Электронная библиотека » Степан Карпенков » » онлайн чтение - страница 12


  • Текст добавлен: 15 декабря 2015, 19:00


Автор книги: Степан Карпенков


Жанр: Учебная литература, Детские книги


Возрастные ограничения: +16

сообщить о неприемлемом содержимом

Текущая страница: 12 (всего у книги 51 страниц) [доступный отрывок для чтения: 15 страниц]

Шрифт:
- 100% +

ЧАСТЬ II ФУНДАМЕНТАЛЬНЫЕ ЗАКОНЫ И КОНЦЕПЦИИ ЕСТЕСТВОЗНАНИЯ

Изучать что-либо и не задумываться над выученным – абсолютно бесполезно. Задумываться над чем-либо, не изучив предмет раздумий, – опасно.

Конфуций

В результате изучения части II студент должен знать:

– фундаментальные принципы и законы природы;

– атомный и нуклонный уровень строения материи;

уметь:

– применять фундаментальные знания о природе при оценке природных явлений и процессов;

– оценивать последствия искусственных ядерных процессов;

владеть:

– навыками организации деятельности человека при бережном отношении к природе.

3. ФУНДАМЕНТАЛЬНЫЕ ЗАКОНЫ И ПРИНЦИПЫ
3.1. Физика – фундаментальная отрасль естествознания

Физика – основа естественно-научного познания. Огромное ветвистое дерево естествознания медленно произрастало из натурфилософии – философии природы, представляющей собой умозрительное истолкование природных явлений и процессов. Натурфилософия зарождалась в VI–V вв. до н. э. в Древней Греции в ионийской школе и была, по существу, первой исторической формой философии, которая носила стихийно-материалистический характер. Ее основоположники – крупные мыслители древности: Фалес, Анаксимандр, Анаксимен, Гераклит Эфесский и др. – руководствовались идеями о единстве сущего, происхождении всех вещей из некоторого первоначала (земли, воды, воздуха, огня) и о всеобщей одушевленности материи. Интерес к природе как объекту познания вызвал новый расцвет натурфилософии в эпоху Возрождения, который связан с именами известных мыслителей – Дж. Бруно, Б. Телезио, Т. Кампанеллы и др. Позднее натурфилософские взгляды на окружающий мир, основанные на объективно-идеалистической диалектике природы как живого организма, развивались немецким философом Ф. Шеллингом (1775–1854) и его последователями.

Наряду с умозрительными и в определенной степени фантастическими представлениями натурфилософия содержала глубокие идеи диалектической трактовки природных явлений. Поступательное развитие экспериментального естествознания привело к постепенному перерастанию натурфилософии в естественно-научные знания. Таким образом, в недрах натурфилософии зарождалась физика – наука о природе, изучающая простейшие и вместе с тем наиболее общие свойства материального мира.

Физика составляет основу естествознания. В соответствии с многообразием исследуемых форм материи и ее движения она подразделяется на механику, термодинамику, электродинамику, физику элементарных частиц, ядерную физику, физику плазмы и т. д. На ее стыке с другими естественными науками возникли биофизика, астрофизика, геофизика, физическая химия и др.

Слово «физика» появилось еще в древние времена и в переводе с греческого означает «природа». Натурфилософское сочинение древнегреческого философа Аристотеля (384–322 гг. до н. э.), ученика Платона, так и называется «Физика». Аристотель писал: «Наука о природе изучает преимущественно тела и величины, их свойства и виды движений, а кроме того, начала такого рода бытия».

«Высшая задача физики состоит в открытии наиболее общих элементарных законов, из которых можно было бы логически вывести картину мира», – так считал Эйнштейн. Одна из главных задач физики – выявление самого простого и самого общего в природе. Под самым простым обычно принято понимать первичные объекты: молекулы, атомы, элементарные частицы, поля, а под самым общим – движение, пространство и время, энергию и т. д. Физика изучает разнообразные явления и объекты природы, и при этом сложное сводится к простому, конкретное – к общему. Так устанавливаются универсальные законы, справедливость которых подтверждается не только в земных условиях и в околоземном пространстве, но и во всей Вселенной. В этом заключается один из существенных признаков физики как фундаментальной науки. Физика занимает особое место среди естественных наук, и ее принято считать лидером естествознания.

К настоящему времени известно множество естественных наук, отражающих различные свойства объектов природы. Их классификация и иерархия всегда интересовали ученых. Одну из первых классификаций провел в начале XIX в. французский физик А. Ампер (1775–1836). Уже тогда общее число естественных наук составляло более 200. Естественно-научные знания он представил в виде единой системы, состоящей из различных по характеру идей и экспериментальных сведений. В такой системе физика располагалась на первом уровне как наука наиболее фундаментальная, химия – на втором, как бы основывающаяся на физике, и т. д.

Позднее – в середине XIX в., – изучая историю развития естествознания, немецкий химик Ф. Кекуле (1829–1896) предложил свою иерархию естественных наук в форме четырех последовательных ступеней: механика, физика, химия, биология. В ней рассматривались молекулярная физика и термодинамика как механика молекул, химия – как физика атомов, а биология – как химия белков или белковых систем.

Вопросы иерархии, классификации и взаимосвязи естественных наук обсуждаются и по сей день. При этом рассматриваются разные точки зрения. Например, одна из них – все химические явления, строение вещества и его превращение можно объяснить на основании физических знаний – ничего специфического в химии нет. Другая точка зрения – каждый вид материи и каждая форма материальной организации (физическая, химическая, биологическая) настолько специфичны и обособлены, что между ними нет прямых связей. Конечно, такие полярные точки зрения далеки от истины. Вполне очевидно: несмотря на то, что физика – фундаментальная отрасль естествознания, каждая из естественных наук при одной и той же общей задаче изучения природы имеет свой объект исследования и базируется на своих законах, не сводимых к законам других отраслей науки. Сочетание всесторонних знаний, накопленных в течение длительного времени в отдельных отраслях естествознания, способствует дальнейшему его развитию.

Возвращаясь к мысли, изложенной в начале этого параграфа, можно сказать: натурфилософия породила физику. Однако также определенно можно утверждать и другое: физика выросла из потребностей техники (например, развитие механики у древних греков было вызвано запросами строительной и военной техники того времени). Техника, в свою очередь, определяет направление физических исследований (так, задача создания наиболее экономичных тепловых двигателей стимулировала бурное развитие термодинамики). С другой стороны, от развития физики зависит технический уровень производства. Физические достижения – фундаментальная база для наукоемких технологий и новых технических средств производства.

Физика тесно связана и с философией. Такие крупные открытия, как закон сохранения и превращения энергии, второе начало термодинамики, соотношение неопределенностей и др., являлись и являются ареной острой борьбы между сторонниками разных философских течений. Научные открытия служат питательной средой для многих философских идей. Изучение открытий и их философское, концептуальное обобщение играют большую роль в формировании естественно-научного мировоззрения.

Основные этапы развития физики. Всю историю развития физики, как и естествознания, можно условно разделить на три основных этапа:

1) доклассической физики;

2) классической физики;

3) современной физики.

Первый этап развития физики – этап доклассической физики – иногда называют донаучным. Однако такое название нельзя считать обоснованным: фундаментальные зерна физики и естествознания в целом были посеяны еще в глубокой древности.

Этот этап – самый длительный: он охватывает период от времени Аристотеля (IV в. до н. э.) до конца XVI в.

Начало второго этапа – этапа классической физики – связывают с работами итальянского ученого Г. Галилея, одного из основателей точного естествознания, и трудами английского математика, механика, астронома и физика И. Ньютона, основоположника классической физики. Второй этап длился около трех веков до конца XIX в.

К началу XX в. были получены экспериментальные результаты, трудно объяснимые в рамках классических знаний. Поэтому был предложен совершенно новый подход – квантовый, основанный на дискретной концепции. Квантовую гипотезу впервые ввел в 1900 г. немецкий физик М. Планк, вошедший в историю развития физики как один из основоположников квантовой теории. С введением квантовой концепции начинается третий этап развития физики – этап современной физики, включающий не только квантовые, но и классические представления.

Этап доклассической физики открывает геоцентрическая система мировых сфер Аристотеля, которая родилась на подготовленной его предшественниками идейной почве. Переход от эгоцентризма – отношения к миру, характеризующегося сосредоточенностью на своем индивидуальном «я», к геоцентризму – первый и, пожалуй, самый трудный шаг на пути зарождения ростков естествознания. Непосредственно видимая полусфера неба, ограниченная местным горизонтом, дополнялась аналогичной невидимой полусферой до полной небесной сферы. Мир стал более завершенным, но оставался ограниченным небесной сферой. Соответственно и сама Земля, противопоставленная остальной (небесной) сферической Вселенной как постоянно занимающая в ней особое, центральное положение и абсолютно неподвижная, стала считаться сферической. Пришлось признать не только возможность существования антиподов – обитателей диаметрально противоположных частей земного шара, но и принципиальную равноправность всех земных обитателей мира. Такие представления, носившие в основном умозрительный характер, подтвердились гораздо позднее – в эпоху первых кругосветных путешествий и великих географических открытий, т. е. на рубеже XV и XVI вв., когда само геоцентрическое учение Аристотеля с канонической системой идеальных равномерно вращающихся небесных сфер, сочлененных друг с другом своими осями вращения, с принципиально различной физикой или механикой для земных и небесных тел, доживало свои последние годы.

Почти полторы тысячи лет отделяют завершенную геоцентрическую систему древнегреческого астронома К. Птолемея (ок. 90–160) от достаточно совершенной гелиоцентрической системы польского математика и астронома Н. Коперника. В центре гелиоцентрической системы находится не Земля, а Солнце. Вершина гелиоцентрической системы – законы движения планет, открытые немецким астрономом И. Кеплером, одним из творцов естествознания Нового времени.

Астрономические открытия Г. Галилея, его физические эксперименты и фундаментальные законы механики, сформулированные И. Ньютоном, положили начало этапу классической физики, который нельзя отделить четкой границей от первого этапа. Для физики и естествознания в целом характерно поступательное развитие: законы Кеплера – венец гелиоцентрической системы с весьма длительной, начавшейся еще в древние времена историей; законам Ньютона предшествовали законы Кеплера и труды Галилея; Кеплер открыл законы движения планет в итоге логически и исторически естественного перехода от геоцентризма к гелиоцентризму, но не без эвристических идей аристотелевской механики. Механика Аристотеля разделялась на земную и небесную, т. е. не обладала надлежащим принципиальным единством: аристотелевское взаимное противопоставление Земли и Неба сопровождалось принципиальной противоположностью относящихся к ним законов механики, которая тем самым оказалась в целом внутренне противоречивой, несовершенной. Галилей опроверг аристотелевское противопоставление Земли и Неба. Он предложил представление Аристотеля об инерции, характеризующее равномерное движение небесных тел вокруг Земли, применять для земных тел при их свободном движении в горизонтальном направлении.

Кеплер и Галилей пришли к своим кинематическим законам, предопределившим принципиально единую для земных и небесных тел механику Ньютона. Законы Кеплера и закон всемирного тяготения Ньютона послужили основой для открытия новых планет. Так, по результатам наблюдений отклонений в движении планеты Уран, открытой в 1781 г. английским астрономом У. Гершелем (1738–1822), английский астроном и математик Д. Адамс (1819–1892) и французский астроном У. Леверье (1811–1877) независимо друг от друга и почти одновременно теоретически предсказали существование заурановой планеты, которую обнаружил в 1846 г. немецкий астроном И. Галле (1812–1910). Она называется Нептун. В 1915 г. американский астроном П. Ловелл (1855–1916) рассчитал и организовал поиск еще одной планеты. Ее обнаружил в 1930 г. молодой американский любитель астрономии К. Томбо. Эта планета получила название ПлуСтремительными темпами развивалась не только классическая механика Ньютона. Этап классической физики характеризуется крупными достижениями и в других отраслях: термодинамике, молекулярной физике, оптике, электричестве, магнетизме и т. п. Назовем важнейшие из них:

– установлены опытные газовые законы;

– предложено уравнение кинетической теории газов;

– сформулирован принцип равномерного распределения энергии по степеням свободы, первое и второе начала термодинамики;

– открыты законы Кулона, Ома и электромагнитной индукции;

– разработана электромагнитная теория;

– явления интерференции, дифракции и поляризации света получили волновое истолкование;

– сформулированы законы поглощения и рассеяния света.

Конечно, можно назвать и другие не менее важные достижения, среди которых особое место занимает электромагнитная теория, разработанная выдающимся английским физиком Дж. Максвеллом (1831–1879), создателем классической электродинамики, одним из основоположников статистической физики. Он установил, кроме того, статистическое распределение молекул по скоростям, названное его именем. Теория электромагнитного поля (уравнения Максвелла) объяснила многие известные к тому времени явления и предсказала электромагнитную природу света. С электромагнитной теорией Максвелла вряд ли можно поставить рядом другую более значительную в классической физике. Однако и эта теория оказалась не всесильной.

В конце XIX в. при изучении спектра излучения абсолютно черного тела была установлена закономерность распределения энергии. Полученные кривые распределения имели характерный максимум, который по мере повышения температуры смещался в сторону более коротких волн. Такие результаты эксперимента не удалось объяснить в рамках классической электродинамики Максвелла. Эта проблема была названа «ультрафиолетовой катастрофой».

Согласующееся с экспериментом объяснение предложил в 1900 г. М. Планк. Для чего ему пришлось отказаться от общепринятого положения классической физики о том, что энергия любой системы изменяется только непрерывно, т. е. принимает любые сколь угодно близкие значения. В соответствии с выдвинутой Планком квантовой гипотезой атомные осцилляторы излучают энергию не непрерывно, а определенными порциями – квантами, причем энергия кванта пропорциональна частоте.

Характерная особенность этапа современной физики заключается в том, что наряду с классическими развиваются квантовые представления, на основании квантовой механики объясняются многие микропроцессы, происходящие в пределах атома, ядра и элементарных частиц, – появились новые отрасли современной физики: квантовая электродинамика, квантовая теория твердого тела, квантовая оптика и многие другие.

В одной из своих статей М. Планк писал о том, как во времена его молодости (примерно в 1880 г.) один уважаемый профессор не советовал заниматься физикой, полагая, что в физике осталось только стирать пыль с существующих физических приборов, так как главное уже сделано. Сейчас очевидно: профессор в своих прогнозах ошибался – XX в. принес немало великих открытий в физике, определивших многие перспективные направления развития разных отраслей естествознания.

В формировании квантово-механических представлений важную роль сыграла квантовая теория фотоэффекта, предложенная А. Эйнштейном в 1905 г. Именно за эту работу и вклад в теоретическую физику, а не за теорию относительности, ему в 1921 г. была присуждена Нобелевская премия по физике.

В развитие современной физики существенный вклад внесли многие выдающиеся ученые, среди которых следует назвать датского физика Н. Бора (1885–1962), создавшего квантовую теорию атома, немецкого физика-теоретика В. Гейзенберга (1901–1976), сформулировавшего принцип неопределенности и предложившего матричный вариант квантовой механики, австрийского физика-теоретика Э. Шредингера (1887– 1961), разработавшего волновую механику и предложившего ее основное уравнение (уравне-ние Шредингера), английского физика П. Дирака (1902–1984), разработавшего релятивистскую теорию движения электрона и на ее основании предсказавшего существование позитрона, английского физика Э. Резерфорда (1871–1937), создавшего учение о радиоактивности и строении атома, и многих других.

В первые десятилетия XX в. исследовалась радиоактивность и выдвигались идеи о строении атомного ядра. В 1938 г. сделано важное открытие: немецкие радиохимики О. Ганн и Ф. Штрассман обнаружили деление ядер урана при облучении их нейтронами. Это открытие способствовало бурному развитию ядерной физики, созданию ядерного оружия и рождению атомной энергетики.

В исследовании ядерных процессов большую роль играют детекторы частиц, в том числе и черенковский счетчик, действие которого основано на Черенкова – Вавилова излучения света, которое возникает при движении в веществе заряженных частиц со скоростью, превосходящей фазовую скорость света в нем. Это излучение было обнаружено нашим соотечественником, физиком П.А. Черенковым (1904–1990), лауреатом Нобелевской премии 1958 г., под руководством академика С.И. Вавилова (1891–1951), основателя научной школы физической оптики.

Одно из крупнейших достижений физики XX в. – это, безусловно, создание в 1947 г. транзистора выдающимися американскими физиками Д. Бардиным, Д. Браттейном и У. Шокли, удостоенными в 1956 г. Нобелевской премии по физике. С развитием физики полупроводников и созданием транзистора зарождалась новая технология – полупроводниковая, а вместе с ней и перспективная, бурно развивающаяся отрасль естествознания – микроэлектроника. В 1958 г. собрана первая интегральная схема в виде пластины из монокристалла кремния площадью несколько квадратных сантиметров, на которой располагались два транзистора и RC-цепи. Современный микропроцессор размером 1,8 см содержит около 8 млн транзисторов. Если размеры элементов первых транзисторов составляли доли миллиметра, то сегодня они равны 0,35 мкм. Это современный технологический уровень. В последнее время разрабатывается технология формирования элементов нанометровых размеров.

Создание квантовых генераторов на основе вынужденного излучения атомов и молекул – еще одно важнейшее достижение физики XX в. Первый квантовый генератор на молекулах аммиака – источник электромагнитного излучения в СВЧ-диапазоне (мазер) – разработан в 1954 г. российскими физиками Н.Г. Басовым, А.М. Прохоровым и американским ученым Ч. Таунсом. В 1964 г. за эту работу им присуждена Нобелевская премия по физике. К настоящему времени разработано много модификаций квантовых генераторов, в том числе и оптических квантовых генераторов, называемых лазерами, получивших широкое практическое применение. Появились уникальные лазеры – химические, атомные и др., которые открывают перспективные направления лазерных технологий.

Высокотемпературная сверхпроводимость, открытая в 1986 г. немецким физиком Г. Беднорцем и швейцарским ученым А. Мюллером, удостоенными Нобелевской премии 1987 г., – вне всякого сомнения выдающееся достижение современного естествознания.

Созданию единой теории фундаментальных взаимодействий, управлению термоядерным синтезом – этим и многим другим проблемам современной физики уделяется большое внимание, и в их решении принимают участие ученые многих стран.

3.2. Материя и движение, время и пространство

Одна из важнейших задач естествознания – создание естественнонаучной картины мира в виде целостной упорядоченной системы. Для ее решения используются общие и абстрактные понятия: материя, движение, время и пространство.

Материя – это все то, что прямо или косвенно действует на органы чувств человека и другие объекты. Окружающий нас мир, все существующее вокруг нас представляет собой материю, которая тождественна реальности. Неотъемлемое свойство материи – движение. Без движения нет материи, и наоборот. Движение материи – любые изменения, происходящие с материальными объектами в результате их взаимодействий. Материя не существует в бесформенном состоянии – из нее образуется сложная иерархическая система материальных объектов различных масштабов и сложности.

Отличительная особенность естественно-научного познания заключается в том, что для естествоиспытателей представляет интерес не материя или движение вообще, а конкретные виды материи и движения, свойства материальных объектов, их характеристики, которые можно измерить с помощью приборов. В современном естествознании различают три вида материи: вещество, физическое поле и физический вакуум.

Вещество – основной вид материи, обладающий массой. К вещественным объектам относятся элементарные частицы, атомы, молекулы и многочисленные образованные из них материальные системы. В химии вещества подразделяются на простые (с атомами одного химического элемента) и сложные – химические соединения. Свойства вещества зависят от его состава, структуры и внешних условий. Интенсивность взаимодействия атомов и молекул обусловливает различные агрегатные состояния вещества: твердое, жидкое и газообразное. При очень высокой температуре образуется плазма. Переход вещества из одного – состояния в другое можно рассматривать как один из видов движения материи.

В природе наблюдаются различные виды движения материи, которые можно классифицировать с учетом изменений свойств материальных объектов и их воздействий на окружающий мир. Механическое движение (относительное перемещение тел), колебательное и волновое движения, распространение и изменение различных полей, тепловое (хаотическое) движение атомов и молекул, равновесные и неравновесные процессы в макросистемах, фазовые переходы между агрегатными состояниями (плавление, парообразование и др.), радиоактивный распад, химические и ядерные реакции, развитие живых организмов и биосферы, эволюция звезд, галактик и Вселенной в целом – все это примеры многообразных видов движения материи.

Физическое поле – особый вид материи, обеспечивающий физическое взаимодействие материальных объектов и их систем. К физическим полям относятся электромагнитное и гравитационное поля, поле ядерных сил, а также волновые (квантовые) поля, соответствующие различным частицам (например, электрон-позитронное поле). Источником физических полей являются частицы (например, для электромагнитного поля – заряженные частицы). Созданные частицами физические поля переносят с конечной скоростью взаимодействие между ними. В квантовой теории взаимодействие обусловливается обменом квантами поля между частицами.

Физический вакуум – низшее энергетическое состояние квантового поля. Этот термин введен в квантовой теории поля для объяснения некоторых микропроцессов. Среднее число частиц – квантов поля – в вакууме равно нулю, однако в нем могут рождаться виртуальные частицы – частицы в промежуточных состояниях, существующие короткое время. Виртуальные частицы влияют на физические процессы. В физическом вакууме могут рождаться пары частица-античастица разных типов. При достаточно большой концентрации энергии вакуум взаимодействует с реальными частицами, что подтверждается экспериментом. Предполагается, что из физического вакуума, находящегося в возбужденном состоянии, родилась Вселенная.

Всеобщими универсальными формами существования и движения материи принято считать время и пространство. Движение материальных объектов и различные реальные процессы происходят в пространстве и во времени. Особенность естественно-научного представления об этих понятиях заключается в том, что время и пространство можно охарактеризовать количественно с помощью приборов.

Время выражает порядок смены физических состояний и является объективной характеристикой любого процесса или явления. Время – это то, что можно измерить с помощью многих приборов. Принцип работы таких приборов основан на разных физических процессах, среди которых наиболее удобны периодические процессы: вращение Земли вокруг своей оси, электромагнитное излучение возбужденных атомов и др. Природа наделила человека удивительным свойством интуитивно определять время с помощью биологических часов, которые отсчитывают циклы, примерно равные 24 ч. Такое восприятие времени осуществляется головным мозгом. Многие крупные достижения в естествознании связаны с разработкой более точных приборов для определения времени. Существующие сегодня эталоны позволяют измерить время с очень высокой точностью – например, относительная погрешность измерений для водородного эталона времени не превышает 5·10-15.

В последние десятилетия в качестве эталона времени используются атомные часы, в которых источник колебаний не маятник и не кварцевый генератор, а сигналы, обусловленные квантовым переходом электронов между двумя энергетическими уровнями атома. Эти сигналы имеют очень высокую стабильность энергии и частоты колебаний. Сегодня секунда – это промежуток времени, точно равный 9 192 631 770 периодам излучения, каждый из которых соответствует переходу между двумя сверхтонкими уровнями основного состояния атома цезия-133.

Возможно, в скором будущем примут новый эталон времени – пульсары, которые по стабильности сигналов не уступают лучшим атомным часам.

Временная характеристика реальных процессов основывается на постулате времени: одинаковые во всех отношениях явления происходят за одинаковое время. Хотя постулат времени кажется естественным и очевидным, его истинность все же относительна, так как его нельзя проверить на опыте даже с помощью самых совершенных часов, поскольку, во-первых, они характеризуются своей точностью, и, во-вторых, невозможно создать принципиально одинаковые условия в природе в разное время. Вместе с тем длительная практика естественно-научных исследований позволяет не сомневаться в справедливости постулата времени в пределах той точности, которая достигнута в данный момент времени.

При создании классической механики около 300 лет назад И. Ньютон ввел понятие абсолютного, или истинного, математического времени, которое течет всегда и везде равномерно, и относительного времени как меры продолжительности, употребляемой в обыденной жизни и означающей определенный интервал времени: час, день, месяц и т. д.

В современном представлении время всегда относительно. Из теории относительности следует, что при скорости, близкой к скорости света в вакууме, время замедляется – происходит релятивистское замедление времени, и что сильное поле тяготения приводит к гравитационному замедлению времени. В обычных земных условиях такие эффекты чрезвычайно малы.

Важнейшее свойство времени заключается в его необратимости. Прошлое во всех деталях и подробностях нельзя воспроизвести в реальной жизни – прошлое забывается. Необратимость времени обусловлена сложным взаимодействием множества природных систем, в том числе атомов и молекул, и символически обозначается стрелой времени, «летящей» всегда из прошлого в будущее. Необратимость реальных процессов в термодинамике связывают с хаотичным движением атомов и молекул.

Понятие пространства гораздо сложнее понятия времени. В отличие от одномерного времени реальное пространство трехмерно, т. е. имеет три измерения. В трехмерном пространстве существуют атомы и планетные системы, выполняются фундаментальные законы природы. Однако выдвигаются гипотезы, согласно которым пространство нашей Вселенной имеет много измерений, хотя наши органы чувств способны ощущать только три из них.

Первые представления о пространстве возникли из очевидного существования в природе твердых тел, занимающих определенный объем. Исходя из него, можно дать определение: пространство выражает порядок сосуществования физических тел. Завершенная теория пространства – геометрия Евклида – создана более 2000 лет назад и до сих пор считается образцом научной теории.

По аналогии с абсолютным временем И. Ньютон ввел понятие абсолютного пространства, которое существует независимо от находящихся в нем физических объектов и может быть совершенно пустым, являясь как бы мировой ареной, где разыгрываются физические процессы. Свойства пространства определяются геометрией Евклида. Именно такое представление о пространстве лежит в основе практической деятельности людей. Однако пустое пространство идеально, в то время как реальный окружающий нас мир заполнен различными материальными объектами. Идеальное пространство без материальных объектов лишено смысла даже, например, при описании механического движения тела, для которого необходимо указать другое тело в качестве системы отсчета. Механическое движение тел относительно. Абсолютного движения, как и абсолютного покоя тел, в природе не существует. Пространство, как и время, относительно.

Специальная теория относительности объединила пространство и время в единый континуум пространство – время. Основанием для такого объединения служит принцип относительности и постулат о предельной скорости передачи взаимодействий материальных объектов – скорости света в вакууме, примерно равной 300 000 км/с. Из этой теории следует относительность одновременности двух событий, происшедших в разных точках пространства, а также относительность измерений длин и интервалов времени, произведенных в разных системах отсчета, движущихся относительно друг друга.

В соответствии с общей теорией относительности свойства пространства – времени зависят от наличия материальных объектов. Любой материальный объект искривляет пространство, которое можно описать не геометрией Евклида, а сферической геометрией Римана или гиперболической геометрией Лобачевского. Предполагается, что вокруг массивного тела при очень большой плотности вещества искривление становится настолько существенным, что пространство – время как бы «замыкается» локально само на себя, отделяя данное тело от остальной Вселенной и образуя черную дыру, которая поглощает материальные объекты и электромагнитное излучение. На поверхности черной дыры для внешнего наблюдения время как бы останавливается. Предполагается, что в центре нашей Галактики находится огромная черная дыра.


Страницы книги >> Предыдущая | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | Следующая
  • 0 Оценок: 0

Правообладателям!

Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.

Читателям!

Оплатили, но не знаете что делать дальше?


Популярные книги за неделю


Рекомендации