Электронная библиотека » Станислас Деан+ » » онлайн чтение - страница 4


  • Текст добавлен: 21 декабря 2020, 01:00


Автор книги: Станислас Деан+


Жанр: Прочая образовательная литература, Наука и Образование


Возрастные ограничения: +16

сообщить о неприемлемом содержимом

Текущая страница: 4 (всего у книги 29 страниц) [доступный отрывок для чтения: 10 страниц]

Шрифт:
- 100% +

Мы с удовольствием посмеиваемся над Мюнхгаузеном, который в своих легендарных «Приключениях» пытается вытащить себя из болота за волосы. В искусственном интеллекте, однако, безумный метод эксцентричного барона породил довольно сложную стратегию «самонастройки», или бутстрэппинга: шаг за шагом, начиная с бессмысленной архитектуры, лишенной всяких знаний, искусственная нейронная сеть становится чемпионом мира, просто играя сама с собой.

Ускорение обучения за счет обеспечения сотрудничества двух сетей – или, наоборот, их конкуренции – важный прорыв в области искусственного интеллекта, который до сих пор приносит щедрые плоды. Например, одна из последних идей, так называемое «состязательное обучение»12, предполагает наличие двух противоборствующих систем: скажем, одна сеть учится распознавать картины Ван Гога, а вторая – их подделывать. Первая система получает бонус всякий раз, когда успешно идентифицирует подлинник, в то время как вторая – всякий раз, когда ей удается обмануть первую. Данный алгоритм обучения дает не один, а сразу два искусственных интеллекта: въедливого специалиста по Ван Гогу, обожающего выискивать мелкие детали, которые могут подтвердить подлинность картины, и гениального фальсификатора, чьи полотна способны ввести в заблуждение даже лучших экспертов. Такого рода обучение можно сравнить с подготовкой к президентским дебатам: многие кандидаты нанимают специальных людей, которые имитируют речь и повторяют лучшие реплики их оппонентов.

Можно ли применить такой подход к единому человеческому мозгу? Наши два полушария и многочисленные подкорковые ядра также содержат целую коллекцию экспертов, которые не только соперничают, но и сотрудничают, координируя и оценивая действия друг друга. Некоторые области нашего мозга учатся моделировать то, что делают другие; они позволяют нам «предвидеть» будущее и на удивление реалистично представить результаты наших поступков. Благодаря памяти и воображению мы легко можем увидеть море, в котором купались прошлым летом, или дверную ручку, за которую хватаемся в темноте. Некоторые области учатся критиковать: они постоянно оценивают наши способности и прогнозируют вознаграждение или наказание, которые мы можем получить. Именно эти участки подталкивают нас к действию или бездействию. Мы также увидим, что метапознание – способность к познанию самого себя, самооценке, мысленному моделированию того, что произойдет, поступи мы так или иначе, – играет фундаментальную роль в человеческом научении. Представления, которые мы формируем о себе, помогают нам добиваться успеха или в некоторых случаях вовлекают нас в замкнутый круг неудач. Таким образом, вполне уместно рассматривать мозг как совокупность сотрудничающих и конкурирующих экспертов.

Научение – это ограничение области поиска

Перед современным искусственным интеллектом по-прежнему стоит серьезная проблема: чем больше параметров имеет внутренняя модель, тем сложнее найти оптимальный способ ее настройки. Поскольку в современных искусственных нейросетях пространство поиска огромно, ученые вынуждены иметь дело с мощным комбинаторным взрывом: на каждом этапе доступны миллионы вариантов, а их комбинации настолько многочисленны, что исследовать их все просто невозможно. В результате обучение иногда протекает крайне медленно: требуются миллиарды попыток, чтобы заставить систему выбрать верное направление в океане возможностей. Любые исходные данные – даже самые подробные – становятся скудными по сравнению с гигантскими размерами имеющегося пространства. Данная проблема получила название «проклятие размерности»; проще говоря, обучение – сложная штука, если у вас есть миллионы потенциальных рычагов, на которые можно давить.

Громадное количество параметров, которыми располагают искусственные нейронные сети, ведет ко второму препятствию – «переобучению», или «переподгонке»: у системы так много степеней свободы, что ей легче запомнить детали каждого примера, чем определить общее правило, которое их объясняет.

Как метко заметил основатель современных информационных технологий Джон фон Нейман (1903–1957), «с четырьмя параметрами я могу описать слона, а с пятью – заставить его махать хоботом». Ученый имел в виду, что наличие чересчур большого количества свободных параметров может обернуться во вред: слишком велика опасность «переподгонки» данных. Хотя машина запоминает каждую деталь, это не означает, что она «поняла» нечто важное. Вы можете составить описание пахидермов, не имея никаких глубоких познаний о слонах как о виде. Наличие слишком большого количества свободных параметров препятствует абстракции. Несмотря на то что система учится легко, она не способна выполнять обобщение, то есть применять полученные знания в новых ситуациях. Тем не менее способность к обобщению является ключом к любому обучению. Какой смысл в машине, способной распознать картинку, которую она уже видела, или выиграть партию в го, в которую она уже играла? Очевидно, что конечная цель заключается в том, чтобы распознать любое изображение или выиграть у любого игрока в любых обстоятельствах – как знакомых, так и незнакомых.

Разумеется, ученые уже придумали несколько решений этой проблемы. Одним из наиболее эффективных методов, которые могут как ускорить процесс обучения, так и улучшить способность к обобщению, является упрощение модели. Когда число параметров, подлежащих корректировке, сведено к минимуму, система вынуждена искать более общее решение. Именно эта идея подтолкнула Лекуна к изобретению сверточных нейронных сетей – искусственного обучаемого устройства, которое стало эталоном в области распознавания образов13. Идея проста: чтобы распознать элементы на картинке, достаточно проделать более или менее одинаковые действия везде. Например, на фотографиях лица могут оказаться в любом месте. Чтобы распознать их, необходимо применить один и тот же алгоритм к каждой части изображения (искать овал, пару глаз и так далее). Никакой необходимости в отдельных моделях для каждой точки сетчатки нет: то, что усвоено в одном месте, может быть повторно использовано в любом другом.

В процессе обучения сверточные нейронные сети Лекуна применяют все, что им удается узнать в одной области, ко всей сети, на всех уровнях. Посему им предстоит усвоить гораздо меньшее количество параметров: по большому счету система должна отрегулировать один-единственный фильтр, который она будет применять везде, а не множество различных соединений для каждого фрагмента изображения. Этот простой трюк значительно улучшает производительность, особенно обобщение. Столкнувшись с новым изображением, алгоритм может использовать весь свой обширный опыт, полученный в результате анализа каждой точки каждой фотографии, которую он когда-либо видел. Это существенно ускоряет процесс обучения: машина исследует только подмножество моделей зрения. До начала обучения она уже знает о мире кое-что важное, а именно – что один и тот же объект может появиться в любом месте изображения.

Этот же прием работает и во многих других областях. Например, чтобы распознать речь, необходимо абстрагироваться от специфики голоса говорящего. Для этого искусственную нейронную сеть заставляют использовать одни и те же соединения в разных частотных диапазонах независимо от того, высокий голос или низкий. За счет уменьшения количества параметров, подлежащих корректировке, удается не только увеличить скорость, но и улучшить способность к обобщению. Собственно, именно благодаря этому ваш смартфон может реагировать на ваш голос.

Научение – это проецирование априорных гипотез

Стратегия Яна Лекуна – хороший пример гораздо более общего явления: использования знаний, присущих системе изначально. Сверточные нейросети учатся лучше и быстрее других типов искусственных нейронных сетей, потому что они не учатся всему. В самой их архитектуре заключена основополагающая гипотеза: то, что я узнаю в одном месте, можно обобщить и применить в других местах.

Главная проблема распознавания образов – это инвариантность: я должен распознать объект вне зависимости от его положения и размера, даже если он движется вправо или влево, ко мне или от меня. Это не только трудная задача, но и мощный ограничитель: логично предположить, что одни и те же подсказки помогут мне узнать лицо в любой точке пространства. Задействуя повсюду один и тот же алгоритм, сверточные сети эффективно используют это ограничение: они интегрируют его в саму свою структуру. Изначально, до любого обучения, система уже «знает» это ключевое свойство зрительного мира. Она не учится инвариантности, а принимает ее априори и использует для сужения учебного пространства – умно, не правда ли?

Мораль в том, что природу (наследственность) и среду не следует противопоставлять друг другу. Чистого научения в отсутствие каких-либо априорных ограничителей не существует. Любой алгоритм научения так или иначе содержит некий набор предположений об изучаемой области. Вместо того чтобы пытаться научиться всему «с нуля», гораздо эффективнее опираться на предварительные допущения, которые четко очерчивают базовые законы исследуемой области и интегрируют эти законы в саму архитектуру системы. Чем больше количество таких допущений, тем быстрее происходит научение (при условии, конечно, что эти допущения верны!). Это справедливо всегда. Например, было бы ошибочно полагать, что программа AlphaGo Zero, которая тренировалась играть в го сама с собой, возникла на пустом месте: ее первоначальное представление включало, среди прочего, знание топографии и симметрий игры, что позволило сократить пространство поиска в восемь раз.

Наш мозг тоже содержит множество допущений, причем самого разного толка. В одной из последующих глав мы убедимся, что при рождении мозг ребенка уже организован и весьма неплохо информирован. Дети имплицитно знают, что мир состоит из вещей, которые движутся, если их толкнуть, но никогда не проникают друг в друга (твердые предметы), а также из гораздо более странных сущностей, которые говорят и движутся сами по себе (люди). Специально изучать эти законы нет никакой необходимости: поскольку они верны везде, где живет человек, наш геном заранее встраивает их в мозг, тем самым существенно ускоряя процесс научения. Младенцам вовсе не приходится познавать мир «с нуля»: поскольку их мозг с самого начала изобилует врожденными ограничителями, все, что остается, – это усвоить определенные параметры, которые меняются непредсказуемо (форма лица, цвет глаз, тон голоса, индивидуальные вкусы окружающих людей и так далее).

С другой стороны, если мозг ребенка знает разницу между людьми и неодушевленными объектами, то это потому, что в определенном смысле он ей научился – не в первые дни своей жизни, но в ходе миллионов лет эволюции. Дарвиновский естественный отбор, по сути, представляет собой типичный алгоритм обучения – невероятно мощную программу, которая работала сотни миллионов лет на миллиардах обучающихся машин (под «машинами» я подразумеваю всех существ, когда-либо живших на Земле)14. Мы – наследники невероятной, бесконечной мудрости. Путем дарвиновских проб и ошибок наш геном впитал знания всех предшествующих поколений. Эти врожденные знания совсем иного типа, нежели конкретные факты, которые мы узнаем в течение жизни: они носят гораздо более абстрактный характер, ибо «программируют» наши нейронные сети уважать фундаментальные законы природы.

Вкратце, во время беременности наши гены закладывают архитектуру мозга, которая направляет и ускоряет последующее научение, ограничивая размер исследуемого пространства. На языке информатики можно сказать, что гены задают «гиперпараметры» мозга – высокоуровневые переменные, определяющие количество слоев, типы нейронов, общую форму их взаимосвязей, дублирование в сетчатке и так далее. Поскольку многие из этих переменных хранятся в нашем геноме, учиться им не нужно: наш вид усвоил их в ходе эволюционного развития.

Вывод: наш мозг – не просто пассивный приемник сенсорных импульсов. С самого начала он обладает набором абстрактных гипотез – знаниями, накопленными в результате дарвиновской эволюции и проецируемыми на внешний мир. Хотя не все ученые согласны с данной точкой зрения, я считаю ее ключевой: наивная эмпирическая философия, лежащая в основе многих современных искусственных нейросетей, ошибочна. Едва ли при рождении наши нейронные сети абсолютно дезорганизованы и лишены каких-либо знаний вообще. Такого просто не может быть. Научение – и у человека, и у машины – всегда начинается с некоего набора априорных гипотез. Эти гипотезы система проецирует на поступающие данные, а затем выбирает те, которые лучше всего согласуются с текущими условиями. Как пишет Жан-Пьер Шанжё в своей книге Neuronal Man (букв. «Человек нейронный», 1985), «учиться – значит исключать».

Глава 2
Почему наш мозг учится лучше, чем существующие машины

Глядя на последние достижения в сфере искусственного интеллекта, можно подумать, будто мы наконец-то сообразили, как скопировать и даже превзойти человеческое научение и интеллект. Согласно некоторым самопровозглашенным пророкам, машины вот-вот поработят нас. Ничто не может быть дальше от истины. На самом деле, большинство когнитивистов, несмотря на значительный прогресс в области искусственных нейронных сетей, прекрасно понимают, что возможности этих машин крайне ограниченны. По правде говоря, почти все искусственные нейронные сети осуществляют только те операции, которые наш мозг выполняет бессознательно, за несколько десятых долей секунды, – прежде всего это восприятие образа, его распознавание, классификация и установление значения15. Однако в отличие от машин наш мозг умеет не только это, он способен изучать образ сознательно, тщательно, шаг за шагом, в течение нескольких секунд. Он формулирует символические представления (репрезентации) и эксплицитные теории мира, которыми мы можем поделиться с окружающими с помощью речи.

Операции такого рода – медленные, разумные, символические – остаются исключительной привилегией нашего вида (пока). Современные алгоритмы машинного обучения их практически не воспроизводят. Несмотря на активные исследования в области машинного перевода и логики, искусственные нейронные сети часто обвиняют в том, что они пытаются изучить все на одном уровне, словно решение всех задач сводится к автоматической классификации. Для человека с молотком все похоже на гвоздь! Но наш мозг гораздо гибче. Получив информацию, он быстро расставляет приоритеты и по возможности выводит общие, логические, эксплицитные принципы.

Чего не хватает искусственному интеллекту?

Ответив на этот вопрос, мы сможем выявить уникальные характеристики человеческой способности к научению. Вот краткий и, вероятно, неполный список функций, которыми обладает даже младенец, но которые отсутствуют в большинстве современных искусственных систем.


Усвоение абстрактных понятий. Большинство искусственных нейросетей воспроизводит только самые первые стадии обработки информации – анализ изображения, который зрительные области нашего мозга осуществляют менее чем за пятую долю секунды. Алгоритмы глубокого обучения далеко не так глубоки, как утверждают некоторые. По словам Йошуа Бенжио, одного из изобретателей алгоритмов глубокого обучения, такие системы в основном схватывают поверхностные, статистические закономерности в данных, а не абстрактные понятия высокого уровня16. Например, чтобы распознать объект, алгоритмы глубокого обучения часто полагаются на те или иные очевидные особенности изображения – скажем, определенный цвет или форму. Измените эти детали – и производительность алгоритма резко упадет: современные сверточные нейронные сети не способны распознать, что составляет сущность объекта. Они не понимают, что стул остается стулом независимо от того, сколько у него ножек (четыре или только одна) или из чего он сделан (из стекла, металла или пластика). Тенденция обращать внимание на поверхностные признаки делает эти сети восприимчивыми к ошибкам. Написано множество статей о том, как обмануть нейронную сеть: возьмите банан, измените несколько пикселей или прицепите к нему определенную наклейку. Вуаля! – нейронная сеть подумает, что это тостер!

Разумеется, человек, которому показали изображение на долю секунды, иногда совершает те же промахи, что и машина, и может принять собаку за кошку17. Однако, если ему дать чуть больше времени, он тут же исправит ошибку. В отличие от компьютера мы обладаем способностью подвергнуть сомнению наши убеждения и переориентировать внимание на те аспекты образа, которые не согласуются с первым впечатлением. Этот второй анализ, сознательный и разумный, задействует наши общие способности к рассуждению и абстракции. Искусственные нейронные сети упускают из виду одну очень важную вещь: человеческое научение – это не просто настройка фильтра распознавания образов, это построение абстрактной модели мира. Например, когда мы учимся читать, мы приобретаем абстрактное представление о каждой букве алфавита, которое позволяет не только распознавать ее во всех возможных вариантах, но и генерировать новые:



Когнитивист Дуглас Хофштадтер однажды сказал, что распознать букву А – настоящая проблема для искусственного интеллекта! Данное язвительное замечание, несомненно, является сильным преувеличением, но доля истины в нем есть: даже в таком тривиальном контексте люди умело справляются с абстракциями. Этот наш дар лежит в основе одного забавного явления повседневной жизни капчи – коротенькой последовательности букв, которую просят распознать некоторые сайты, дабы убедиться, что вы человек, а не машина. Многие годы капчи успешно противостояли машинам. Но компьютерная наука развивается быстро: в 2017 году искусственной системе удалось распознать капчу почти на человеческом уровне18. Неудивительно, что этот алгоритм имитирует человеческий мозг сразу в нескольких отношениях. Совершая истинный tour de force[11]11
  Tour de force (франц.) – букв. «подвиг». (Прим. перев.)


[Закрыть]
, он умудряется извлечь скелет каждой буквы, внутреннюю сущность буквы А, после чего использует все ресурсы статистического мышления, чтобы проверить, применима ли эта абстрактная идея к имеющемуся образу. И все же этот компьютерный алгоритм, каким бы сложным он ни был, работает только с капчами. Наш мозг применяет способность распознавать абстракции во всех аспектах повседневной жизни.


Эффективная обработка данных. Все согласятся с тем, что современные нейронные сети обучаются слишком медленно: им требуются тысячи, миллионы, даже миллиарды элементов данных, чтобы сформировать представление об определенной области. У нас даже есть экспериментальные доказательства этой медлительности. Например, чтобы научиться приемлемо играть на консоли Atari, нейронной сети, разработанной DeepMind, необходимо минимум 900 часов, а человеку – всего 2!19 Другой пример – овладение речью. По оценкам психолингвиста Эммануэля Дюпу, в большинстве французских семей дети слышат от 500 до 1000 часов речи в год; этого более чем достаточно для усвоения языка Декарта, даже с такими мудреностями, как soixante douze («семьдесят два») или s'il vous plaît («пожалуйста»). С другой стороны, в племени цимане, населяющем север боливийской Амазонки, дети слышат только 60 часов речи в год, но это отнюдь не мешает им отлично говорить на языке цимане. Для сравнения: лучшие современные компьютерные системы от Apple, Baidu и Google требуют в 20–1000 раз больше данных, чтобы достичь даже мизерной языковой компетенции. В плане научения эффективность человеческого мозга остается непревзойденной: машины способны поглощать огромное количество информации, зато мы способны обрабатывать ее более эффективно. Иными словами, из минимума данных люди умеют извлекать максимум.


Социальное научение. Человек – единственный вид, который добровольно делится информацией: мы многому учимся у других людей благодаря речи. Данная способность до сих пор остается вне досягаемости современных искусственных нейросетей. В искусственных моделях знания зашифрованы, рассеяны в значениях сотен миллионов синаптических весов. В этой скрытой, имплицитной форме их нельзя извлечь и избирательно передать другим. Мы, напротив, можем эксплицитно сообщить другим информацию самого высокого уровня – ту, которая достигает нашего сознания. Сознательное знание неразрывно связано с возможностью его вербального выражения: всякий раз, когда мы приходим к более или менее четкому пониманию некоего явления, ментальная формула находит отклик в нашем языке мышления, и мы можем сообщить о ней окружающим с помощью речи. Необычайная эффективность, с которой человек делится своими знаниями с другими, используя минимальное количество слов («Чтобы попасть на рынок, поверните направо, на маленькую улочку за церковью»), до сих пор беспрецедентна как для животного мира, так и для мира компьютеров.


Научение с одной попытки. Ярчайший пример такой эффективности – усвоение нового материала с первой попытки. Если я употреблю новый глагол, скажем, «курдячить»[12]12
  Вымышленный глагол из искусственной фразы на основе русского языка «Глокая куздра штеко будланула бокра и курдячит бокрёнка», предложенной Л.В. Щербой в 1930-е годы. (Прим. перев.)


[Закрыть]
, хотя бы один раз, вы тоже сможете его использовать. Конечно, некоторые искусственные нейросети могут запомнить мою фразу. Но что машины пока не умеют делать хорошо, так это интегрировать новую информацию в существующую сеть знаний – а человеческому мозгу это отлично удается. Вы не только запоминаете новый глагол «курдячить», но и мгновенно понимаете, как его спрягать и вставлять в другие предложения: вы часто курдячите? я курдячил вчера, а они курдячат сегодня. Когда я говорю: «Давайте покурдячим завтра» – вы не просто узнаете новое слово, вы вставляете его в обширную систему символов и правил. Например, «курдячить» – личный глагол II спряжения (я курдячу, ты курдячишь, он курдячит и т.д.). Научиться – значит успешно внедрить новые знания в существующую сеть.


Систематичность и язык мышления. Грамматические правила – лишь один из примеров необычайного таланта нашего мозга: способности обнаруживать общие законы, лежащие в основе конкретных случаев. Будь то математика, язык, наука или музыка, человеческий мозг ухитряется извлекать из них абстрактные принципы, систематические правила, которые он может вновь применить в самых разных контекстах. Возьмем, к примеру, арифметику: наша способность складывать два числа носит очень общий характер – как только мы научились этой процедуре на малых числах, мы без труда можем применить ее к произвольно большим числам. Но главное – мы умеем делать обобщающие выводы. Многие дети в возрасте пяти-шести лет обнаруживают, что за каждым числом n следует число n + 1 и что последовательность целых чисел, следовательно, бесконечна – наибольшего числа просто не существует. Лично я до сих пор с трепетом вспоминаю момент, когда я это осознал – на самом деле, это была моя первая математическая теорема. Какие необыкновенные способности к абстракции! Каким образом нашему мозгу, состоящему из конечного числа нейронов, удается концептуализировать бесконечность?

Современным искусственным нейросетям недоступен даже такой простой абстрактный закон, как «за каждым числом следует другое число». Абсолютные истины – не их конек. Систематичность20, способность к обобщению на основе некоего символического правила, а не поверхностного сходства по-прежнему ускользает от большинства современных алгоритмов. Иронично, но так называемые алгоритмы глубокого обучения практически не приспособлены к глубокому анализу.

Наш мозг, напротив, превосходно умеет выводить формулы на своем собственном, ментальном языке. Например, он может выразить понятие бесконечного множества, ибо обладает внутренним языком, наделенным такими абстрактными функциями, как отрицание и квантификация (бесконечное = не конечное = за пределами любого числа). Американский философ Джерри Фодор (1935–2017) предложил теоретическое объяснение этой способности: он утверждал, что мы мыслим символами, которые комбинируются в соответствии с систематическими правилами особого «языка мышления»21. Возможности такого языка обусловлены его рекурсивной природой: каждый вновь созданный объект (скажем, понятие бесконечности) может быть немедленно использован в новых комбинациях, без ограничений. Сколько существует бесконечностей? Этот, казалось бы, абсурдный вопрос задал себе математик Георг Кантор (1845–1918) и сформулировал теорию трансфинитных чисел. Способность «бесконечно использовать конечный набор средств», согласно Вильгельму фон Гумбольдту (1767–1835), характеризует все человеческое мышление.

Некоторые искусственные модели пытаются имитировать усвоение абстрактных математических правил у детей, но для этого они должны овладеть совсем иной формой научения – той, которая опирается на уже существующий набор правил и базовых положений и предполагает быстрый выбор самых емких и правдоподобных из них22. С этой точки зрения научение становится похожим на программирование: оно состоит в выборе простейшей внутренней формулы среди всех доступных на языке мышления.

Современные нейронные сети по большей части не способны репрезентировать весь спектр абстрактных фраз, формул, правил и теорий, с помощью которых мозг Homo sapiens моделирует мир. Едва ли это случайно: в этом есть нечто сугубо человеческое, нечто такое, чего нет в мозге других видов животных и что современная нейробиология еще не успела изучить подробно – поистине уникальный признак нашего вида. По всей видимости, люди – единственные приматы, чей мозг репрезентирует наборы символов, которые комбинируются в соответствии со сложным древовидным синтаксисом23. В частности, сотрудники моей лаборатории доказали: услышав последовательность звуков – например, бип-бип-бип-буп, – человеческий мозг мгновенно строит теорию относительно лежащей в ее основе абстрактной структуры (три идентичных звука плюс один непохожий). Оказавшись в аналогичной ситуации, обезьяна обнаруживает последовательность из четырех звуков, понимает, что последний отличается, но, похоже, не интегрирует эти фрагментарные знания в единую формулу. Откуда нам это известно? Изучая мозговую деятельность обезьян, мы видим, как отдельные нейронные сети реагируют на количество и последовательности, но не наблюдаем интегрированного паттерна активности в области, отвечающей за речь у людей, так называемой зоне Брока24.

По аналогии с этим потребуются десятки тысяч попыток, прежде чем обезьяна поймет, как изменить порядок последовательности (с АБВГ на ГВБА), хотя четырехлетнему ребенку достаточно пяти25. Младенец, который родился всего несколько месяцев назад, уже кодирует внешний мир с помощью абстрактных и систематических правил – это способность, которой напрочь лишены не только классические искусственные нейросети, но и другие виды приматов.


Компоновка. Как только я научусь складывать два числа (к примеру), этот навык станет неотъемлемой частью моего репертуара талантов: иными словами, я немедленно смогу его применить для решения любых других задач. Я смогу использовать его как подпрограмму в десятках различных контекстов – скажем, чтобы оплатить счет в ресторане или проверить налоговую декларацию. Но главное – я смогу комбинировать его с другими приобретенными навыками: например, без труда взять некое число, прибавить к нему 2 и определить, что больше: новое число или 526.

Удивительно, но современные искусственные нейросети до сих пор не проявляют такой гибкости. Знание, которое они усвоили, остается изолированным в скрытых, недоступных связях, что препятствует его повторному использованию в других, более сложных задачах. В отличие от человека искусственные модели не умеют сочетать ранее приобретенные навыки, то есть рекомбинировать их для решения новых задач. Для современного искусственного интеллекта характерна чрезвычайно узкая специализация. Программа AlphaGo, которая может победить любого чемпиона по игре в го, – упрямый эксперт, неспособный обобщить свои таланты и применить их в другой, даже очень похожей игре (например, AlphaGo отлично умеет играть в го на стандартном гобане 19х19, но не на доске 15х15). В человеческом мозге, напротив, научение почти всегда означает преобразование знаний в эксплицитную форму, позволяющую их использовать повторно, рекомбинировать и объяснять другим. Здесь мы снова сталкиваемся с уникальным аспектом человеческого мозга, который тесно связан с речью и который, как оказалось, крайне трудно воспроизвести в машине. Еще в 1637 году эту проблему предвосхитил Декарт в своем фундаментальном труде «Рассуждения о методе»:

Но если бы сделать машины, которые имели бы сходство с нашим телом и подражали бы нашим действиям, насколько это мыслимо, то у нас все же было бы два верных средства узнать, что эта не настоящие люди. Во-первых, такая машина никогда не могла бы пользоваться словами или другими знаками, сочетая их так, как это делаем мы, чтобы сообщать другим свои мысли. Можно, конечно, представить себе, что машина сделана так, что произносит слова… Но никак нельзя себе представить, что она расположит слова различным образом, чтобы ответить на сказанное в ее присутствии, на что, однако, способны даже самые тупые люди. Во-вторых, хотя такая машина многое могла бы сделать так же хорошо и, возможно, лучше, чем мы, в другом она непременно оказалась бы несостоятельной, и обнаружилось бы, что она действует не сознательно, а лишь благодаря расположению своих органов. Ибо в то время как разум – универсальное орудие, могущее служить при самых разных обстоятельствах, органы машины нуждаются в особом расположении для каждого отдельного действия[13]13
  Декарт, Р. Рассуждения о методе. М.: АСТ, 2019. (Прим. перев.)


[Закрыть]
.

Разум – универсальное орудие нашей психики. Умственные способности, перечисленные Декартом, предполагают наличие второй системы научения, иерархически занимающей более высокое положение, чем первая, и основанной на правилах и символах. На ранних стадиях наша зрительная система отдаленно напоминает современные искусственные нейросети: она учится фильтровать поступающие образы и распознавать часто встречающиеся конфигурации. Этого достаточно, чтобы определить лицо, слово или расположение камней на гобане. Но затем стиль обработки информации кардинально меняется: научение становится больше сродни рассуждению, логическому выводу, имеющему своей целью выявить основополагающие правила изучаемой области. Создание машин, которым доступен этот второй уровень интеллекта, – сложнейшая задача. Но что конкретно делают люди, когда учатся на этом втором уровне, и что именно ускользает от большинства современных алгоритмов машинного обучения?


Страницы книги >> Предыдущая | 1 2 3 4 5 6 7 8 9 10 | Следующая
  • 0 Оценок: 0

Правообладателям!

Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.

Читателям!

Оплатили, но не знаете что делать дальше?


Популярные книги за неделю


Рекомендации