Текст книги "Энергетика глазами молодых (сборник)"
Автор книги: Василий Сташко
Жанр: Прочая образовательная литература, Наука и Образование
Возрастные ограничения: +16
сообщить о неприемлемом содержимом
Текущая страница: 1 (всего у книги 10 страниц)
Коллектив авторов
Энергетика глазами молодых
© ООО «МЦ ЭОР», 2017
© С. О. Хомутов, В. Я. Федянин, И. А. Гутов, В. И. Сташко, 2017
Определение потенциала солнечной энергетики республики Таджикистан
Аджиков Х. Ф. – студент группы. Э-32, Лунин Г. М. – студент группы МСТУ-41, Бахтина И. А. – к.т.н., доцент РФ, Алтайский край, г. Барнаул, ФГБОУ ВО «Алтайский государственный технический университет им. И. И. Ползунова» КГБПОУ «Алтайский архитектурно-строительный колледж»
После мирового энергетического кризиса в 70-х годах прошлого столетия началось развитие нетрадиционной и возобновляемой энергетики. В настоящее время суммарная мощность действующих энергоустановок на возобновляемых источниках энергии составляет около к 600 ГВт, что почти в два раза больше мощности всех атомных электростанций в мире и приблизительно в три раза больше мощности всех электростанций России. Особенно актуально развитие возобновляемой энергетики для тех стран, в которых мало запасов природных ресурсов (нефти, газа, угля и т. д.), которые являются топливом для станций традиционной энергетики. Одной из таких стран является Республика Таджикистан. 98 % территории Таджикистана занимают горы, поэтому из всех возобновляемых источников энергии (ветер, солнце, гидроэнергетика, геотермальная энергия и низкопотенциальное тепло земли) наиболее доступным для республики является солнечная энергетика.
Республика Таджикистан расположена между 37 и 41 градусами северной широты и полностью входит в так называемый «мировой солнечный пояс» (45° с.ш. – 45° ю.ш.). По данным статистических наблюдений количество солнечных дней в году в республике составляет в среднем 280–330, интенсивность солнечной радиации в большинстве районов достигает 1000 Вт/м2, а годовая сумма радиации превышает 2000 кВт/м2. Количество годовой суммарной радиации в Таджикистане в два раза больше, чем в средней полосе Европы, где использование солнечной энергии носит самый широкий характер.
По укрупнённым оценкам потенциал солнечной энергии республики составляет около 25,16 млрд. кВт·ч/год и может удовлетворить 10–20 % спроса на энергоносители. Как известно, КПД солнечных установок (элементов) в настоящее время невелики и составляют 12–18 %. Однако, ввиду сравнительно большого потенциала солнечной энергетики, даже при низком КПД за счёт энергии Солнца можно обеспечить общие потребности населения на 60–80 % в течение, по меньшей мере, десяти месяцев в году на всей территории Таджикистана. Поэтому в настоящее время программы развития электроэнергетики Республики Таджикистан рассматривают развитие солнечной энергетики как наиболее перспективное направление.
Основными исходными данными для оценки потенциала солнечной энергетики и выбора наиболее оптимального места для размещения солнечной электростанции (СЭС) является количество суммарной (прямой и рассеянной) солнечной радиации на горизонтальную поверхность при действительных условиях облачности, которые являются справочными данными [1]. Для Республики Таджикистан они приведены в таблице 1.
Таблица 1 – Суммарная (прямая и рассеянная) солнечная радиация на горизонтальную поверхность при действительных условиях облачности, для характерных районов Республики Таджикистан
Однако для выбора наиболее оптимального района для размещения СЭС необходимо оценить продолжительность солнечного сияния в течение суток за месяц и за год. Методика расчёта изложена в [2]. Исходными данными являлись суммарная солнечная радиация, представленная в таблице 1 и координаты расположения районов (таблица 2).
Таблица 2 – Координаты характерных районов Республики Таджикистан
По методике, изложенной в [2] были произведёны расчёты склонения солнце δ, часового угла солнце ω и продолжительности солнечного сияния в течение суток Тс в точке А с координатами (φ, ψ) в рассматриваемые сутки по месяцам и в течение года. По результатам выполненных расчётов для всех вышеприведённых характерных районов Республики Таджикистан построены зависимости, представленные на рисунках 1–3.
а)
б)
Рисунок 1 – График продолжительности солнечного сияния для Курган-Тюбе: а) за месяц, б) за год
а)
б)
Рисунок 2 – График продолжительности солнечного сияния для Ледника Фед-ченко: а) за месяц, б) за год
Как видно из рисунков 1–3 наибольшая продолжительность солнечного сияния за месяц и за год достигается для Курган-Тюбе (37°50′02″ с.ш., 68°46′54″ в.д.).
Однако при выборе оптимального места для устройства СЭС с использованием фотоэлектрических преобразователей необходимо знать не только продолжительность солнечного сияния, но и количество прямой солнечной радиации, т. к. для выработки фототока в солнечных элементах имеет значение именно количество прямой солнечной радиации. Поэтому на втором этапе анализа потенциала солнечной энергетики для Республики Таджикистан были выполнены расчёты изменения максимальной суточной прямой солнечной радиации в течение года и потока солнечной радиации за год на горизонтальную площадку для всех характерных районов Республики Таджикистан.
а)
б)
Рисунок 3 – График продолжительности солнечного сияния для Кайрак-Кумского водохранилища: а) за месяц, б) за год
Методики расчётов изменения максимальной суточной прямой солнечной радиации в течение года и потока солнечной радиации за год на горизонтальную площадку приведены в [2]. По результатам выполненных расчётов построены зависимости, представленные на рисунке 4.
а)
б)
в)
Рисунок 4 – Изменение мощности максимальной суточной прямой солнечной радиации для горизонтальной площадки: а) для Курган-Тюбе, б) Ледника Федченко, в) Кайрак-Кумского водохранилища
Как следует из зависимостей, представленных на рисунке 4, максимальная прямая солнечная радиация для горизонтальной площадки также характерна для района Курган-Тюбе (37°50′02″ с.ш., 68°46′54″ в.д.). Поэтому исходя из определённых показателей выше, характеризующих потенциал солнечной энергетики, наиболее оптимальным местом для размещения СЭС с фотоэлектрическими преобразователями в Республике Таджикистан является район Курган-Тюбе. Также Курган-Тюбе является административным центром Халтонской области и одним из крупных городов республики.
Список использованных источников:
1. СП 23-101-2004 Проектирование тепловой защиты зданий. Свод правил по проектированию и строительству. – Москва, 2004.
2. Солнечная энергетик: учеб. пособие для вузов / В. И. Виссарионов, Г. В. Дерюгина, В. А. Кузнецова, Н. К. Малинин, под ред. В. И. Виссарионов. – М.: Издательский дом МЭИ, 2011. – 276 с.
Энергосбережение в муниципальных учреждениях Алтайского края
Березанских А. В. – студент группы Э-31, Шипицына Е. В. – доцент РФ, Алтайский край, г. Барнаул, ФГБОУ ВО «Алтайский государственный технический университет им. И. И. Ползунова»
Актуальность названной темы не вызывает сомнений. Энергосбережение является одной из самых серьезных задач XXI века, решение которой должно быть первостепенным для государства. Энергосбережение – это комплексная многоцелевая и долговременная работа. Сбережение энергии является основным методом сохранения ресурсов и экосистемы, а также реальным способом экономии бюджета. Экономические показатели – главное требование, лежащие в основе решения этой проблемы. Внедрение энергосберегающих технологий в муниципальных общеобразовательных учреждениях может помочь улучшить экономическую и экологическую обстановку в стране.
Изложенные задачи определяют потребность внедрения энергосберегающей политики в образовательных организациях. Решение данной проблемы сопряжено с неэффективным использованием энергосберегающих технологий в данных организациях. Наличие вышеизложенных проблем вызвало необходимость в поиске и разработке новых научных положений, направленных на повышение эффективности энергопотребления в образовательных учреждениях.
Основной целью работы является обеспечение эффективного использования энергетических ресурсов в образовательных организациях за счет реализации энергосберегающих мероприятий, которые помимо уменьшения использования ресурсов, также позволят минимизировать затраты бюджета на коммунальные услуги.
Задачи работы заключаются:
– в проведении энергетических обследований в бюджетных учреждениях;
– в обеспечении учета всего объема потребляемых энергетических ресурсов;
– в сокращении расхода бюджетных средств на оплату энергоресурсов;
– в повышении эффективности потребления энергии путем внедрения современных энергосберегающих технологий;
– в установке приборов учета в бюджетных учреждениях.
Практическое значение работы состоит в том, что результаты, полученные теоретически, доведены до степени конкретных предложений по проведению работ по энергосбережению. Эти предложения могут быть использованы в виде методологического довода в выборе эффективного пути усовершенствования энергосберегающих программ этого муниципального учреждения.
Дефицит энергоресурсов – реальность современной России. С каждым годом потребление электроэнергии населением возрастает. Одни месторождения на сегодняшний день уже исчерпаны, а искать и обустраивать новые, долгое, недешевое и трудоемкое занятие.
Эффективно решить проблему дефицита энергоресурсов можно при помощи двух составляющих: энергосбережение и использование альтернативных источников энергии. Как известно, альтернативными источниками энергии являются: энергия ветра, солнечная энергия, геотермальные источники и др. Но в нашей стране использование данных источников не всегда может обеспечить бесперебойное питание потребителей. Поэтому рассмотрим энергосбережение как приемлемый способ уменьшения потребления энергоресурсов.
Рассмотрим энергосбережение муниципальных образовательных учреждений Алтайского края.
Каждый житель нашего края может эффективно сберегать электроэнергию, путем установки специального оборудования в собственные дома. Также данные энергосберегающие установки используются с целью снижения оплаты за потребляемую электроэнергию.
В образовательных организациях, в частности школах, дошкольных учреждениях, больницах, университетах, учреждения культуры и искусства, физкультурные и спортивные учреждения, учреждения МВД и Минобороны проблема сбережения энергии стоит наиболее остро. Процесс установки аппаратуры для уменьшения потребления энергии на данных объектах сложен, так как их финансирование идет из государственного бюджета. Решить эту проблему помогают энергетические компании, которые предоставляют свои энергосберегающие услуги.
Стоит отметить значение Постановления Правительства РФ от 18.11.2013 № 1034 «О коммерческом учете тепловой энергии, теплоносителя» и Приказ от 17 марта 2014 г. № 99/пр Министерства строительства и жилищно-коммунального хозяйства РФ «Об утверждении методики осуществления коммерческого учета тепловой энергии, теплоносителя», регламентирующие порядок, права и обязанности бюджетных учреждений после приема-сдачи приборов на коммерческий учет ресурсоснабжающей организации, и позволяющие бюджетному учреждению перезаключить с ресурсниками договоры на энергоснабжение с учетом внедрения энергосберегающих технологий.
Учет энергоресурсов предусматривает следующий алгоритм действий:
– обследование объекта для установки прибора учета;
– подготовка технического задания на установку прибора учета;
– поверка и ремонт приборов учета.
Недостаточно только правильно учитывать потребление энергоресурсов, от бюджетных организаций требуется их эффективно экономить при сохранении полезных санитарно-гигиенических и технических характеристик объектов эксплуатации.
Обеспечить правильное энергосбережение помогут энергосберегающие компании, которые предоставляют свои услуги в сфере энергосбережения. Энергосервисная деятельность базируется на энергоучете, энергоконтроле и энергосбережении энергетических ресурсов при их выработке, транспортировке и потреблении. При заключении энергосервесного контракта, проводится полное техническое обследование учреждения, и устанавливаются необходимые приборы учета и контроля, способствующие сбережению энергии.
Энергосервисный контракт – это выполнение энергосервесными компаниями (ЭСКО) организационных, правовых, технических, технологических, экономических и иных мер, направленных на сокращение количества применения энергии при сохранении соответствующих нужных результатов от её использования на объектах Государственного заказчика в течение определенного периода времени за счет собственных средств на принципе возвратности из объема полученной экономии.
В дальнейшем будем рассматривать энергосбережение в учреждениях образования. Образовательные организации можно разбить на следующие виды: высшие учебные заведения, техникумы, колледжи, профессиональные училища, гимназии, лицеи, школы.
Практика энергообследований показывает, что в среднем общеобразовательные учреждения имеют ежегодный перерасход по теплу 10–20 %, по воде 5-15 %, по электрической энергии 7-20 %. Из общей суммы переплат за энергоресурсы наибольшая доля – до 70 %, приходится на центральное отопление. В муниципальных учреждениях имеются в основном 5 групп потребителей электроэнергии: осветительные установки (50–70 %), потребители с электродвигателями (10–30 %), нагревательные установки (чайники, электрические плиты и т. д.) потребляющие от 10 % до 20 % электроэнергии, компьютерные классы до 10 %, различные лаборатории. По тепловой энергии можно выделить три группы потребителей: отопление 40 %-60 %, горячее водоснабжение 10 %-25 %, вентиляция 15 %-35 %.
Основным способом энергосбережения в бюджетных образовательных учреждениях является внедрение современных энергосберегающих технологий, эффективность использования которых заключается в сохранении энергоресурсов и, как следствие, экономии средств бюджета. Для образовательного учреждения можно использовать такие энергосберегающие технологии как:
– индивидуальный источник теплоэнергоснабжения;
– установка персональных счетчиков тепла со способом регулирования мощности отопления;
– установка систем, повышающих освещенность помещений, работающих на рассеянной солнечной радиации;
– трубы отопления и ГВС должны иметь энергоэффективную изоляцию;
– монтаж ограждающих здания теплозащитных конструкций с высокими показателями устойчивости тепла.
Сбережение энергии всех видов – эта проблема все в большей мере встает перед обществом. Недостатка энергии пока на Земле нет, но гигантское ее потребление, порой совсем не обоснованное, рачительное, в скором времени приведет к ее дефициту, поэтому стоит задуматься о будущем наших потомков.
Результаты работы показывают, что энегросберегающие компании могут внести большой вклад в систему электроснабжения, посредством программы энергосбережения. Данная программа необходима в образовательных организациях, так как сбережение энергии позволит улучшить как экономическую, так и экологическую обстановку в крае. Применение подобных мер по энергосбережению по всей территории Российской Федерации позволит поднять на новый уровень энерго– и теплоснабжение в муниципальных учреждениях.
Список использованных источников:
1. ГОСТ Р 51387-99. Энергосбережение. Нормативно-методическое обеспечение. Основные положения. – Москва: Утв. Постановлением Госстандарта РФ от 30.11.1999 № 458-ст. – 22 с.
2. Об энергосбережении и о повышении энергетической эффективности, и о внесении изменений в отдельные законодательные акты [Текст] / Федеральный Закон от 23 нояб. 2009 г. № 261-ФЗ.
3. ГОСТ Р 51541-99 «Энергосбережение. Энергетическая эффективность. Состав показателей. Общие положения».
4. Постановление Правительства РФ. О коммерческом учете тепловой энергии, теплоносителя от 18 ноября 2013 г. № 1034;
5. Приказ министерства строительства и жилищно-коммунального хозяйства РФ. Об утверждении методики осуществления коммерческого учета тепловой энергии, теплоносителя от 17 марта 2014 г. № 99/пр;
6. Костюченко, П. А. Практическое пособие по выбору и разработке энергосберегающих проектов [Текст] / П. А. Костюченко, О. А. Костюченко, В. С. Мещерский; под ред. П. А. Костюченко. – Москва: ЭНАС, 2006. – 217 с.
Снижение собственных нужд подстанции за счет применения теплового насоса
Бокарев В. С. – студент группы 8Э-61, Мартко Е. О. – к.т.н., доцент РФ, Алтайский край, г. Барнаул, ФГБОУ ВО «Алтайский государственный технический университет им. И. И. Ползунова»
Ежегодно на рынке электрической энергии (ЭЭ) наблюдается тенденция роста цен на ЭЭ, что беспокоит, как ее потребителей, так и производителей.
Цена на потребляемую электрическую энергию складывается, во-первых, из затрат, произведенных поставщиком ЭЭ на покупку средств труда, которые долговременно участвуют в процессе производства и переносят свою цену в виде ежегодных амортизационных отчислений. Данные затраты идут на: покупку оборудования, последующий ремонт и модернизацию данного оборудования; реализацию мероприятий по повышению эффективности оборудования и обеспечения энергосбережения; содержание зданий и сооружений, которые прямо или косвенно участвуют в производстве ЭЭ.
Во-вторых, не менее важной составляющей цены на электрическую энергию являются затраты на предметы труда, которые используются в процессе производства единовременно и переносят всю свою стоимость на готовую продукцию. В энергетике основную часть затрат на покупку предметов труда составляют затраты на приобретение топлива, которым в большинстве случаев является уголь, нефть, природный газ (т. е. топливо, получаемое из месторождений ископаемых природных ресурсов).
Природные ресурсы, к сожалению, не являются возобновляемыми. По данным Международного энергетического агентства (International Energy Agency, IEA), энергопотребление на Земле удваивается каждые 10 лет. При сохранении этого тренда угля человечеству хватит на 250 лет, нефти – на 40, а природного газа – на 65 [1]. Следовательно, с каждым годом запасы ресурсов истощаются, их добыча осложняется, а конечная стоимость полученного в итоге сырья неумолимо растет вверх. Данный факт непосредственно сказывается на размере конечной цены ЭЭ, поставляемой потребителю.
В настоящее время вопрос поставки потребителям более дешевой ЭЭ в Алтайском крае, как и во всей стране, является наиболее приоритетным. В связи с этим, в рамках развития электроэнергетических систем России и повышения их энергоэффективности повсеместно проводятся следующие мероприятия:
– снижение потерь ЭЭ;
– снижение количества ЭЭ, идущей на обеспечение собственных нужд;
– развитие и внедрение нетрадиционных, возобновляемых источников энергии (ВИЭ), к которым можно отнести солнечную энергию, гидроэнергию, энергию ветра, геотермальную энергию и другие.
Анализ состояния электроэнергетичских систем показал, что главной проблемой является значительный нереализованный потенциал организационного и технологического энергосбережения, превышающий 1/3 общего потребления энергоресурсов в стране [2]. Данный факт отражен в основных положениях энергетической стратегии России на период до 2035 года.
Вышеупомянутую проблему можно решить несколькими способами. Одним из способов является снижение расхода ЭЭ на собственные нужды подстанций (ПС). Современные трансформаторы имеют высокий коэффициент полезного действия, который в зависимости от их мощности может достигать 99 % и выше. Ряд мероприятий, направленный на уменьшение тепловых потерь, проводится как на стадии конструирования трансформаторов, так и на стадии их непосредственной эксплуатации в электроэнегетических системах. Однако, при работе трансформаторов часть энергии все же теряется в виде тепла, выделяемого в окружающую среду. Данные потери могут составлять сотни киловатт, которые можно полезно использовать с помощью тепловых насосов в целях теплоснабжения, например, помещений, эксплуатируемых персоналом подстанции и т. д.
К собственным нуждам подстанции относится потребление ЭЭ электроприемниками, которые установлены на подстанции и обеспечивают нормальную работу ее основного оборудования, а также нормальную жизнедеятельность персонала.
В таблице 1 приведены численные значения величины расхода электроэнергии на собственные нужды для типовой ПС 35/10 кВ.
Таблица 1 – Расход на собственные нужды для типовой ПС 35/10 кВ
Как видно из таблицы 1 наибольший расход ЭЭ на подстанции приходится на зимние месяцы, в данном случае декабрь, когда температура опускается ниже нуля, и для нормальной работы оборудования и персонала необходимо осуществлять обогрев помещений ПС.
Следовательно, основная часть потребляемой подстанцией энергией идет на отопление помещений, используемых персоналом, занятых электроустановками, оборудованием, инструментами и др. Таким образом, обеспечив систему отопления помещений подстанции с помощью ВИЭ можно значительно снизить расход ЭЭ на обогрев и на собственные нужды ПС в целом.
Тепловой насос – установка, предназначенная для переноса теплоты от более холодного теплоносителя, имеющего температуру, как правило, 0…40 °C, к более горячему за счет подвода внешней энергии или затраты работы. ТН используются в целях обеспечения нужд горячего водоснабжения и отопления помещений. Однако, тепловую энергию, используемую для этих целей, они не производят, а осуществляют ее перенос от низкопотенциального теплоносителя к высокопотенциальному теплоносителю, температура которого может составлять от 50 до 80 °C.
Концепция работы теплового насоса впервые была предложена в 1852 году сэром Уильямом Томсоном (более известным, как лорд Кельвин). Однако, патент на технологию использования низкопотенциальных источников энергии с целью получения тепловой энергии и дальнейшего ее использования был выдан в 1912 году известному швейцарскому исследователю Генриху Золи. А в 1927 году в Шотландии данный принцип впервые был применен на практике. Сконструированная теплонасосная установка (ТНУ) обеспечивала нужды жилого дома в отоплении и горячем водоснабжении, используя в качестве низкопотенциального источника энергии наружный воздух [3,4].
Использование ТНУ позволяет обеспечить теплоснабжение и горячее водоснабжение с минимальными затратами первичной энергии, что достигается за счет высокого значения коэффициента использования теплоты μ.
Результаты расчета годовых эксплуатационных расходов на теплоснабжение с применением различных видов отопления приведены в таблице 2 [5], при проведении расчетов было принято, что тепловая нагрузка рассчитываемого помещения составляет 180 м2, тепловая нагрузка 15 кВт, а отопительный сезон– 1700 часов в год.
Таблица 2 – Эксплуатационные затраты на теплоснабжение
Исходя из результатов расчета, приведенных в таблице 2, использование ТНУ для теплоснабжения с экономической точки зрения более целесообразно, чем применение ТЭЦ и индивидуальных газовых котельных. Это обусловлено тем, что величина годовых затрат на отопление и стоимость единицы производимой тепловой энергии, значительно меньше по сравнению с другими видами отопления.
К тому же ТН более безопасны в сравнении с индивидуальными котлами, поскольку при работе не производится сжигания топлива, а значит нет открытого огня и в воздух, не выделяются вредные смеси и газы. Узлы теплонасосной установки не нагреваются выше 90 °C, что не даст им послужить причиной возникновения пожара.
Схема работы ТН представлена на рисунке 1 [6].
Основные рабочие части ТН:
– компрессор, позволяющий создавать высокое давление;
– расширительный клапан, с помощью которого происходит переход хладагента из жидкого состояния в газообразное;
– испаритель, представляющий собой радиатор из тонких трубок, которые имеют высокую теплопроводность;
– конденсатор.
Хладагент, находящийся полностью или частично в газообразном состоянии, сжимается компрессором, что приводит к его переходу в жидкое состояние. При повышении давления он также нагревается. Далее теплоноситель попадает в конденсатор, где охлаждается и конденсируется на стенках теплообменника. Охлажденный жидкий хладагент подается в расширительный клапан, проходя через который, происходит переход его из жидкой фазы в газообразное состояние. В испарителе парообразный теплоноситель охлаждается, после чего отбирает тепловую энергию, и цикл повторяется снова.
В большинстве случаев характеристика имеющегося источника определяет его тепловые, энергетические, экономические характеристики. Основные требования к идеальному источнику тепла:
− отсутствие коррозии или загрязнений;
− отсутствие дополнительных существенных вложений и расходов по его обслуживанию;
− стабильная температура 0…40 °C, достаточная для эффективной работы ТН.
Рисунок 1 – Схема работы теплового насоса
В качестве источника тепловой энергии в системах с применением ТН используют наружный и удаляемый воздух, почву, геотермальные источники, грунтовые воды. Так же ТН могут получать тепловую энергию, утилизируя энергию сбросной низкопотенциальной теплоты промышленных предприятий, что имеет большую перспективу.
Тепловые насосы более безопасны и экономичны, чем котлы на газовом или твердом топливе, поэтому широко используются в системах централизованного и индивидуального отопления и горячего водоснабжения по всему миру.
Выделяют несколько различных видов систем отопления подстанций с использованием тепловых насосов [7]:
– с подачей нагретого масла в систему отопления;
– с нагревом воды в масло-водяном теплообменнике;
– с нагревом воды с помощью теплового насоса;
– с нагревом воздуха в масло-воздушном теплообменнике;
– с непосредственным отводом нагретого воздуха от охлаждающих радиаторов;
– с нагревом воздуха в водо-воздушном теплообменнике.
Применение одной из вышеперечисленных систем отопления должно производиться в зависимости от типа, мощности, установленных на ПС силовых трансформаторов, удаленности отапливаемых помещений, а также вида теплоносителя, который планируется использовать в отопительном контуре.
На данный момент времени все чаще на подстанциях применяется схема нагрева воды с использованием теплового насоса, что обусловлено рядом преимуществ этой системы:
– не требуется реконструкции имеющейся на подстанции системы отопления. При установок на ПС системы отопления с применением теплового насоса, сохраняется возможность использования уже установленных в помещениях радиаторов водяного отопления.
– немаловажным преимуществом является тот факт, что данная система, в отличие от других систем отопления, позволяет передавать тепловую энергию потребителям, которые могут находиться на расстоянии до 1 км от подстанции.
Принцип работы данной системы следующий. Попадая в теплообменник, нагретое в процессе работы трансформатора масло передает свое тепло воде, циркулирующей в промежуточном контуре между теплообменником «масло-вода» и ТН. После чего данная тепловая энергия в испарителе поглощается фреоновым контуром теплового насоса. Далее фреон, находящийся полностью или частично в газообразном состоянии, сжимается компрессором, что приводит к его переходу в жидкость. Естественно, при повышении давления и переходе фреона из газообразного состояния в жидкое он нагревается. После чего теплоноситель попадает в конденсатор, где происходит нагрев воды, которая используется непосредственно для отопления эксплуатируемых персоналом помещений, а так же для обеспечения горячего водоснабжения.
Из вышесказанного можно сделать вывод, что схема отопления помещений подстанции с применением теплового насоса позволит значительно снизить затраты ее на собственные нужды, а также позволит в купе с другими мероприятиями позволит решить проблему снижения суммарных потерь в энергосистемах и повышения эффективности их работы.
Список использованных источников:
1. Новости энергетики / Есть ли будущее у ветроэнергетики в России [Электронный ресурс]. Режим доступа: http://novostienergetiki.ru/est-li-budushhee-u-vetroenergetiki-v-rossii/ – Заглавие с экрана.
2. Энергетическая стратегия России на период до 2035 года [Электронный ресурс]. Режим доступа: http://ac.gov.ru/files/content/1578/11-02-14-energostrategy-2035-pdf.pdf – Заглавие с экрана.
3. T-nasos/ История тепловых насосов [Электронный ресурс]. Режим доступа: http://osipovs.ru/index.php/istory-tn– Заглавие с экрана.
4. Морозюк, Т. В. Теория холодильных машин и тепловых насосов: учеб. пособие / Т. В. Морозюк. – Одесса: Студия «Негоциант», 2006. – 712 с.
5. Калнинь, И. М. Энергосберегающие, экологически чистые технологии теплоснабжения производственных и жилых помещений / И. М. Калнинь, Л. Я. Лазарев, А. И. Савицкий.
6. Трубаев, П. А. Тепловые насосы: учеб. пособие / П. А. Трубаев, Б. М. Гришко. – Белгород: Изд-во БГТУ им. В. Г. Шухова, 2009. – 142 с.
7. Елистратов, В. В. Теоретические основы нетрадиционной и возобновляемой энергетики: учебное пособие / В. В. Елистратов, М. В. Кузнецов. – Ч. 1: Определение ветроэнергетических ресурсов региона. – Санкт-Петербург: Изд-во СПбГПУ, 2004. – 59 с.
Правообладателям!
Это произведение, предположительно, находится в статусе 'public domain'. Если это не так и размещение материала нарушает чьи-либо права, то сообщите нам об этом.