Электронная библиотека » Стивен Вайнберг » » онлайн чтение - страница 2


  • Текст добавлен: 24 декабря 2019, 10:22


Автор книги: Стивен Вайнберг


Жанр: Прочая образовательная литература, Наука и Образование


Возрастные ограничения: +12

сообщить о неприемлемом содержимом

Текущая страница: 2 (всего у книги 14 страниц) [доступный отрывок для чтения: 5 страниц]

Шрифт:
- 100% +
2
Искусство открытия

Философское общество Техаса было основано Сэмом Хьюстоном и его друзьями в первый год независимости Республики Техас. Первым президентом общества (1837–1859) стал Мирабо Бонапарт Ламар, позже сменивший Хьюстона на посту президента Техаса. Вскоре после создания Философское общество фактически прекратило свою деятельность, до возрождения в 1937 г. С тех пор количество членов общества непрерывно растет. Теперь в нем состоят академики, журналисты, политики, владельцы ранчо (скотопромышленники), писатели, артисты, бизнесмены и даже несколько философов. Ежегодно члены общества собираются в разных городах Техаса, чтобы послушать доклады на темы, выбранные действующим президентом, и встретиться со старыми друзьями. Будучи членами общества, мы с женой имели возможность посетить такие города Техаса, как Абилин, Корпус-Кристи, Форт-Уэрт, Кервилл и Ларедо, которые лежат за пределами наших обычных маршрутов, а также и более знакомые места вроде Далласа и Хьюстона. В 1994 г. я удостоился чести исполнять обязанности президента и провести в Остине встречу, посвященную вопросам космологии.

В 2009 г. члены Философского общества снова собрались в Остине. Темой встречи президент того года Майкл Джиллетт выбрал искусство в Техасе. Были проведены сессии по искусству обучения, искусству выражения и искусству искусств. Я выступил с лекцией, текст которой стал основой для этой главы, на сессии по искусству открытия. Философское общество публикует сборники докладов со своих встреч, но не слишком быстро; доклады со встречи 2009 г., среди которых было и мое выступление, в итоге были изданы в 2014 г.

Платон полагал, что главным способом познания мира является размышление о нем. В диалоге Платона «Законы» есть интересная дискуссия об астрономии. Платон признает, что, возможно, астрономам было бы полезно изредка поглядывать на небо, но только для того, чтобы сосредоточить свой разум, точно так же, как математикам полезно рисовать схемы при доказательстве геометрической теоремы, однако настоящая работа по совершению открытий в науке, как и в математике, должна быть исключительно мыслительной. Платон был не прав на этот счет, как и во многих других вопросах.

Диаметрально противоположной точки зрения придерживался Фрэнсис Бэкон, лорд-канцлер Англии при короле Якове I. Бэкон мог многое рассказать о науке, общественный интерес к которой тогда только начал проявляться. Он считал, что в науке работает исключительно эмпирический метод. Необходимо проводить эксперименты и непредвзято, без каких-либо предубеждений, изучать любые вопросы мироздания, доступные для анализа, и тогда истина постепенно проявится. Он тоже был не прав.

Истина, как мы выяснили по прошествии столетий, состоит в том, что научное открытие неизбежно требует взаимодействия теории и эксперимента (наблюдения). Теория нужна, чтобы направлять эксперимент к цели и интерпретировать полученные результаты. Эксперимент необходим не только для подтверждения или опровержения теории, но и для того, чтобы наполнять ее смыслом. Они идут вместе нераздельно.

В некоторых областях науки, особенно в сфере моих научных интересов – физике элементарных частиц, две роли ученых тем не менее заметно отличаются. Требования теоретического и экспериментального разделов физики стали настолько высокими и узкоспециальными, что со времен Энрико Ферми больше не было ни одного ученого, кто мог бы одинаково эффективно работать и как теоретик, и как экспериментатор. Я теоретик, поэтому я могу описать вам искусство научного открытия только с одной стороны.

Будучи теоретиками, мы воодушевляемся встающими перед нами загадками. Иногда эти загадки появляются в результате экспериментальных открытий. Вот вам классический пример. В конце XIX в. экспериментаторы искали способ измерить зависимость наблюдаемой скорости света от движения Земли. Земля движется вокруг Солнца со скоростью около 30 км/с; скорость света составляет примерно 300 000 км/с, поэтому было сделано предположение, что скорость света должна изменяться в пределах 0,01 % в зависимости от времени года, поскольку летом Земля движется в одном направлении, а зимой – в обратном. Считалось, что свет – это колебания среды, получившей название «эфир» и даже если Солнечная система движется сквозь эфир, Земля не может быть неподвижной относительно эфира и зимой и летом. Зависимость скорости света от движения Земли пытались обнаружить, но так и не нашли. Физики столкнулись с пугающей загадкой, которая (вместе с рядом других тайн) в итоге вдохновила Эйнштейна сформулировать новый взгляд на природу пространства и времени – теорию относительности.

Однако иногда сами физические теории ставят перед нами интригующие загадки. Например, в конце 1950-х гг. стало очевидно, что наша теория слабого ядерного взаимодействия прекрасно описывает все существующие экспериментальные данные, связанные с этой силой. (Силы слабого ядерного взаимодействия приводят к такому типу радиоактивного распада, при котором частица внутри ядра, скажем нейтрон или протон, превращается в другую частицу, протон или нейтрон, и излучает быстрый позитрон или электрон. Кроме того, именно эта сила запускает последовательность реакций, разогревающих Солнце.) Эксперименты, связанные со слабым ядерным взаимодействием, не содержали никаких загадок. Проблема возникла, когда эту теорию попытались применить к другим явлениям, которые не наблюдались в экспериментах. (Один из таких процессов, который мы, вероятно, никогда не сможем наблюдать, – столкновение между собой очень слабо взаимодействующих частиц, называемых нейтрино.) Когда теорию слабого взаимодействия применили для описания таких процессов, результат получился абсурдным; теория предсказывала бесконечные вероятности. Не слишком мудрый вывод о природе, на самом деле – просто бессмыслица. Очевидно, была нужна новая теория, такая, которая сохраняла бы достижения уже существующей, но при этом не давала бы абсурдных ответов на вполне разумные вопросы, даже если эти вопросы относятся к экспериментам, которые никогда не проводились и, вероятно, никогда не будут осуществлены. Я и другие физики-теоретики работали над этой проблемой в 1960-х гг., и в итоге мы нашли такую теорию. Оказалось, что новая теория не только описывает слабое ядерное взаимодействие, но является универсальной теорией, применимой и к более привычным силам, к электромагнетизму. Кроме того, новая теория предсказала существование нового типа слабого взаимодействия, который впоследствии был обнаружен в экспериментах с частицами высоких энергий. Но не эксперимент привел к созданию этой теории.

Иногда мы сталкиваемся с загадками в тех теориях, которые согласуются со всеми данными наблюдений и не имеют внутренних противоречий, но при этом являются очевидно неудовлетворительными, поскольку содержат слишком много произвольных параметров. Фактически сейчас мы столкнулись именно с этой проблемой. У нас есть теория, объединяющая сильное взаимодействие (силы которого удерживают вместе кварки внутри частиц атомного ядра) с электромагнитным и слабым взаимодействием. Теория, получившая название Стандартной модели, объясняет все эффекты, которые мы можем измерить в наших научных лабораториях физики элементарных частиц. Она дает идеальные конечные и разумные результаты, когда мы используем ее для расчетов, и при этом теория остается неудовлетворительной, поскольку слишком большое количество параметров модели приходится подбирать, чтобы согласовать результаты расчетов с экспериментальными данными. Например, в Стандартной модели есть шесть типов частиц, которые называются кварками. Почему их шесть? Почему не четыре или восемь? Ответа нет. Почему у этих частиц именно такие свойства? Самый тяжелый из кварков примерно в 100 000 раз тяжелее самого легкого. Мы не знаем, чем обусловлена такая разница в массе; ее значения подбираются просто для подгонки под эксперимент. В этом нет никаких противоречий; теория согласуется с экспериментом, только, очевидно, не дает окончательных ответов.

Есть в этой «кунсткамере» и свой «слон»: гравитация вообще никак не учтена в Стандартной модели. В принципе, у нас есть достаточно правдоподобная теория гравитации – ОТО Эйнштейна, которая отлично работает в отношении всех наблюдаемых явлений, но все же и она приводит к бессмысленным результатам, когда рассматриваются системы с экстремальными энергиями. Такие энергии невозможно получить в лабораторных условиях, но мы можем мысленно моделировать подобные состояния, и, когда мы используем для этого теорию гравитации, перед нами встают новые загадки.

Начиная с 1970-х гг. мы располагаем теорией слабого, электромагнитного и сильного взаимодействия, имеющей слишком много произвольных параметров, и теорией гравитации, которую невозможно распространить на системы с экстремально высокими значениями энергии. И мы застряли в этом состоянии, поскольку наши ускорители элементарных частиц не приносят новых данных, которые загадывали бы нам новые загадки и подпитывали наше воображение. Одной из причин тому стало решение конгресса отказаться от строительства большого ускорителя в Техасе, того самого Сверхпроводящего суперколлайдера.

Теперь мы надеемся на получение значительных результатов на Большом адронном коллайдере, новом ускорителе, который только начинает работать в Европе. БАК представляет собой круговой туннель длиной 26,7 км, расположенный на границе между Францией и Швейцарией на глубине около 150 м. В этом туннеле два пучка протонов разгоняются по кругу в противоположных направлениях и затем сталкиваются. Мы надеемся, что, изучая происходящие при этих столкновениях процессы, мы совершим новые открытия, которые либо помогут нам решить уже существующие загадки, либо явят новые захватывающие головоломки.

Недавно были выполнены первые эксперименты по столкновению двух пучков частиц. Пока количество частиц в пучках и энергии столкновения недостаточно велики, чтобы можно было обнаружить какие-то новые эффекты, но мы возлагаем большие надежды на БАК в ближайшей перспективе.

Я уже говорил, что я теоретик. Я не работаю на БАК. Я был там в июле, и мне показали один из четырех огромных детекторов частиц, расположенных вдоль кольцевого туннеля в местах, где сталкиваются частицы. Детектор ATLAS, который я видел, производит сильное впечатление. Представьте себе зал приемов – вот примерно в таком помещении установлен детектор ATLAS. У меня на самом деле возникло чувство, будто я нахожусь в кафедральном соборе.

У меня нет тех навыков и опыта, которыми обладают экспериментаторы, работающие на БАК, однако я с уверенностью могу сказать, чем они занимаются. Я надеюсь, что их открытия выведут нас из застоя, в котором мы пребываем уже несколько десятков лет. К примеру, существует чрезвычайно привлекательный принцип симметрии, известный как суперсимметрия. Этот принцип занимал внимание многих теоретиков последние 30 лет, но до сих пор не было ни единой крупицы доказательств. (Ладно, одна крупица все же существует, но она не слишком большая.) Мы надеемся, что в БАК удастся получить новые типы частиц, существование которых предсказано теорией суперсимметрии. Может оказаться, что свойства одного из таких типов частиц будут подходящими для объяснения темной материи, масса которой, по утверждениям астрономов, составляет 5/6 всей массы Вселенной. (Темную материю не стоит путать с еще более загадочной темной энергией. К сожалению, о темной энергии БАК, скорее всего, нам ничего не расскажет.) Если такие частицы удастся обнаружить, я полагаю, это станет триумфом физики в платоновском смысле. Что ж, поживем – увидим.

Итак, прямо сейчас мы переживаем переломный момент в истории фундаментальной физики. Больше всего мы надеемся на неизбежное возрождение перекрестного оплодотворения теории и эксперимента, которое было столь успешным в 1960-е и 1970-е гг. и с тех пор потеряло свою силу.

3
От Резерфорда до Бак

Каждый апрель в Вашингтоне проводятся встречи Американского физического общества. Время проведения встреч специально подобрано так, чтобы оно не совпадало с цветением вашингтонских японских вишен и повышенными ценами на проживание в отелях, которые сопровождают период цветения. В апреле 2011 г. отмечалось столетие одного из самых переломных событий современной физики – открытие Резерфордом атомного ядра. По этому поводу Физическое общество решило провести специальное заседание под названием «Столетие физики частиц». В этой главе приведен текст моей вступительной речи. Эта речь была опубликована в августе 2011 г. в журнале Physics Today, ежемесячном периодическом издании Американского института физики.

И выступление в Вашингтоне, и статья в Physics Today не изобиловали математикой и предназначались физикам, интересующимся историей науки, а не только специалистам в области физики элементарных частиц, поэтому я решил, что статья будет понятна и более широкой аудитории. Однако, перечитав текст, я обнаружил, что позволил себе использовать термины, такие как «спин» и «барион», которые могут потребовать пояснений для неспециалистов. По этой причине я добавил разъяснения в сносках, но сохранил основной текст статьи практически без изменений. Обсуждение некоторых вопросов на более доступном уровне можно найти в главе 11 этого сборника.

7 марта 1911 г. Эрнест Резерфорд принял участие в заседании Манчестерского литературно-философского общества – того самого, которому веком ранее Джон Дальтон докладывал об измерении массы атомов. На этой встрече Резерфорд объявил об открытии атомного ядра. Американское физическое общество решило отмечать в этот день начало века физики элементарных частиц.

Я считаю, что это мудрое решение. Одна из причин именно такого выбора состоит в том, что эксперимент, поставленный Хансом Гейгером и Эрнестом Марсденом, на результатах которого Резерфорд построил свои выводы о ядре, явился образцом для всех последующих экспериментов по рассеянию частиц, ставших с тех пор основным занятием для физиков. Только вместо пучков протонов или электронов из ускорителя Гейгер и Марсден использовали альфа-частицы радиоактивного распада радия, падающие на мишень из золотой фольги. А вместо проволочных, искровых или пузырьковых камер для обнаружения рассеянных частиц они воспользовались экраном, покрытым сульфидом цинка, который при столкновении с альфа-частицами дает яркие вспышки.

Что еще важнее, наблюдение рассеяния альфа-частиц на большие углы убедило Резерфорда, что основная часть массы и положительный электрический заряд сконцентрированы в малом объеме ядра атома. Раньше считалось, что атом представляет собой нечто вроде пудинга, в котором электроны распределены, как изюм среди равномерно размазанного положительного заряда. Открытие ядра стало первым в серии важных открытий, сделанных Нильсом Бором (который приезжал в Манчестер), Луи де Бройлем, Эрвином Шрёдингером и Вернером Гейзенбергом, которые и привели к созданию современной квантовой механики.

После этого бурного старта на пути квантовой механики образовалось два явных и существенных для развития фундаментальной физики препятствия. Одно из них связано с распространением принципов квантовой механики на частицы, скорость которых близка к скорости света, а значит, частицы должны подчиняться специальной теории относительности Эйнштейна (СТО). Поль Дирак обобщил волновое уравнение Шрёдингера и получил релятивистское волновое уравнение[12]12
  В интерпретации квантовой механики, разработанной Эрвином Шрёдингером, состояние системы описывается волновой функцией. Если система состоит из единственной частицы, например электрона в электрическом поле атомного ядра, волновая функция представляет собой множество чисел, каждое из которых ставится в соответствие определенному месту в пространстве, потенциально занимаемому частицей. Большему значению волновой функции соответствует более высокая вероятность нахождения частицы в данной точке пространства. Волновое уравнение описывает изменение с течением времени этих вероятностей.


[Закрыть]
. Тогда казалось, что предсказание существования дробного спина 1/2 у элементарных частиц – это огромная победа, однако теперь мы знаем, что это был скорее провал, чем успех[13]13
  Спин – величина, которая характеризует момент вращения частицы вокруг своей оси. Спин 1/2 вдвое меньше спина фотонов – частиц, из которых состоит свет.


[Закрыть]
. Существуют частицы с целочисленным спином 1, например W– и Z-бозоны, которые являются такими же элементарными частицами, как электрон, и многие ученые считают, что на БАК будет открыта такая же элементарная частица с нулевым спином[14]14
  Это и в самом деле произошло в 2012 г.


[Закрыть]
. Кроме того, уравнение Дирака было крайне затруднительно приложить к системам, состоящим из более чем одного электрона. Будущее оказалось за квантовой теорией поля[15]15
  В рамках квантовой теории поля положения квантовой механики применяются к полям, например к электрическому и магнитному, а не к частицам непосредственно. Элементарные частицы в квантовой теории поля – это сгустки энергии и импульса различных полей.


[Закрыть]
, созданной в результате совместной работы разных групп ученых, например команды Макса Борна, Гейзенберга и Паскуаля Йордана в 1926 г., Гейзенберга и Вольфганга Паули в 1926 г. и Паули и Виктора Вайскопфа в 1934 г. (Вайскопф как-то рассказал мне, что в одной из своих поздних статей Паули собирался показать ошибочность теории Дирака о необходимости дробного спина 1/2 и построить удобную и разумную теорию частиц с нулевым спином.) Квантовая теория поля впервые была применена Ферми в 1933 г. в его теории бета-распада, а затем стала математической основой для большей части успешных теорий элементарных частиц[16]16
  Бета-распад – один из видов радиоактивного распада атомного ядра, в котором протон превращается в нейтрон или наоборот.


[Закрыть]
.

Второе очевидное препятствие было связано с атомным ядром. Высокий кулоновский барьер не позволял альфа-частицам, источником которых в лаборатории Резерфорда служил радий, проникать в атомное ядро[17]17
  Кулоновским барьером называют электростатическое отталкивание между положительными электрическими зарядами ядра и альфа-частицами или любыми другими положительно заряженными частицами, используемыми для бомбардировки ядра.


[Закрыть]
. Для решения именно этой проблемы началось развитие ускорителей частиц.

Прогресс в этих направлениях в 1930-е гг. был затруднен из-за странного нежелания теоретиков предлагать новые частицы. Вот три примера.

Во-первых, гладкое распределение электронов, испущенных в результате бета-распада, по энергиям, которое было обнаружено Джеймсом Чедвиком в 1914 г., противоречило предположению о том, что каждый электрон уносит всю энергию перехода ядра из одного состояния в другое, поскольку в этом случае у всех электронов была бы одна и та же энергия, равная разности энергий начального и конечного состояний ядра. Открытие Чедвика было настолько загадочным, что Бор даже допускал нарушение закона сохранения энергии при таком распаде. Высказанное в 1930 г. предложение Паули о введении нового типа частиц – нейтрино – большей частью ученых было встречено скептически, и этот скепсис окончательно исчез только после того, как четверть века спустя нейтрино были обнаружены в экспериментах[18]18
  Нейтрино электрически нейтральны и практически не взаимодействуют с веществом. Они отнимают у электронов часть энергии, выделяемой ядром при бета-распаде, но их очень сложно обнаружить.


[Закрыть]
.

Во-вторых, Дирак поначалу предполагал, что «дырки» в электронном «море», соответствующие состояниям электронов с отрицательной энергией в его теории, – это протоны, единственные известные тогда частицы с положительным электрическим зарядом, несмотря на то что такое предположение противоречило бы наблюдаемому факту стабильности каких-либо атомов, так как электроны в атомах могли бы проваливаться в эти «дырки». Позже Дирак отказался от такой трактовки, однако открытие позитронов в космических лучах Карлом Андерсоном и Патриком Блэкеттом в 1932 г. стало неожиданностью для большинства физиков, в том числе и для самих Андерсона и Блэкетта[19]19
  Позитрон – античастица электрона. Он имеет точно такие же массу и спин, что и электрон, и электрический заряд, равный по величине и противоположный по знаку заряду электрона.


[Закрыть]
.

В-третьих, чтобы придать атомным ядрам соответствующие массы и заряды, физики сначала предположили, что ядра состоят из протонов и электронов. При этом они понимали, что вследствие этого допущения ядро азота-14 становится фермионом, тогда как исследования молекулярного спектра уже показали, что ядро азота-14 – бозон[20]20
  Фермионы и бозоны – частицы, отличающиеся поведением волновых функций при перестановке двух тождественных частиц; если эти две частицы – фермионы, то волновая функция меняет знак; если это бозоны, то не меняет. Сложная система, вроде атомного ядра, ведет себя как фермион, если в ней нечетное число фермионов, и как бозон в противном случае. Нейтроны, протоны и электроны являются фермионами, поэтому, если ядро азота-14 состоит из 14 протонов (исходя из наблюдаемой массы) и семи гораздо более легких электронов (судя по наблюдаемому заряду), тогда оно – фермион, хотя анализ молекул, состоящих из двух атомов азота показал, что ядра азота-14 на самом деле являются бозонами, поскольку они состоят из семи протонов и семи нейтронов.


[Закрыть]
. Окончательно нейтроны признали только после их открытия Чедвиком в 1932 г.

Сегодня это былое нежелание предлагать новые частицы даже в тех случаях, когда существовала очевидная теоретическая необходимость, кажется довольно странной. Современный физик-теоретик вряд ли добьется признания, если не введет хотя бы одну новую частицу, существование которой не подтверждено экспериментально. А в 1935 г. Хидэки Юкава потребовалась большая смелость, чтобы предположить, основываясь на приобретенном к тому времени знании о расстояниях ядерного взаимодействия, существование бозона с массой порядка 100 МэВ[21]21
  МэВ – мегаэлектронвольт, или 1 млн электронвольт, – единица измерения энергии, используемая в атомной и ядерной физике, в физике элементарных частиц и смежных областях физики. В физике элементарных частиц в электронвольтах обычно выражается не только энергия, но и масса элементарных частиц. В единицах массы 1 эВ = 1,782 661 907 (11) × 10−36 кг.


[Закрыть]
, которым обмениваются взаимодействующие протоны и нейтроны.

Между тем равенство масс нейтрона и протона говорило о том, что между этими частицами существует некоторая симметрия[22]22
  Симметрия подробно обсуждается в главе 11 этой книги, в статье, написанной специально для непосвященных читателей.


[Закрыть]
. Эта симметрия была установлена Грегори Брейтом и Юджином Финбергом в 1936 г., после того как в том же году Мерл Тьюв с коллегами экспериментально измерили силу протон-протонного взаимодействия и обнаружили, что она равна уже известной к тому времени силе нейтрон-протонного взаимодействия. Найденная симметрия получила название изоспиновой; математикам она известна как SU (2)[23]23
  Таков принцип инвариантности, согласно которому уравнения, описывающие нейтроны и протоны и силы их взаимодействия, не должны изменяться, если в этих уравнениях нейтроны и протоны поменять местами или заменить частицами, представляющими смешанное состояние одного протона и одного нейтрона.


[Закрыть]
.

Физика частиц возобновила свое развитие после окончания Второй мировой войны. (Здесь я, пожалуй, закончу перечислять имена физиков, работавших в этой области, поскольку это заняло бы слишком много времени, а кроме того, я боюсь пропустить имя кого-нибудь из ныне живущих.) В конце 1940-х гг. старая проблема бесконечностей в квантовой электродинамике была решена с помощью теории перенормировки[24]24
  В начале 1930-х гг. заметили, что в квантовой теории электронов и электромагнетизма, в случае, если вычисления энергий частиц выходят за рамки простейшего приближения, значения этих энергий оказываются бесконечными. Проблему удалось решить, когда обнаружилось, что бесконечности исчезают, если провести подходящее переопределение – перенормировку массы и заряда электрона и полей электрона и фотона.


[Закрыть]
. Мезон Юкавы, который мы теперь называем пионом, был обнаружен, и были определены свойства частицы, отличающие ее от открытого в 1937 г. мюона, который можно уподобить тяжелому электрону. Частицы, обладающие новым приближенно сохраняющимся квантовым числом – странностью, – были открыты в 1947 г.[25]25
  Это частицы, которые кажутся странными, поскольку они могут быть получены только совместно друг с другом и никогда поодиночке.


[Закрыть]
Все эти новые частицы были обнаружены в космических лучах, но уже в 1950-х гг. на смену космическим лучам как инструменту для поиска новых частиц пришли ускорители. Ускорители становились все масштабнее и мощнее – они уже не помещались в подвалах университетских физических лабораторий и становились огромными объектами, видимыми из космоса.

Выдающийся успех квантовой электродинамики подарил надежду на создание квантовой теории поля, охватывающей все элементарные частицы и их взаимодействия, однако в этом направлении возникли серьезные препятствия. Для начала отметим, что такая теория требует выбрать элементарные частицы, описания полей которых появятся в уравнениях. Однако после открытия столь большого количества новых частиц уже стало невозможно всерьез относится к выбору небольшой группы частиц в качестве элементарных. Кроме того, можно было легко представить любое число теорий сильных взаимодействий в квантовых полях, но что с ними делать? Сильные взаимодействия оказались слишком сильными и не допускали приблизительных расчетов. Одна из теоретических школ и вовсе пришла к отказу от квантовой теории поля, по крайней мере в отношении сильных взаимодействий, и в дальнейшем полагалась исключительно на общие свойства процессов рассеяния.

Другая проблема: что нам делать с приближенными симметриями, вроде изоспиновой, или еще более загадочным спонтанным нарушением симметрии, описывающим свойства низкоэнергетических пионов, или еще более грубой симметрией, которая устанавливает связь между обычными и странными частицами?[26]26
  О спонтанном нарушении симметрии говорят, если, несмотря на наличие симметрии в уравнениях, описывающих физическое явление, в самом физическом явлении симметрии не наблюдается.


[Закрыть]
Оказалось, что даже инвариантность относительно пространственного отражения (так называемая Р-симметрия, или зеркальная симметрия), обращения времени (Т-симметрия) и замена частицы на соответствующую античастицу (С-симметрия, или зарядовое сопряжение) оказалась приближенной. Если симметрии – выражение гармонии природы, то являются ли приближенные симметрии выражением приближенной гармонии природы?

Для слабых взаимодействий у нас имеется квантовая теория поля, которая хорошо согласуется с экспериментом, – теория бета-распада Ферми, появившаяся в 1933 г. Однако при обобщении этой теории за пределы нижнего порядка аппроксимации она привела к появлению бесконечностей, которые, очевидно, нельзя устранить с помощью перенормировки.

Все эти препятствия были преодолены в 1960–1970-х гг. благодаря развитию новой квантово-полевой теории элементарных частиц – Стандартной модели. Она построена на точных локальных симметриях, часть которых подвержена спонтанному нарушению, а другие – нет[27]27
  Локальные, или калибровочные, симметрии – это свойства инвариантности физических уравнений при определенных преобразованиях, которые (в отличие от преобразований изоспиновой симметрии) могут варьироваться во времени и пространстве.


[Закрыть]
. БАК, несомненно, позволит нам раскрыть механизм, приводящий к спонтанному нарушению локальной симметрии слабого и электромагнитного взаимодействий. Существует очевидный набор элементарных частиц, поля которых включены в Стандартную модель, – это кварки (из которых состоят протоны, нейтроны и другие сильно взаимодействующие частицы), лептоны (электроны, нейтрино и другие слабо взаимодействующие частицы) и бозоны, возникающие как проявления локальных симметрий (фотоны, переносящие сильное взаимодействие глюоны и переносящие слабое взаимодействие при бета-распаде W– и Z-бозоны). Нам все еще крайне сложно выполнять точные расчеты для сильно взаимодействующих частиц, например протонов и нейтронов, состоящих из кварков, но ослабление сильного взаимодействия при высоких энергиях позволяет произвести достаточный объем вычислений, чтобы убедиться в правильности теории.

Простота Стандартной модели обеспечивается условием перенормировки – в уравнениях допускаются только такие комбинации полей и их производных, размерность которых (в системе единиц, в которой постоянная Планка и скорость света равны единице) не превышает четвертой степени массы[28]28
  Постоянная Планка – фундаментальная константа в квантовой механике, введенная Максом Планком в рамках его теории теплового излучения, предложенной в 1900 г.


[Закрыть]
. Это условие необходимо для того, чтобы все бесконечности, возникающие в теории возмущений, можно было устранить переопределением конечного набора констант в уравнениях.

Благодаря подобной простоте возникает естественное объяснение загадочным приближенным симметриям сильных взаимодействий, например изоспиновой симметрии. Та часть теории, которая описывает сильные взаимодействия, недостаточно сложна, чтобы могла описывать нарушение этих симметрий, за исключением незначительных эффектов, обусловленных массами легчайших кварков. Точно так же теория слабого и электромагнитного взаимодействий недостаточно сложна, чтобы могла описывать нарушение закона сохранения странности и других ароматов или P-, T– и С-симметрии (за исключением некоторых незначительных квантовых эффектов).

Несомненно, нужно выходить за рамки Стандартной модели. Мы десятилетиями пялимся на таинственный спектр масс кварков и лептонов, словно на символы неизвестного языка, который не можем расшифровать. Кроме того, для объяснения темной материи[29]29
  Это материя, о существовании которой говорят гравитационные эффекты. Астрономы утверждают, что на ее долю приходится около 5/6 от общей массы Вселенной.


[Закрыть]
и темной энергии тоже нужно что-то за пределами Стандартной модели.

Сегодня в целом понятно, что Стандартная модель – это всего лишь эффективная (то есть феноменологическая) теория поля, дающая низкоэнергетический предел некоторой более фундаментальной, неизвестной пока теории, которая будет охватывать значительно больший диапазон масс, чем тот, к которому мы привыкли. Любая теория, согласующаяся с квантовой механикой и СТО[30]30
  Включая техническое требование, чтобы результаты далеко разнесенных в пространстве экспериментов не коррелировали.


[Закрыть]
, при низких энергиях будет превращаться в квантово-полевую. Поля в таких эффективных теориях соответствуют частицам, элементарным или нет, массы которых достаточно малы, чтобы они могли рождаться при рассматриваемых энергиях. Поскольку эффективные теории поля не фундаментальны, от них нельзя ждать какой-то особенной простоты. Наоборот, все бесконечное разнообразие членов, появление которых возможно в уравнениях данной теории в согласии с требуемыми симметриями, будет присутствовать в теории, причем каждый из них будет входить умноженным на свою независимую константу.

Может показаться, что такая теория с бесконечным числом свободных параметров не должна обладать предсказательной силой. Полезность эффективных теорий обусловлена тем обстоятельством, что появление в уравнениях каких-либо более сложных членов, например содержащих произведения полей или их производных, повышает его размерность (то есть его зависимость от более высоких степеней масс). Поэтому размерность всех членов уравнений, за исключением конечного их числа, будет выражаться в единицах масс в степенях выше четвертой. Значит, коэффициенты при этих более сложных слагаемых должны быть пропорциональны некоторой характерной массе в отрицательной степени, чтобы сохранить одинаковую размерность всех членов уравнений. Если эффективная теория поля выводится из некоторой фундаментальной (или, по крайней мере, более фундаментальной) теории отбрасыванием («исключением путем интегрирования») высокоэнергетических степеней свободы, тогда масса, которая характеризует константу связи в членах более высокой размерности, будет по порядку величины соответствовать массовому масштабу фундаментальной теории. Если эффективная теория поля используется для анализа систем с энергиями много меньше этого массового масштаба, она позволяет получить систему приближений, учитывающую не столько степени малых констант связи вроде заряда электрона, сколько степени энергии в отношении к гораздо большему характерному массовому масштабу фундаментальной теории.

Учет взаимодействий выше четвертой степени массы означает, что эффективные теории поля не могут быть перенормированы подобно квантовой электродинамике. И поэтому при выходе за пределы первого приближения мы снова сталкиваемся с бесконечными рядами по энергиям, и эти бесконечности не получится исключить переопределением, или перенормировкой, конечного числа параметров теории. Однако эти бесконечности могут быть исключены переопределением бесконечного числа параметров, действительно присутствующих в теории. Для каждого порядка аппроксимации приходится иметь дело только с конечным числом свободных параметров и только с конечным числом бесконечных сумм, от бесконечных значений которых можно избавиться перенормировкой свободных параметров.

Впервые подобным образом эффективные теории поля в физике частиц были использованы для исследования низкоэнергетических пионов, фундаментальный массовый масштаб которых приближается к 1000 МэВ. Такие эффективные теории также были распространены и на процессы, охватывающие фиксированное количество нейтронов и протонов. Симметрии эффективных теорий поля пионов, нейтронов и протонов, несмотря на спонтанное нарушение, не допускают осуществления любых типов даже условно перенормируемых взаимодействий (то есть перенормируемых в том же смысле, что и в квантовой электродинамике).

Аналогично инвариантность квантовой теории гравитации по отношению к обобщенным преобразованиям пространственно-временных координат не допускает осуществления любых, даже условно перенормируемых, гравитационных взаимодействий. Теория квантовой гравитации тоже рассматривалась как эффективная теория поля. Проблема с этой теорией состоит не в бесконечностях, она обусловлена тем фактом, что теория теряет свою предсказательную силу при достаточно высоких, так называемых планковских, энергиях около 1021 МэВ, при которых гравитация становится сильным взаимодействием.

Как ни странно, но старая теория бета-распада Ферми могла бы стать частью эффективной теории поля, в которой взаимодействие между протонами, нейтронами, электронами и нейтрино описывалось бы первым членом в сумме ряда по степеням энергии, поделенной на массу порядка 10 000 МэВ. Развивая эту теорию далее, мы бы учли бесконечные интегралы, значение которых можно сделать конечным с помощью перенормировки небольшого количества новых взаимодействий. Оказалось, что теория, лежащая в основе теории Ферми, была построена раньше, чем стало понятно, как использовать теорию Ферми в рамках эффективной теории поля. Фундаментальной теорией здесь выступает, конечно, стандартная теория электрослабого взаимодействия, которая позволяет использовать приближения для энергий, намного превышающих 10 000 МэВ, вероятно вплоть до энергий порядка 1018 МэВ.


Страницы книги >> Предыдущая | 1 2 3 4 5 | Следующая
  • 4.8 Оценок: 5

Правообладателям!

Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.

Читателям!

Оплатили, но не знаете что делать дальше?


Популярные книги за неделю


Рекомендации