальше?