Текст книги "Вселенная Стивена Хокинга (сборник)"
Автор книги: Стивен Хокинг
Жанр: Прочая образовательная литература, Наука и Образование
Возрастные ограничения: +12
сообщить о неприемлемом содержимом
Текущая страница: 3 (всего у книги 22 страниц) [доступный отрывок для чтения: 6 страниц]
Рис. 2.8
Под действием массы Солнца пространство-время искривляется так, что, хотя в четырехмерном пространстве-времени Земля движется по прямой, для нас, находящихся в трехмерном пространстве, она выглядит движущейся по почти круговой орбите.
На самом деле планетные орбиты, предсказываемые общей теорией относительности, почти не отличаются от орбит, вычисляемых в рамках ньютоновской теории тяготения. Но в случае Меркурия, который, будучи ближайшей к Солнцу планетой, больше всего ощущает сильные гравитационные эффекты и к тому же движется по довольно вытянутой эллиптической орбите, общая теория относительности предсказывает, что большая ось эллипса должна поворачиваться вокруг Солнца со скоростью около одного градуса в десять тысяч лет. Несмотря на незначительность этого эффекта, он был обнаружен задолго до 1915 года и стал одним из первых подтверждений теории Эйнштейна. В последнее время радиолокационными методами удалось измерить еще меньшие отклонения орбит других планет от орбит, рассчитанных с помощью ньютоновской теории, и эти отклонения оказались такими, как предсказывает общая теория относительности.
Лучи света тоже должны распространяться вдоль геодезических в пространстве-времени. Отметим еще раз, что из-за кривизны пространства свет не распространяется по прямым линиям и, следовательно, согласно общей теории относительности, гравитационные поля должны изгибать лучи света. Например, теория предсказывает, что под действием массы Солнца световые конусы вблизи него должны слегка искривляться в направлении светила. Это значит, что проходящий вблизи Солнца свет от далекой звезды немного отклоняется, из-за чего земной наблюдатель видит звезду в другом месте на небе (рис. 2.9). Конечно, если бы свет от звезды всегда проходил вблизи Солнца, то мы не могли бы сказать, отклоняется ли он или звезда находится именно там, где мы ее видим. Но Земля движется вокруг Солнца, и поэтому в разное время вблизи него оказываются разные звезды, свет которых отклоняется полем тяготения светила, из-за чего меняется их видимое положение на фоне других звезд.
Рис. 2.9
Эффект этот обычно очень трудно обнаружить из-за яркого света Солнца, не позволяющего наблюдать близкие к нему звезды. Но такая возможность появляется во время солнечных затмений, когда Солнце оказывается закрыто Луной. Предсказанное Эйнштейном отклонение света не удалось проверить сразу, в 1915 году, из-за начавшейся годом ранее Первой мировой войны. Только в 1919 году британская экспедиция, наблюдавшая затмение с побережья Западной Африки, смогла убедиться, что Солнце действительно отклоняет свет, как это предсказывает теория Эйнштейна. В этом доказательстве немецкой теории британскими учеными видели великий акт примирения между двумя странами после войны. Ирония состоит в том, что выполненный позднее анализ сделанных в ходе экспедиции фотографий показал, что ошибки в измерениях были такими же весомыми, как и сам измеряемый эффект. Так что данные наблюдений – следствие счастливой случайности. Сыграло роль еще и то, что ученым было заведомо известно, какой результат они хотели получить, что не редкость в научных исследованиях. Правда, отклонение света было достоверно подтверждено рядом последующих наблюдений.
Согласно другому предсказанию общей теории относительности вблизи массивных тел, таких, например, как Земля, течение времени должно замедляться. Это является следствием соотношения между энергией света и его частотой (то есть числом световых волн в секунду): чем больше энергия, тем выше частота. Когда свет распространяется вверх в поле притяжения Земли, он теряет энергию и, следовательно, частота его волн снижается. (Это значит, что промежуток времени между двумя последовательными гребнями волны увеличивается.) Наблюдателю, смотрящему с большой высоты, все, что происходит внизу, должно казаться замедленным. Это предсказание проверили в 1962 году при помощи пары очень точных часов, установленных в верхней и нижней части водонапорной башни. Нижние часы, расположенные ближе к Земле, шли медленнее, в точности как предсказывала общая теория относительности. С появлением очень точных навигационных систем, работающих на основе сигналов со спутников, разница в показаниях часов на разной высоте над Землей приобрела практическое значение. Пренебрегая предсказаниями общей теории относительности, можно ошибиться в определении положения на несколько километров!
Законы движения Ньютона похоронили идею об абсолютном положении в пространстве. Теория относительности покончила с абсолютным временем. Возьмем двоих близнецов. Предположим, что один из них отправляется жить на вершину горы, а другой остается на уровне моря. Первый близнец будет взрослеть и стареть быстрее, чем второй. Таким образом, если они снова встретятся, один из них окажется старше другого. В этом случае разница в возрасте будет очень малой. Но оная будет куда больше, если один из близнецов отправится в долгое путешествие на космическом корабле, разогнавшись почти до скорости света. Когда он вернется, то окажется много моложе близнеца, оставшегося на Земле. Это так называемый парадокс близнецов, но парадоксален он только в том случае, если вы подсознательно верите в идею абсолютного времени. В теории относительности нет единого абсолютного времени: для каждого наблюдателя время течет по-своему, и его ход зависит от того, где наблюдатель находится и с какой скоростью движется.
До 1915 года пространство и время считали ареной, где разворачиваются события, которые на эту арену никак не влияют. Это было справедливо и в контексте специальной теории относительности. Тела двигались, на них действовали силы притяжения или отталкивания, но при этом пространство и время оставались не затронутыми телами и силами. Казалось естественным, что пространство и время существовали и будут существовать всегда.
Но в общей теории относительности все обстоит иначе. Пространство и время в рамках этой теории являются динамическими величинами: движение тела или действие силы влияют на кривизну пространства-времени, а структура пространства-времени в свою очередь влияет на движение тел и действие сил. Пространство и время не только влияют на все происходящее во Вселенной, но и сами подвержены влиянию происходящих во Вселенной событий. Мы не можем говорить о событиях во Вселенной вне понятий пространства и времени, и точно так же в общей теории относительности не имеет смысла говорить о пространстве и времени вне Вселенной.
В последовавшие десятилетия новое понимание пространства и времени революционным образом изменило наши взгляды на Вселенную. На смену прежнему представлению о неизменной в целом Вселенной, которая могла существовать всегда и может продолжать существовать вечно, пришло понятие динамической расширяющейся Вселенной, которая, как казалось, возникла в определенный момент в прошлом и может завершить свое существование в определенный момент в будущем. Этой революции посвящена следующая глава.
Эта перемена также стала отправной точкой для моих исследований в теоретической физике спустя много лет. Мы с Роджером Пенроузом показали, что из общей теории относительности Эйнштейна следует, что у Вселенной должны быть начало и, возможно, конец.
Глава третья. Расширяющаяся вселенная
Если взглянуть на небо в ясную безлунную ночь, то самые яркие объекты, которые вы увидите, – это, скорее всего, Венера, Марс, Юпитер и Сатурн. Кроме того, на небе будет много звезд вроде нашего Солнца, расположенных куда дальше него. Правда, некоторые из этих «неподвижных» звезд слегка смещаются относительно друг друга по мере движения Земли по орбите вокруг Солнца – они в действительности совсем не неподвижны! А все потому, что сравнительно близки. По мере движения нашей планеты вокруг Солнца мы видим эти относительно близкие звезды с разных ракурсов на фоне более далеких звезд. Это весьма благоприятное обстоятельство, поскольку описанный эффект позволяет непосредственно измерять расстояния до них: чем ближе звезда, тем активнее она «движется» в нашем представлении. Проксима Центавра, ближайшая к нам звезда, находится на расстоянии около четырех световых лет (свет от нее добирается до нас примерно за четыре года), или 40 миллионов миллионов километров, от Земли. Большинство других видимых невооруженным глазом звезд удалены от нас на сотни световых лет. Для сравнения: Солнце отстоит от нашей планеты всего лишь на восемь световых минут! Видимые нам звезды рассыпаны по всему небу, но при этом хорошо заметно, что основная их масса сконцентрирована в полосе, известной как Млечный Путь. Уже в 1750 году некоторые астрономы предлагали объяснение для вида Млечного Пути: согласно их предположению, большинство видимых на небе звезд могли образовывать единую дискообразную структуру, – то есть то, что мы сейчас называем спиральной галактикой. Подтверждение эта гипотеза получила лишь спустя несколько десятилетий, когда астроном сэр Уильям Гершель, премного потрудившись, составил каталог[6]6
Гершель не составлял «каталог огромного числа звезд». Речь идет об исследовании распределения звезд в пространстве в разных направлениях на небе путем подсчетов числа звезд разного блеска в 1083 площадках по всему небу. Исследование этого распределения позволило Гершелю сделать вывод о наличии у звездной вселенной структуры, и тем он опровергнул представление о равномерном распределении звезд в пространстве, а также о том, что Солнце является частью огромной, но конечной по своим размерам звездной системы – нашей Галактики. – Прим. перев.
[Закрыть] положений огромного числа звезд и расстояний до них. Но такое представление стало общепринятым лишь в начале XX века.
Современная картина Вселенной возникла совсем недавно – в 1924 году, когда американский астроном Эдвин Хаббл показал, что наша Галактика Млечный Путь – не единственная во Вселенной. Хаббл, в сущности, доказал существование множества других галактик, разделенных огромными объемами пустого пространства[7]7
Первым, кто предположил, что некоторые туманности, видимые на небе, могут быть отдельными галактиками, был немецкий философ Иммануил Кант. Эту мысль он высказал в своем трактате, опубликованном в 1755 году. Первое надежное доказательство того, что туманность Андромеды не является частью Млечного Пути, а представляет собой другую галактику, получено эстонским астрономом Эрнстом Эпиком, который в 1918 году определил расстояние до туманности. Хаббл первым стал массово определять расстояния до галактик. – Прим. перев.
[Закрыть]. Для этого ему потребовалось определить расстояния от Земли до других галактик. Но галактики так далеки, что, в отличие от близких звезд, выглядят совершенно неподвижными. Поэтому Хабблу пришлось прибегнуть для определения расстояния к косвенным методам. Так, видимый блеск звезды зависит от двух факторов: от того, сколько света звезда излучает за единицу времени (то есть ее светимости), и от того, насколько она удалена от нас (то есть от расстояния до Земли). Мы можем вычислить светимости близких звезд по их видимому блеску и расстоянию. И наоборот, если бы мы знали светимости звезд в других галактиках, то могли бы определить расстояния до этих звезд, измеряя их видимый блеск. Хаббл обратил внимание, что близкие звезды определенного типа, для которых удается определить расстояния, всегда имеют одну и ту же светимость, и предположил, что если найти в далекой галактике звезды таких типов, то можно принять их светимость равной светимости аналогичных звезд в солнечной окрестности и на этой основе рассчитать расстояние до галактики. Если расстояния, получаемые таким образом по нескольким звездам конкретной галактики, окажутся примерно одинаковыми, то такую оценку вполне можно считать заслуживающей доверия.
Хаббл таким образом определил расстояния до девяти разных галактик. Теперь мы знаем, что Млечный Путь – наша Галактика – это всего лишь одна из сотен миллиардов галактик, доступных взору современных телескопов, а галактика, в свою очередь, состоит из сотен миллиардов звезд. На рисунке 3.1 изображена спиральная галактика, которая выглядит примерно как наша для наблюдателя, обитающего в совершенно другой области Вселенной. Мы живем в медленно вращающейся галактике поперечником около 100 000 световых лет. Звезды в спиральных рукавах совершают один оборот вокруг галактического центра примерно за несколько сотен миллионов лет. Наше Солнце – заурядная, средних размеров желтая звезда, расположенная неподалеку от внутренней кромки одного из спиральных рукавов. Мы проделали большой путь со времен Аристотеля и Птолемея, которые считали Землю центром Вселенной!
Рис. 3.1
Звезды так далеки, что кажутся всего лишь светящимися точками. Мы не в состоянии различить их размер и форму. Но как мы можем различать звезды разных типов? У огромного большинства звезд существует только одна характерная особенность, которую мы можем наблюдать: цвет их излучения. Ньютон обнаружил, что если солнечный свет пропустить через треугольную призму из стекла, то он расщепляется на составляющие его цвета (спектр), совсем как в радуге. Направив телескоп на звезду или галактику, можно наблюдать спектр излучения этого объекта. Спектры звезд различаются, но соотношение яркостей различных цветов всегда соответствует соотношению яркостей цветов в излучении раскаленного тела. (Излучаемый любым непрозрачным раскаленным объектом свет всегда имеет характерный спектр, который зависит только от его температуры, – это тепловой спектр. Это значит, что по спектру излучения звезды можно определить ее температуру.) Более того, некоторые цвета в спектре звезды отсутствуют, и набор этих цветов разный у разных звезд. Поскольку мы знаем, что каждый химический элемент поглощает характерный для него набор цветов, то, сравнив набор цветов, которые отсутствуют в спектре звезды, можно точно определить, какие элементы присутствуют в ее атмосфере.
В 20-х годах XX века астрономы начали исследовать спектры звезд в других галактиках и обнаружили одну странность: в спектрах этих звезд отсутствовали те же характерные наборы цветов, что и в спектрах звезд нашей Галактики. Более того, все эти цвета оказывались смещенными на одну и ту же относительную величину в красную сторону спектра. Чтобы осознать следствия этого факта, потребуется разобраться в том, что представляет собой эффект Доплера. Как мы знаем, видимый свет состоит из колебаний, или волн, электромагнитного поля. Длина волны (то есть расстояние между двумя последовательными гребнями) видимого света чрезвычайно мала и составляет от четырех до семи десятимиллионных метра. Человеческий глаз воспринимает свет волн разной длины как разные цвета – самый «длинноволновой» свет находится на красном конце спектра, самый «коротковолновой» – на синем.
Теперь представьте себе источник света – например звезду, – расположенный на постоянном расстоянии от нас и излучающий световые волны постоянной длины. Очевидно, что в этом случае длина волны, которую мы воспринимаем, в точности равна длине волны, которую звезда излучает (гравитационное поле галактики недостаточно сильное, чтобы оказать на нее существенное влияние). А теперь представим себе, что этот источник света начинает двигаться к нам. В момент, когда он излучает очередной гребень волны, источник оказывается ближе к нам, и поэтому расстояние между гребнями будет меньше, чем когда свет излучала неподвижная звезда. Это значит, что принимаемые нами волны будут короче, чем в случае неподвижной звезды. Соответственно, если источник света удаляется от нас, то принимаемые волны от этого источника окажутся длиннее. Отсюда следует, что спектры удаляющихся звезд смещены в красную сторону спектра (красное смещение), а спектры объектов, движущихся к нам, смещены в голубую сторону. С этим соотношением длины и скоростью волны, называемым эффектом Доплера, мы сталкиваемся и в повседневной жизни. Прислушайтесь, когда автомобиль проносится мимо вас по дороге: пока он приближается, звук его двигателя, или сигнала, выше (что соответствует меньшей длине волны и более высокой частоте звуковых волн), а после того как автомобиль проедет мимо и станет удаляться, – ниже. Аналогично ведут себя свет и радиоволны. И действительно, дорожные службы используют эффект Доплера для определения скорости автомобиля, измеряя длину волны отраженных от него радиоимпульсов.
Доказав существование других галактик, Хаббл занялся определением расстояний до них и наблюдением их спектров. В то время считали, что галактики движутся совершенно случайным образом, а потому ожидали обнаружить примерно одинаковое количество галактик с голубым и красным смещением спектров. Ко всеобщему удивлению, оказалось, что спектры большинства галактик смещены в красную сторону: почти все они удалялись от нас! Еще более удивительной оказалась научная публикация Хаббла 1929 года: величины красного смещения в спектрах галактик не распределены случайно, а прямо пропорциональны расстоянию галактики от нас. Иными словами, чем дальше от нас галактика, тем быстрее она от нас удаляется! Это означало, что, вопреки господствовавшим тогда представлениям, Вселенная не может быть стационарной и что в действительности она расширяется, а расстояния между галактиками со временем увеличиваются.
Открытие расширения Вселенной стало одной из величайших интеллектуальных революций ХХ века. Оглядываясь назад, невольно удивляешься, что никто не подумал об этом раньше. Ньютон и другие ученые были вполне подкованны, чтобы сделать вывод о том, что стационарная Вселенная неизбежно начала бы сжиматься под действием собственного тяготения. Но представим себе, что Вселенная расширяется. Если бы Вселенная расширялась с небольшой скоростью, то сила тяготения рано или поздно остановила бы ее расширение, и Вселенная начала бы сжиматься. Однако если бы Вселенная расширялась со скоростью, превышающей некоторое предельное значение, то сила тяготения никогда не смогла бы остановить это расширение, и оно продолжалось бы вечно. Это немного напоминает запуск ракеты с поверхности Земли: если скорость ракеты недостаточно велика, то сила тяготения в какой-то момент остановит ее движение, а после заставит ее упасть обратно на землю. С другой стороны, если скорость ракеты больше определенного критического значения (около 11 километров в секунду), то сила тяготения нашей планеты уже никогда не сможет заставить ее вернуться, и ракета продолжит удаляться от Земли. Такое поведение Вселенной вполне можно было предсказать в рамках ньютоновской теории тяготения и в XIX, и в XVIII столетии, и даже в конце XVII. Но вера в стационарную Вселенную была столь прочна, что оставалась незыблемой вплоть до начала XX века. Даже Эйнштейн, сформулировав общую теорию относительности в 1915 году, был настолько уверен в стационарности космоса, что скорректировал уравнения теории: он ввел дополнительный коэффициент, который назвал космологической постоянной, чтобы обеспечить Вселенной неподвижность. Эйнштейн заявил новую силу – «антигравитацию», – которая, в отличие от других сил, не имеет какого-то определенного источника, но встроена в саму структуру пространства-времени. Эйнштейн утверждал, что пространству-времени присуще внутреннее стремление расширяться, и оно может полностью уравновесить взаимное притяжение всего вещества во Вселенной, в результате чего сама Вселенная остается стационарной. Только один человек, похоже, был готов принять общую теорию относительности в ее первозданном виде: пока Эйнштейн и другие физики искали способ избежать неизбежной нестационарности в рамках общей теории относительности, российский физик и математик Александр Фридман предпочел эту нестационарность объяснить.
Фридман выдвинул две очень простые гипотезы о свойствах Вселенной. Во-первых, он предположил, что Вселенная одинакова во всех направлениях и, во-вторых, что это справедливо для любого наблюдателя в любой точке. Исходя всего лишь из этих двух предположений, Фридман показал, что Вселенная не должна быть стационарной. То есть еще в 1922 году, за несколько лет до открытия Эдвина Хаббла, Фридман предсказал именно то, что Хаббл впоследствии обнаружил!
Конечно же, предположение о том, что Вселенная совершенно одинакова во всех направлениях, не совсем верно. Например, как мы уже отметили, другие звезды в нашей Галактике образуют хорошо заметную светлую полосу, пересекающую ночное небо, – ее мы называем Млечным Путем. Но если взглянуть на далекие галактики, то окажется, что их число примерно одинаково в любом направлении. Таким образом, Вселенная выглядит практически одинаково во всех направлениях, только если рассматривать ее на бо́льшем масштабе по сравнению с расстояниями между галактиками и пренебречь различиями на меньших масштабах. Долгое время равномерное распределение звезд[8]8
По-видимому, имеется в виду крупномасштабное распределение вещества, ведь распределение звезд в пространстве весьма неоднородно – большая их часть сосредоточена в звездных системах, называемых галактиками. – Прим. перев.
[Закрыть] во Вселенной считалось достаточным обоснованием гипотезы Фридмана как грубого приближения к реальной Вселенной. Но позднее, благодаря счастливой случайности было открыто еще одно свойство Вселенной, замечательно согласующееся с предположением Фридмана.
В 1965 году Арно Пензиас и Роберт Уилсон, американские физики из компании Bell Telephone Laboratories в Нью-Джерси, тестировали очень чувствительный микроволновой приемник. (Напомним, что микроволновое излучение – это электромагнитные волны – так же, как и свет, – но длина волны составляет примерно один сантиметр.) Пензиасу и Уилсону не давало покоя то, что приемник регистрировал бо́льшую интенсивность шума, чем ожидалось. Было непохоже, что шум приходил с какого бы то ни было определенного направления. Пензиас и Уилсон исследовали приемник и обнаружили там птичий помет. Они проверили прибор на предмет других возможных неполадок, но вскоре исключили их как возможные источники ошибок. Они знали, что любой шум атмосферного происхождения должен быть сильнее вблизи горизонта, чем в вертикальном направлении, потому что в первом случае лучи света [и радиосигналы] проходят через бо́льшую толщу воздуха, чем лучи и сигналы, приходящие прямо сверху. Избыточный шум оставался неизменным независимо от того, куда был направлен приемник, и следовательно, его источник должен находиться вне атмосферы. Шум этот оставался неизменным днем и ночью и в течение всего года, несмотря на вращение Земли вокруг оси и ее движение по орбите вокруг Солнца. Отсюда следовало, что источник излучения находится за пределами Солнечной системы и даже за пределами нашей Галактики. В противном случае его интенсивность должна была меняться со временем, ведь из-за движения Земли направление приемника тоже менялось.
Раз мы знаем, что излучение на пути к Земле пересекло значительную часть наблюдаемой Вселенной и при этом его интенсивность одинакова во всех направлениях, то и сама Вселенная должна быть одинаковой во всех направлениях, как минимум на больших масштабах. Теперь мы уже знаем, что колебания интенсивности шума в разных направлениях очень малы, так что Пензиас и Уилсон, сами того не зная, натолкнулись на удивительно надежное подтверждение первой гипотезы Фридмана. Но поскольку Вселенная все же не совсем одинакова во всех направлениях и верно это только в среднем и на больших масштабах, то и интенсивность микроволнового излучения тоже не может быть абсолютно одинаковой во всех направлениях, и должны наблюдаться небольшие вариации по небу. Эти вариации впервые были обнаружены в 1992 году благодаря наблюдениям спутника COBE, и их величина оказалась приблизительно равна одной стотысячной доле[9]9
Анизотропия микроволнового реликтового излучения была открыта в 1992 году с помощью советского космического аппарата серии «Прогноз». Эксперимент назывался «Реликт». Рабочая группа в составе руководителя эксперимента И. А. Струкова, а также Д. П. Скулачева, А. А. Брюханова и М. В. Сажина в январе 1992 года на научном семинаре в ГАИШ МГУ сообщила об обнаружении анизотропии. Одновременно с этим в научный журнал «Письма в Астрономический журнал» отправили статью на русском языке, а в журнал Monthly Notices of Royal Astronomical Society – на английском. Публикация статьи в последнем журнале была задержана. В конце апреля 1992 года Дж. Смут, научный руководитель проекта DMR, установленного на космическом аппарате COBE, объявил на специальной пресс-конференции об открытии анизотропии реликтового излучения. Репортеры посвятили этому событию огромное количество статей в средствах массовой информации, назвав радиокарты COBE «ликом Господа Бога». За свою работу Дж. Смут был впоследствии удостоен Нобелевской премии. Однако первыми «лик Господа Бога» увидели все-таки советские ученые. – Прим. науч. ред.
[Закрыть]. В главе 8 мы узнаем, что, несмотря на малый шаг, эти вариации очень важны.
Почти в то же время, когда Пензиас и Уилсон исследовали шум приемника, два других американских физика – Боб Дике и Джим Пиблс, работавшие в расположенном поблизости Принстонском университете, – тоже заинтересовались микроволновым излучением. Они занялись гипотезой, высказанной Георгием Гамовым, студентом Александра Фридмана. Согласно этой гипотезе ранняя Вселенная должна была светиться и быть очень горячей и плотной. Дике и Пиблс полагали, что мы должны быть в состоянии увидеть свет ранней Вселенной, поскольку он как раз теперь должен дойти до нас из самых дальних далей. Однако из-за расширения Вселенной этот свет должен был подвергнуться значительному красному смещению, а потому воспринимался бы как микроволновое излучение, а не видимый свет. Дике и Пиблс как раз готовились к поискам этого излучения, когда Пензиас и Уилсон узнали об их работе и поняли, что уже нашли его. Пензиас и Уилсон получили за это Нобелевскую премию 1978 года (что, конечно, несколько несправедливо по отношению к Дике и Пиблсу, не говоря уже о Гамове).
На первый взгляд может показаться, будто все эти данные, свидетельствующие о том, что Вселенная одинакова во всех направлениях, означают, что мы занимаем особое место во Вселенной. В частности, может возникнуть впечатление, что раз практически все наблюдаемые нами галактики удаляются от нас, то мы находимся в самом центре. Однако есть и другое объяснение: Вселенная выглядит совершенно одинаково во всех направлениях независимо от того, в какой галактике находится наблюдатель. Это, как мы только что видели, предполагает вторая гипотеза Фридмана. Нет никаких научных данных, которые бы подтверждали или опровергали ее. Сегодня мы склонны верить этой гипотезе хотя бы из скромности: было бы совершенно удивительно, если бы Вселенная выглядела одинаково во всех направлениях только с нашего наблюдательного пункта и ни с какого другого! Во фридмановской модели Вселенной все галактики удаляются друг от друга. Процесс прекрасно иллюстрирует постепенно раздувающийся воздушный шарик со множеством нарисованных на нем точек. По мере растягивания шарика расстояние между любыми двумя точками увеличивается, но при этом ни про одну из них нельзя сказать, что она является центром расширения. Более того, чем дальше расположены точки на поверхности шарика, тем быстрее они удаляются друг от друга. Аналогично в модели Фридмана скорость взаимного удаления двух галактик пропорциональна расстоянию между ними. Таким образом, эта модель предсказывает, что красное смещение галактик должно быть прямо пропорционально их расстоянию от нас, в точности как показал Хаббл. Несмотря на то что модель оказалась удачной и позволила предсказать результат наблюдений Хаббла, на Западе работа Фридмана оставалась неизвестной до 1935 года, то есть до тех пор, пока аналогичные модели не разработали американский физик Говард Робертсон и британский математик Артур Уолкер, отреагировав на открытие Хабблом равномерного расширения Вселенной.
Хотя Фридман описал только одну модель Вселенной, удовлетворяющую требованиям двух его фундаментальных гипотез, возможны три таких модели. В модели первого типа (фридмановской) Вселенная расширяется достаточно медленно, а потому под действием гравитационного притяжения между галактиками это расширение замедляется и рано или поздно останавливается. После галактики начинают двигаться вспять, навстречу друг другу, и Вселенная сжимается. На рисунке 3.2 показан график зависимости расстояния между соседними галактиками от времени. В начальный момент это расстояние равно нулю, потом оно растет, достигает максимума и затем уменьшается до нуля. В решении второго типа Вселенная расширяется настолько быстро, что взаимное притяжение галактик не в состоянии когда-либо остановить расширение, хотя и несколько замедляет его. Зависимость расстояния между двумя соседними галактиками в этой модели показана на рисунке 3.3. В начальный момент расстояние равно нулю, после чего галактики разбегаются с равномерной скоростью. Наконец, есть третий тип решения, когда Вселенная расширяется как раз с такой скоростью, которая не даст ей начать сжиматься. В этом случае расстояние между галактиками (рис. 3.4) тоже равно нулю в начальный момент, после чего вечно увеличивается. Правда, скорость расхождения галактик все уменьшается, хотя и никогда не достигает нуля.
Рис. 3.2
Рис. 3.3
Рис. 3.4
Замечательное свойство модели Фридмана (модели первого типа) состоит в том, что Вселенная в ней не является бесконечной в пространстве, но при этом пространство не имеет границ. Тяготение в этой модели настолько сильно, что пространство оказывается замкнутым само на себя наподобие поверхности Земли. Двигаясь в определенном направлении по поверхности Земли, вы никогда не наткнетесь на непреодолимый барьер, не сорветесь с края, а просто рано или поздно вернетесь в то место, с которого начали свой путь. В модели Фридмана пространство напоминает поверхность нашей планеты, но имеет три измерения – вместо двух. В четвертом измерении – времени – модель тоже конечна, но скорее напоминает отрезок с двумя границами – началом и концом. Как мы увидим далее, сочетание общей теории относительности с принципом неопределенности квантовой механики делает возможной модель, где и пространство, и время конечны и притом не имеют границ.
Идея кругосветного путешествия по Вселенной с возвращением в исходный пункт – замечательный сюжет для научной фантастики. Однако на практике ее едва ли удастся реализовать: есть математические свидетельства, что Вселенная успеет схлопнуться до нулевого размера еще до возвращения путешественника. Чтобы успеть вернуться в отправную точку до конца Вселенной, придется двигаться быстрее света, а это невозможно!
В модели Фридмана первого типа, которая сначала расширяется, а потом схлопывается, пространство замкнуто само на себя, подобно поверхности Земли. Поэтому оно имеет конечную протяженность. В модели Вселенной второго типа, которая расширяется вечно, пространство искривлено иначе и напоминает седло. И в этом случае пространство бесконечно. Наконец, в модели Фридмана третьего типа, скорость расширения в которой равна некоему критическому значению, пространство плоское (и поэтому также бесконечно).
Какая же из моделей Фридмана описывает нашу Вселенную? Сменится ли расширение однажды сжатием или будет продолжаться вечно? Чтобы ответить на этот вопрос, нужно знать современную скорость расширения Вселенной и современное значение ее средней плотности. Если плотность меньше определенного критического значения, определяемого скоростью расширения, гравитационное притяжение будет слишком слабым и не сможет остановить расширение. Если плотность превышает критическое значение [определяемое скоростью расширения], то сила тяготения вещества во Вселенной рано или поздно остановит расширение, заставив Вселенную сжаться.
Скорость расширения в настоящий момент можно определить, измерив скорости удаления от нас других галактик – с помощью эффекта Доплера. Эти скорости можно измерить весьма точно, а вот в расстояниях до галактик мы не так уверены, потому что установить их можно только косвенными методами. Так что на данный момент мы знаем лишь, что скорость расширения Вселенной составляет от 5 до 10 % за миллиард лет. Наши знания о современной средней плотности Вселенной еще менее точны. Если учесть массу всех видимых звезд в нашей и других галактиках, то полученная средняя плотность окажется менее одной сотой величины, необходимой, чтобы остановить расширение Вселенной, даже если принять наименьшую оценку скорости расширения.
Наша и другие галактики, по-видимому, содержат большое количество темного вещества, которое невозможно увидеть непосредственно, но о существовании которого мы знаем по гравитационному воздействию на орбиты звезд в галактиках. Кроме того, большинство галактик находятся в скоплениях, и аналогичные соображения позволяют сделать вывод о наличии еще большего количества темного вещества в межгалактическом пространстве скоплений, поскольку оно влияет на движение галактик. С учетом массы темного вещества средняя плотность оказывается равной примерно одной десятой величины, необходимой, чтобы остановить расширение Вселенной. Но могут быть и другие, до сих пор не обнаруженные формы вещества, распределенные почти равномерно по всей Вселенной, и их учет может дополнительно увеличить среднюю плотность, которая достигнет критического значения, необходимого, чтобы остановить расширение. Однако имеющиеся данные свидетельствуют, что Вселенная, скорее всего, будет расширяться вечно. При этом наверняка мы можем сказать лишь то, что даже если Вселенной суждено снова сжаться, это произойдет не раньше, чем через десять миллиардов лет, – потому что она расширялась в течение такого времени, и это как минимум. Не следует зря об этом беспокоиться: к тому времени человечество вымрет вместе с погасшим Солнцем, если только мы не успеем колонизовать области за пределами Солнечной системы[10]10
Согласно актуальным наблюдательным данным, наша Вселенная состоит из обычного (барионного) вещества (4 %), темной материи (23 %) и темной энергии (73 %). Последняя, действуя как силы отталкивания, приводит к современному ускоренному расширению нашей Вселенной. – Прим. науч. ред.
[Закрыть]!
Правообладателям!
Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.Читателям!
Оплатили, но не знаете что делать дальше?