Электронная библиотека » Стивен Вайнберг » » онлайн чтение - страница 4


  • Текст добавлен: 24 декабря 2019, 10:22


Автор книги: Стивен Вайнберг


Жанр: Прочая образовательная литература, Наука и Образование


Возрастные ограничения: +12

сообщить о неприемлемом содержимом

Текущая страница: 4 (всего у книги 14 страниц) [доступный отрывок для чтения: 5 страниц]

Шрифт:
- 100% +

Инфляция хаотична по своей природе. Каждый пузырь, сформировавшийся в расширяющейся Вселенной, в итоге разорвался своим большим или маленьким взрывом, и для всех них, вероятно, характерны различные наборы величин, которые мы обычно называем фундаментальными константами. Обитатели (если таковые есть) одного пузыря не могут видеть другие пузыри, поэтому их пузырь кажется им всей вселенной. Полный набор всех таких вселенных получил название Мультивселенной.

В этих пузырях могут быть реализованы все возможные решения уравнений теории струн. И если так, тогда надежда найти рациональное объяснение точным значениям массы кварков и другим константам Стандартной модели, которые характерны для нашего Большого взрыва, обречена, поскольку это всего лишь случайные значения, установившиеся в той конкретной части Мультивселенной, где мы живем. Нам придется довольствоваться огрубленным вариантом антропного принципа для объяснения некоторых аспектов наблюдаемой Вселенной: любые живые существа, вроде нас с вами, которые могут изучать Вселенную, должны находиться в той ее части, в которой фундаментальные константы допускают эволюцию жизни и разума. Человек действительно может оказаться мерой всех вещей, хоть и не совсем в том смысле, который подразумевал Протагор[40]40
  Древнегреческий философ, софист, автор знаменитого тезиса «Человек есть мера всех вещей». – Прим. пер.


[Закрыть]
.

На сегодня, по-видимому, антропный принцип предлагает единственное объяснение наблюдаемому количеству темной энергии. В Стандартной модели и других известных квантовых теориях поля количество темной энергии просто фундаментальная константа. Это количество может быть любым. За неимением лучшего мы можем предположить, что плотность темной энергии соответствует плотности энергии, характерной для физики элементарных частиц, например плотности энергии в атомном ядре. Однако тогда Вселенная расширилась бы так быстро, что не образовалось бы никаких галактик, звезд или планет. Для эволюционного развития жизни количество темной энергии не может быть много больше или меньше наблюдаемой величины.

Подобные грубые антропные объяснения не совсем то, чего мы ждем от физики, однако они могут нас удовлетворить. История развития физической науки связана не только с поиском точных объяснений явлений природы, но еще и с выявлением тех вещей, которые допускают точные объяснения. И таких вещей может быть меньше, чем мы предполагали.

6
Мгновения и эпохи

В сочинении «Исчисление песчинок» Архимед показал, что умеет обращаться с большими числами, оценив количество песчинок, которое потребуется, чтобы заполнить Вселенную. Конечно, Архимед не знал размеров Вселенной; он использовал расчеты Аристарха для определения расстояния до границы небесной сферы, на которой расположены звезды. Большого смысла в этом не было. Его работа представляла интерес не для астрономии, а для математики. Описывая большие числа, он говорил о мириадах, мириадах мириад, мириадах мириад мириад мириад и т. д. В современном языке описать такое количество намного проще: мириада – это 10 000 или десять в четвертой степени, 104; мириада мириад – это 104, умноженное на 104, то есть 108; мириада мириад мириад мириад – это 108, умноженное на 108, то есть 1016; и т. д. Если перевести выводы Архимеда на современный язык, окажется, что для заполнения Вселенной потребуется не более чем 1063 песчинок.

В своих расчетах Архимед оперировал объемами: объем небесной сферы он представил как очень большое число объемов частичек песка. Ученым в своих исследованиях также приходится иметь дело с очень большими и очень маленькими величинами, которые мы описываем, используя степени десятки. Физики Герард ‘т Хоофт и Стефан Вандорен из города Утрехт (Нидерланды) в своей книге «Время в десяти энергиях» (Time in Powers of Ten), изданной в Голландии с милыми иллюстрациями дочери ‘т Хоофта Саскии, описали огромный диапазон временны΄х интервалов, с которыми имеет дело современная физика. В июле 2013 г. я получил электронное письмо от ‘т Хоофта, в котором он спрашивал, не соглашусь ли я написать предисловие для английского перевода их книги. Герард ‘т Хоофт – один из величайших физиков нашего времени и мой старый приятель, к тому же я и сам размышлял о временны΄х масштабах в истории физики и астрономии, так что я согласился. Английское издание книги ‘т Хоофта и Вандорена с моим кратким предисловием, которое можно прочесть в этой главе, было выпущено издательством World Scientific Press в 2014 г.

В обычной жизни человек оперирует временными периодами от нескольких секунд до нескольких десятилетий, то есть самый длительный временной интервал примерно в миллиард раз больше самого короткого. Однако с развитием науки ученые все чаще имеют дело с еще более длинными или короткими интервалами времени, отличающимися от привычных нам на много порядков.

Примерно в 150 г. до н. э. греческий астроном Гиппарх в результате наблюдений установил, что положение Солнца на фоне звезд в момент осеннего равноденствия постепенно изменяется со скоростью, при которой равноденственное светило совершит полный круг по зодиакальному экватору примерно за 27 000 лет. Позже Ньютон объяснил предварение равноденствий[41]41
  Постепенное изменение положения весеннего и осеннего равноденствий, то есть точек пересечения небесного экватора с эклиптикой. – Прим. пер.


[Закрыть]
влиянием медленного колебания оси вращения Земли, вызванного гравитационным притяжением Солнца и Луны. Сегодня нам известно, что ось Земли совершает полный оборот за 25 727 лет. Гиппарх впервые выполнил серьезный научный расчет, в котором фигурировал временной интервал, намного превышающий продолжительность жизни человека, и получил результат с погрешностью всего 5 %.

В наше время мы уже привыкли к гораздо более длительным интервалам времени. По относительной распространенности изотопов урана мы можем сделать вывод, что вещество, из которого состоит Солнечная система, образовалось в результате взрыва звезды примерно 6,6 млрд лет назад. Заглядывая еще глубже в прошлое и анализируя скорость разбегания галактик, мы понимаем, что 13,8 млрд лет назад материя Вселенной находилась в настолько сжатом состоянии, что не было ни галактик, ни звезд, ни даже атомов – только горячий плотный газ элементарных частиц.

Расширение нашего опыта на сверхкороткие временны́е интервалы оказалось еще более драматичным. В результате наблюдения за дифракцией, которая связана с волновой природой света, еще в начале XIX в. стало известно, что характерная длина волны видимого света составляет примерно 3 стотысячных сантиметра. К тому моменту люди уже знали, что скорость света около 300 000 км/с, таким образом, период световой волны, то есть время, необходимое на преодоление расстояния, равного длине волны, составляет 10–15 с (одна квадриллионная секунды). Это примерно соответствует времени, за которое электроны в атомах совершают один полный оборот на своих орбитах (если рассматривать процесс в рамках классического описания).

Современная физика элементарных частиц имеет дело с временными интервалами, которые во много раз короче. Время жизни W-частицы (тяжелой заряженной частицы, отвечающей за слабое взаимодействие, которое позволяет нейтронам превращаться в протоны в радиоактивных ядрах) равно 3,16×10–25 с, то есть за это время W-частица, двигающаяся с околосветовой скоростью, даже не успеет преодолеть расстояние, равное диаметру атомного яра.

Меня впечатляет не только тот факт, что теперь ученые сталкиваются со столь длинными или столь короткими интервалами времени. Более удивительным мне кажется то, что наши эксперименты и теории стали достаточно надежными и позволяют получать точные числа вроде 13,8 млрд лет и 3,16·10–25 с с некоторой уверенностью в том, что мы понимаем, о чем говорим.

7
С оглядкой на современность: Виговская история науки

Активно интересоваться историей науки я начал в 1972 г., когда написал свою первую книгу – учебник по общей теории относительности для студентов старших курсов[42]42
  Вайнберг С. Гравитация и космология. – М.: Мир, 1975.


[Закрыть]
. Чтобы описать предпосылки теории Эйнштейна понятнее, я начал книгу с исторического введения, в котором осветил историю основополагающих идей, то есть неевклидовой геометрии, теории гравитации и принципа относительности.

Изложение истории в этой книге было почти полностью построено на вторичных источниках и опубликованных исследовательских статьях, но к своей второй книге о современной космологии, адресованной более широкой аудитории читателей[43]43
  Вайнберг С. Первые три минуты. – М.: АСТ, 2019.


[Закрыть]
, я подошел более основательно. При работе над книгой, написанной в 1977 г., я, кроме прочего, поговорил с физиками и астрономами, которые имели прямое отношение к совершенному в 1965 г. открытию реликтового излучения, сохранившегося со времен ранней Вселенной. Я хотел лучше понять сложности, которые стояли перед учеными.

Затем я решил предпринять попытку преподавать историю физики студентам. В начале 1980-х гг. сначала в Гарварде, а потом в Техасе я читал учебный курс об открытии внутриатомных частиц – электрона, протона и нейтрона. Материал курса лег в основу новой книги[44]44
  Steven Weinberg, The Discovery of Subatomic Particles (New York: Scientific American Library, 1983; rev. ed., Cambridge: Cambridge University Press, 2003).


[Закрыть]
. Увлекшись историей, я начинал свои поздние труды по квантовой теории поля и квантовой механике с исторических обзоров. Я хотел не только объяснить, откуда пришли эти идеи, но еще и дать студентам, которые будут применять эти теории, ощущение сопричастности великой традиции.

Большая часть моих текстов касалась только новейшей истории физики и астрономии, охватывавшей период с конца XIX в. до настоящего времени. Однако я чувствовал растущую потребность погрузиться вглубь веков и больше узнать о ранних этапах истории науки, когда задачи и стандарты научных знаний еще не обрели современную форму. Чтобы лучше познакомиться с древней историей, я вызвался читать учебные курсы по истории физики и астрономии студентам Техасского университета. Из лекционных конспектов к этим курсам выросла еще одна книга, изданная в 2005 г.[45]45
  Вайнберг С. Объясняя мир. Истоки современной науки. – М.: Альпина нон-фикшн, 2018.


[Закрыть]

Несмотря на то что в этой книге я уделял повышенное внимание ошибкам, неудачным гипотезам и даже подлым поступкам в истории науки, в целом у меня все же получился рассказ о прогрессе, идущем от первых неумелых шагов классической Греции к ранней науке эллинистических астрономов, математиков, физиков через драматичное развитие средневековых ислама и христианства к расцвету современной науки и научной революции. Я знаю, что такой подход к истории уже не в моде, и преднамеренно адаптировал то, что зачастую осуждается как «виг-интерпретация»[46]46
  Виги – британская политическая фракция, со временем преобразованная в партию, сыгравшую важную роль в проведении Славной революции 1688 г. и выступавшую основным оппонентом партии тори в британском парламенте в XVII–XIX вв. – Прим. пер.


[Закрыть]
истории науки. Поэтому я не был удивлен, когда некоторым историкам не понравилась тематика книги, несмотря на отсутствие в ней явных ошибок.

В завершение всей этой суматохи в марте 2016 г. на одном из своих заседаний в Балтиморе Американское физическое общество провело специальную сессию, названную «Диалог с автором: о книге Стивена Вайнберга “Объясняя мир”». Я написал текст для своего выступления заранее и в декабре 2015 г. опубликовал его в виде статьи в журнале The New York Review of Books. Эта работа сейчас перед вами.

Герберт Баттерфилд был тем самым кембриджским историком, который описал и осудил то, что он назвал «виговским подходом к истории». В 1931 г. в своей одноименной книге молодой Баттерфилд заявил, что «изучение истории с оглядкой на современность является источником всех грехов и софистики в исторической науке»[47]47
  Herbert Butterfield, The Whig Interpretation of History (1931; republished, New York: W. W. Norton, 1965). В этой главе я вслед за Баттерфилдом пишу «Виг» с прописной буквы, когда речь идет о политической партии, и со строчной буквы, когда речь идет об интеллектуальном тренде.


[Закрыть]
. Особое презрение он выражал тем историкам, среди которых оказался и лорд Актон, кто судил о событиях прошлого, исходя из современных этических норм, и кто, к примеру, видел в виге Чарльзе Джеймсе Фоксе исключительно хранителя британских либеральных ценностей. Дело не в том, что Баттерфилд лично не хотел высказывать моральных суждений; просто он считал, что это занятие – не для историков. Согласно Баттерфилду, виговский историк, изучающий католиков и протестантов XVI в., уверен, что, «пока он не укажет правую сторону, из ткани истории будут торчать нитки».

Жесткие высказывания Баттерфилда были страстно подхвачены следующими поколениями историков. Для них оказаться «вигом» теперь не менее ужасно, чем прослыть сексистом, евроцентристом или ориенталистом. Не обошли стороной и историю науки. Историк науки Брюс Хант вспоминает, что, когда он учился в аспирантуре в начале 1980-х гг., слово «виговский» стало распространенным ругательством в среде историков. Дабы избежать подобных обвинений, люди перестали рассказывать об истории прогресса и описывать «общую картину», сместившись на изучение малых эпизодов, сосредоточенных в узких пространственных и временны́х рамках.

Тем не менее, читая учебные курсы по истории физики и астрономии, а также в процессе переработки своих лекций в материал для книги я пришел к мысли, что, как бы кто ни относился к «виговству» в других областях истории, но в истории науки подобный подход занял свое законное место. Очевидно, нет смысла говорить о правильном или неправильном в истории искусств или моды, а также, я думаю, это неуместно и в истории религии. Можно спорить о применимости подобной интерпретации в политической истории, но в истории науки мы действительно можем сказать, кто именно оказался прав. Согласно Баттерфилду, «ни окончательное решение, ни естественный ход событий, ни течение времени не позволяют однозначно утверждать, что Лютер был прав в споре с Поупом, или что Питт ошибался, а Чарльз Джеймс Фокс – нет». Однако мы можем с полной уверенностью сказать: время показало, что в отношении устройства Солнечной системы Коперник оказался ближе к истине, чем сторонники Птолемея, а Ньютон в правоте обошел последователей Декарта.

Таким образом, история науки имеет отличительные особенности, которые делают виговский подход полезным, но все же есть еще один аспект, из-за которого оглядка на современность причиняет беспокойство некоторым профессиональным историкам. Историки, которые сами никогда не занимались наукой, могут почувствовать, что не понимают современную науку, в отличие от действующих ученых. С другой стороны, необходимо иметь в виду, что ученые вроде меня не владеют мастерством работы с источниками так, как им владеют профессиональные историки. Тогда кому все же следует писать историю науки, историкам или ученым? Ответ мне кажется очевидным: и тем и другим.

Должен признать, что у меня здесь свой интерес[48]48
  Объясняя мир. Истоки современной науки.


[Закрыть]
. В упомянутой выше книге, основанной на моих лекциях, которые я читал в Техасском университете в Остине, я признаю, что «близко подбираюсь к опасной ситуации, старательно избегаемой современными историками, когда рассуждаю о прошлом, используя стандарты настоящего». Рецензии на мою книгу в основном были положительные, но в одной из них, опубликованной профессиональным историком в Wall Street Journal, я был подвергнут критике за свое внимание к современности. Рецензия вышла под заголовком «Виговский подход к науке».

Сейчас некоторая критика виговства со стороны Баттерфилда и других применительно к истории науки либо уже неуместна, либо не подразумевает дискуссии. Конечно, нам не следует слишком упрощать или пренебрегать этическими оценками, объявляя одних ученых прошлого безупречными героями или непогрешимыми гениями, а других – негодяями и дураками. Мы не должны пренебрегать фактами, свидетельствующими о том, что, например, Галилей был совершенно не прав в споре о кометах, который он вел с иезуитом Орацио Грасси, или о том, что Ньютон подгонял результаты своих расчетов, чтобы добиться согласия с наблюдаемой прецессией оси Земли. В любом случае современные стандарты нам следует применять к идеям и методикам, а не к личностям. Прежде всего, мы не должны думать, будто наши предшественники мыслили так же, как мы, только располагали меньшим объемом информации.

Именно баттерфилдовский запрет презентизма[49]49
  Презентизм – направление в методологии истории XX в. (особенно в США в 1920–1940-х гг.), которое рассматривает историческую науку не как отражение объективных, имевших место в прошлом явлений, а лишь как выражение идеологических отношений современности. Таким образом, презентизм отвергает возможность объективной исторической истины. – Прим. пер.


[Закрыть]
, то есть «изучения прошлого с оглядкой на современность», бросает серьезный вызов виговским историкам науки. В 1968 г. Томас Кун, формулируя принципы истории науки, подчеркивающие ее внутреннее развитие, утверждал, что «по мере возможности (а полностью этого никогда нельзя сделать, поскольку иначе невозможно было бы писать историю) историк должен отодвигать в сторону науку, которую он знает»[50]50
  T. Kuhn, “The History of Science,” in International Encyclopedia of the Social Sciences, vol. 14 (New York: Macmillan, 1968), 76.


[Закрыть]
. Еще более бескомпромиссную позицию против использования современных знаний занимали некоторые социологи, изучавшие науку как социальное явление, в том числе ученые из известной группы «Социология научного знания» в Университете Бата.

Вместе с тем у виговского подхода в истории науки не было недостатка и в защитниках, особенно среди действующих ученых, таких как Эдвард Харрисон[51]51
  E. H. Harrison, “Whigs, Prigs, and Historians of Science,” Nature 329, no. 213 (September 1987).


[Закрыть]
, Николас Джардин[52]52
  N. Jardine, “Whigs and Stories: Herbert Butterfield and the Historiography of Science,” Journal of the History of Science 41, no. 125 (2003).


[Закрыть]
и Эрнст Майр[53]53
  E. Mayr, “When Is Historiography Whiggish?” Journal of the History of Ideas 51, no. 2 (1990): 301–309.


[Закрыть]
. Я думаю, это связано с тем, что ученым просто необходима история науки, рассказанная с оглядкой на современность. Мы не рассматриваем нашу работу как исключительно культурное проявление настоящего, вроде парламентской демократии или танца моррис[54]54
  Английский народный танец. – Прим. пер.


[Закрыть]
. Мы считаем науку новейшим этапом тысячелетнего процесса объяснения мира. Мы видим перспективу и черпаем мотивацию из рассказов о том, как человечество достигло современного понимания, пока остающегося несовершенным.

Несомненно, исторической науке не следует игнорировать влиятельные фигуры ученых прошлого, которые, как оказалось, ошибались. Иначе мы никогда не сможем понять, чего стоит правота. Однако история будет лишена смысла, пока мы не признаем, что кто-то был прав, а кто-то ошибался, и сделать это можно только с позиций наших современных знаний.

А в чем, собственно, правы или не правы? Не слишком интересной будет виговская история науки, в которой всего лишь подсчитывается общая сумма положительных и отрицательных баллов, начисляемых всякий раз, когда какой-либо ученый из прошлого оказывался прав или ошибался. Гораздо важнее, как мне кажется, отследить трудный и медленный, растянувшийся на века прогресс метода познания мира. На какие вопросы мы можем надеяться найти ответы? Какие идеи помогут нам отыскать эти ответы? Как понять, что найденный ответ верен? Мы можем определить, какие исторические методики наставляют будущих ученых на правильный путь, а о каких старых вопросах и методологиях лучше забыть. Это невозможно сделать без учета наших современных представлений, столь мучительно сформированных.

В качестве примера виговского подхода к прошлому обратимся к фундаментальной проблеме древности – из какой материи состоит наш мир? Часто особую заслугу в разрешении этого вопроса приписывают Демокриту Абдерскому, который за 400 лет до н. э. предположил, что материя состоит из движущихся в пустоте атомов. Сегодня один из ведущих университетов Греции носит имя Демокрита. При этом с современной точки зрения верная догадка Демокрита об атомах не получила развития в научной методологии. Ни в одном из сохранившихся фрагментов записей Демокрита нет описаний каких-либо наблюдений, которые могли бы навести его на мысль о существовании атомов, и ни Демокрит, ни кто-либо еще из живших в те древние времена ничего не могли сделать, чтобы подтвердить догадку о том, что материя действительно состоит из атомов. Демокрит был прав насчет природы материи, но ошибался в том, как следует изучать мир. И в этом он был не одинок; кажется, никто до Аристотеля не понимал, что умозрительные теории о структуре материи должны быть подкреплены наблюдениями.

Отношение к Аристотелю позволяет судить об отношении к истории науки, поскольку Аристотель был, в некотором смысле, первым ученым и во многом дальнейшее развитие науки определялось реакцией на его учение. Аристотель утверждал, что Земля является сферой, основываясь не только на чисто теоретических рассуждениях о том, что именно такая форма позволяет наибольшему количеству элемента «земля» находиться в максимальной близости от центра космоса, но и на результатах наблюдений: тень Земли на поверхности Луны во время лунного затмения искривлена, а вид ночного звездного неба изменяется, если двигаться на север или на юг. Однако работа Аристотеля демонстрирует отсутствие понимания той важной роли, которую в изучении природы играет математика. Например, он даже не пытался использовать наблюдения за ночным небом на различных широтах, чтобы оценить длину окружности Земли. Его теория о том, что планеты движутся по круговым орбитам, центры которых сами вращаются по другим круговым орбитам, и Земля расположена в центре всего этого движения, только качественно описывала наблюдаемое движение планет; однако неспособность добиться количественного согласия с результатами наблюдений нисколько не беспокоила ни Аристотеля, ни множество его последователей.

Творческое использование математики в научных теориях началось в эллинистическую эру и продолжилось в греческой части Римской империи. Примерно в 150 г. н. э. Клавдий Птолемей доработал математическую теорию видимого движения планет, и теперь она довольно хорошо описывала результаты наблюдений. (В простейшей версии теории Птолемея планеты двигались по окружностям, названным эпициклами, центры которых перемещались по окружностям большего диаметра вокруг Земли.) С учетом современных знаний подобное совпадение не удивительно, поскольку в этой простейшей версии теория Птолемея позволяет получить в точности те же траектории видимого движения Солнца, Луны и планет, что и в рамках простейшей версии более поздней теории Коперника. Тем не менее на протяжении 1500 лет продолжалась дискуссия между последователями Птолемея, которых называли астрономами или математиками, и сторонниками Аристотеля, которых часто называли физиками. Птолемей ошибался насчет реального движения в Солнечной системе, но был прав относительно необходимости количественного согласия теории и результатов наблюдений.

Одним из величайших достижений научной революции XVI–XVII вв. стало установление современной связи между математикой и наукой. Математика высоко ценилась пифагорейцами, но только как форма нумерологии, и Платоном, но только как модель чисто дедуктивной науки, которая, как показал опыт, не работает. Современная связь между математикой и естественными науками была описана в 1690 г. Христианом Гюйгенсом в предисловии к его «Трактату о свете»:

Доказательства, приводимые в этом трактате, отнюдь не обладают той же достоверностью, как геометрические доказательства, и даже весьма сильно от них отличаются, так как в то время, когда геометры доказывают свои предложения с помощью достоверных и неоспоримых принципов, в данном случае принципы подтверждаются при помощи получаемых из них выводов; природа изучаемого вопроса не допускает, чтобы это происходило иначе[55]55
  Цит. по: Гюйгенс Х. Трактат о свете, в котором объяснены причины того, что с ним происходит при отражении и при преломлении, в частности при странном преломлении исландского кристалла / Пер. с фр.; Под ред. и с прим. В.К. Фредерикса. – Изд. 2-е. – М.: Книжный дом «ЛИБРОКОМ», 2010. – (Классики науки.) – Прим. пер.


[Закрыть]
[56]56
  Цит. по: Гюйгенс Х. Трактат о свете, в котором объяснены причины того, что с ним происходит при отражении и при преломлении, в частности при странном преломлении исландского кристалла / Пер. с фр.; Под ред. и с прим. В. К. Фредерикса. Изд. 2-е. – М.: Книжный дом «ЛИБРОКОМ», 2010. – (Классики науки.)


[Закрыть]
.

Примечательно не то, что Гюйгенс понимал это, но то, что даже на исходе XVII в. нужно было специально оговаривать эту ситуацию.

Аристотель не видел необходимости в эксперименте – искусственном выстраивании обстоятельств, раскрывающих нам больше, чем естественный ход вещей. Можно предположить, что такое отношение было следствием его представлений о существовании принципиальных отличий между естественным и искусственным, согласно которым только естественный мир достоин изучения. Как и Платон, Аристотель считал, что понять вещи можно, только зная их предназначение. Подобные идеи мешали развитию методологии исследования мира.

Такое мнение об Аристотеле и его последователях – именно тот тип рассуждений о прошлом, которые проводятся с оглядкой на современность и часто осуждаются некоторыми историками. К примеру, выдающийся историк науки, покойный Дэвид Линдберг, говорил, что «нечестно и бессмысленно рассуждать об успехах Аристотеля по тому, насколько его идеи предвосхищали современную науку (как будто его целью было ответить на наши вопросы, а не на его собственные)»[57]57
  David C. Lindberg, The Beginnings of Modern Science (Chicago: University of Chicago Press, 1992).


[Закрыть]
. А во втором издании той же работы он написал: «Подходящая мера для любой философской системы или научной теории – это не то, в какой степени они предугадывают современные нам идеи, но то, в какой степени они преуспели в решении философских и научных проблем своего времени».

На мой взгляд, это абсурд. Задача науки не в том, чтобы отвечать на популярные вопросы эпохи, задача науки – в понимании устройства мира. Я не говорю, что мы заранее знаем, какой вариант мировоззрения возможен и удовлетворителен. Поиск такого мировоззрения – это одна из областей приложения науки. Некоторые вопросы (вроде «Из чего состоит наш мир?») – это хорошие вопросы, но ставятся они преждевременно. Никто не смог продвинуться в поиске ответа на этот вопрос до тех пор, пока в конце XVIII в. не появились методы точного измерения атомных весов химических элементов. Точно так же преждевременными оказались усилия, предпринятые Хендриком Лоренцем и другими теоретиками в начале XX в., направленные на объяснение структуры недавно открытого электрона: никому не удалось продвинуться в изучении структуры электрона до тех пор, пока в 1920-х гг. не появилась квантовая механика. Другие вопросы, например «Каково естественное место огня?» или «В чем предназначение Луны?», плохи сами по себе, поскольку они только уводят в сторону от реального понимания устройства мира. Значительная часть времени в истории науки была потрачена на то, чтобы выяснить, какие вопросы стоит задавать, а какие – нет.

Я вовсе не утверждаю, что виговский подход – единственный представляющий интерес подход в истории науки. Даже виговские историки могут заниматься изучением влияния общей культуры на развитие науки и, наоборот, науки на развитие культуры, не задаваясь вопросами о той роли, которую это развитие сыграло для прогресса современного научного знания. К примеру, атомистическая теория Демокрита продемонстрировала, как природа может функционировать без вмешательства богов, и потому веком позже она оказала огромное влияние на эллинистического философа Эпикура, а потом и на римского поэта Лукреция, и это влияние никак не зависело от того, имела ли эта теория хорошее обоснование по современным стандартам (нет, не имела). Аналогично, вы можете обнаружить влияние научной революции на общую культуру в поэзии Эндрю Марвелла. (Я имею в виду вполне конкретную его поэму «Определение любви».) Но влияние также распространялось и в обратном направлении. Социолог Роберт Мертон утверждал, что протестантизм подготовил почву для великих научных свершений XVII в. в Англии. Я не знаю, правда ли это, но мысль интересная.

Однако даже здесь имеется некий виговский элемент. Почему историки науки должны концентрироваться на интеллектуальной среде, скажем, эллинистической Греции или Англии XVII в., если в ней не происходило ничего, что способствовало бы продвижению науки к ее современному состоянию? История науки – это ведь не просто рассказ о хаотично сменявших друг друга интеллектуальных трендах, это история движения к истине. И хотя подобное движение отрицалось Томасом Куном, действующие ученые ощущают его существование. Так что виговская история не просто одна из нескольких интересных интерпретаций истории науки. Эволюция современной науки на протяжении многих веков – это прекрасная часть истории человеческой цивилизации, столь же важная и интересная, как и все остальные.

Кажется, что Баттерфилд и сам понимал легитимность виговского подхода в истории науки. В своем курсе лекций, прочитанном в 1948 г. в Кембридже, он признал историческую значимость научной революции, чего он никогда не признавал за английской Славной революцией, столь любимой вигами[58]58
  Лекции были опубликованы в 1950 г. Гербертом Баттерфилдом в The Origins of Modern Science, rev. ed. (New York: Free Press, 1957).


[Закрыть]
. Я нахожу его оценку научной революции вполне виговской, и такое же впечатление сложилось и у других, в том числе у Руперта Холла, студента Баттерфилда[59]59
  Смотри заключительный абзац в статье A. R. Hall, “On Whiggism,” History of Science 21, no. 45 (1983).


[Закрыть]
. Ранее в своем «Виговском подходе к истории» Баттерфилд уже показал, что в определенных условиях потенциально готов принять виг-интерпретацию истории. Он признал, что, если мораль является «абсолютной, одинаково присущей всем временам и пространствам», историк «теперь будет вынужден наблюдать, как возрастает осознание человечеством морального порядка или как человечество постепенно открывает этот порядок для себя». Несмотря на то что Баттерфилд был верным методистом, он не верил в существование абсолютного морального порядка, который раскрывается нам с помощью истории, религии или еще чего бы то ни было[60]60
  Описание религиозных взглядов Баттерфилда приведено в книге M. Bentley, The Life and Thought of Herbert Butterfield (Cambridge: Cambridge University Press, 2011).


[Закрыть]
. Однако он не сомневался, что существуют законы природы, одинаково присущие всем временам и пространствам. И именно такую историю возрастающего осознания законов природы надеются написать виговские историки физики, однако она не может быть рассказана без оглядки на наши современные знания о реальном мире.


Страницы книги >> Предыдущая | 1 2 3 4 5 | Следующая
  • 4.8 Оценок: 5

Правообладателям!

Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.

Читателям!

Оплатили, но не знаете что делать дальше?


Популярные книги за неделю


Рекомендации