Электронная библиотека » Виктор Балабанов » » онлайн чтение - страница 5


  • Текст добавлен: 22 ноября 2013, 18:57


Автор книги: Виктор Балабанов


Жанр: Автомобили и ПДД, Дом и Семья


сообщить о неприемлемом содержимом

Текущая страница: 5 (всего у книги 16 страниц) [доступный отрывок для чтения: 5 страниц]

Шрифт:
- 100% +
Полимерсодержащие добавки

В конце пятидесятых годов прошлого столетия Х. В. Германсом и Т. Ф. Иганом было обнаружено явление образования органических отложений (загрязнений) на релейных контактах телефонной и телеграфной связи. На основании специальных высокоточных экспериментов ими было установлено, что отложения в зоне контакта образуются вследствие химических превращений паров органических веществ, выделяемых некоторыми изоляционными материалами. Во всех случаях образовавшиеся отложения снижали коэффициент трения в контактной паре. Поэтому эти соединения было предложено называть «полимерами трения» (frictional polymers).

Автохимические препараты, содержащие в своем составе политетрафторэтилен («тефлон»), фторопласт-4, перфторпропиленоксид, перфторполиэфир карбоновой кислоты («эпилам»), полисилоксаны (силикон) и некоторые другие, следует выделить в отдельную группу – полимерсодержащие (или полимерные) добавки или модификаторы.

Еще в 30–е годы прошлого века американский инженер норвежского происхождения Оле Бардаль (Bardahl) разрабатал и внедрил революционный, на тот момент, принцип смазывания. Он был основан на феномене поляризации молекул смазочного материала, что позволяло слою смазочного материала притягиваться к любым металлическим поверхностям, создавая защитную пленку. Разработка была столь эффективна, что американская армия присвоила ей гриф «секретно» вплоть до конца второй мировой войны. Эти разработки можно считать первыми прообразами нового направления в производстве смазочных материалов и автохимии – поляризованных соединений. В настоящее время фирма Bardahl продолжает дело своего основателя, производя целый спектр препаратов специальной автохимии.

В конце прошлого столетия за рубежом получила известность и достаточно длительное время широко применялась специальная жидкость SLIK-50 на основе политетрафторэтилена (ПТФЕ), разработанная Нейлом Греттоном и производимая в Великобритании, но затем она надолго изчезла с рынка автохимии. Также была известна более поздняя разработка – SLIDER 2000 PTFE. Как указано в рекламных проспектах фирмы – производителя, она также содержала ПТФЕ и позволяла существенно повышать надежность обработанных узлов и агрегатов: она могла применяться как добавка к маслам двигателей, станков и т. д., а также вводиться во впускной коллектор ДВС в виде аэрозолей.

Политетрафторэтилен или фторопласт (химическая формула (C2F4)n, где n = 1000…10 000) был открыт в 30–х годах прошлого столетия американским ученым Роем Планкеттом и был запатентован компанией «DuPont de Neumours & Company» (Дюпон) под торговой маркой Тефлон®. Применение ПТФЕ обусловлено тем, что он занесен в Книгу мировых рекордов Гиннесса, как самый скользкий материал в мире. Многие ученые всего мира стали активно работать с этим материалом, предлагая его применение во многих областях, в том числе в автомобильной и автохимической промышленности.

Было также разработано множество модификаций ПТФЕ, которые получили различные наименования: полифлон (Япония), алгофлон (Италия), флюон (Англия), сорефлон (Франция), гостафлон TP (Германия);

политрифторхлорэтилен, известный под торговыми марками фторопласт-3, дайфлон (Япония), гель F (США), гостафлон (Германия), волталеф (Франция); поливинилиденфторид, известный под торговыми марками, фторопласт-2, кайнар (США), KF – полимер (Япония); видар (Германия); солеф (Бельгия), форафлон (Франция); сополимер тетрафторэтилена с этиленом, известный под торговыми марками фторопласт-40, тефзел (США), неофлон ETFE (Япония), хостафлон ET (Германия); сополимер тетрафторэтилена с винилиденфторидом, известный под торговой маркой фторопласт-42; сополимер тетрафторэтилена с гексафторпропиленом, известный под торговыми марками фторопласт-4МБ, тефлон FEP (США), хостафлон FEP (Германия), неофлон (Япония); сополимер тетрафторэтилена с перфторвинилпропиловым эфиром, известный под торговыми марками фторопласт-50, тефлон PFA (США), а также отечественные фторопласты марок Ф4, Ф3 и др.

Компания Shell, получив права на торговую марку SLIK 50, снова выпустила на рынок автохимии серию препаратов под данной торговой маркой.

Выше указывалось, что разработчиком и обладателем зарегистрированной торговой марки «Teflon» и одним из первых производителей тефлоновых препаратов для автохимии (DLX-600 и др.) является американская фирма DuPont, которая, однако, давно прекратила выпуск препаратов этого класса, а тефлоновые препараты сняты с вооружения американской армии уже почти 20 лет.

Полимерсодержащие препараты в основном применяются для повышения надежности и экономичности двигателей. Наиболее простой способ обработки заключается в следующем:

– полностью слить отработанное моторное масло и заменить масляный фильтр;

– тщательно взболтать содержимое флакона с препаратом в течение 3…5 мин.;

– ввести препарат в установленной пропорции в приготовленный к заправке объем моторного масла;

– тщательно перемешать полученный состав и залить в двигатель;

– немедленно пустить двигатель и проехать не менее 10…15 км или оставить его работающим на 25…30 мин. и не менять масло до пробега 5 тыс. км для лучшей обработки всех деталей двигателя.

Автохимические препараты этого класса также рекомендуется применять для специальной обработки, заключающейся во введении добавки в виде аэрозоля (или капельным путем) через впускные трубопроводы дизелей или карбюраторы бензиновых двигателей.

После обработки на прогретом и работающем двигателе, его не следует останавливать (глушить) в течение 15…20 мин., или можно осуществить технологический пробег на расстояние порядка 10 км.

В процессе обработки ПТФЭ покрывает трущиеся поверхности деталей, что заменяет трение металла о металл трением полимер по полимеру. Приводимые в рекламных проспектах (SLIDER 2000 PTFE treatment team (Великобритания), Antifriction PTFE (США) и др.) данные указывают на значительное увеличение сроков службы обработанной полимерами техники, снижение расхода топлива и смазочных материалов, на другие положительные факторы.

Были попытки создания подобного автохимического соединения на основе ПТФЭ и в нашей стране. Широкую рекламную компанию вели авторы препарата «Аспект – модификатор» на основе перфторпропиленоксида (химическая формула CF3CF2O[CF(CF3)CF2O]nCF(CF3)COF, где n = 15…55), а также «Универсальный модификатор», производимых российскими фирмами «Амтек», «Автоконинвест», которые предлагалось вводить в моторные и трансмиссионные масла.

Как заявляли разработчики, данные препараты изначально были созданы для применения в армейской технике в условиях боевых действий, когда во что бы то ни стало надо выполнять боевую задачу. Вопрос о сохранении межремонтного ресурса в этом случае, конечно, ни имел никакого смысла, так как, например, «время жизни» бронетанковой техники в современном бою составляет около 30 мин. Возможность длительной эксплуатации автомобилей на таких препаратах, как показала реальность, детально не исследовалась (если исследовалась вообще). Видимо, этим можно объяснить множество негативных «аспектов» их применения.

Новосибирская компания «Новофорум» одно время выпускала серию специальных противоизносных препаратов марки Forum, содержавших поверхностно – активированный фторопласт-4 (химическая формула (C2F4)nCOF, где n = 100…1000), разработанных в Институте химии Дальневосточного отделения РАН. К достоинствам данного препарата можно отнести его невысокую стоимость (около 100 р.) по сравнению с западными аналогами. Например, английский препарат Slik-50R стоил в США от 25 долларов, в Японии от 150 долларов. Минимальный размер частиц ПТФЭ (менее 1 мкм) в этом препарате позволяет беспрепятственно проходить через ячейки масляного фильтра (диаметр около 10 мкм) автомобиля и длительно удерживаться в смазочном материале во взвешенном состоянии.

В настоящее время имеется возможность производства волокон политетрафторэтилена диаметром всего в 40…60 нм при длине несколько микрометров. На рис. 9 (справа) представлены фотографии нановолокон ПТФЭ, полученные на электронном микроскопе.


Рис. 9. Фрагменты структуры Ленгмюра на поверхностях трения (слева) и нановолокна политетрафторэтилена (справа):

1 – смазочный материал; 2 – спиралевидные молекулы эпилама; 3 – трущиеся поверхности


Ряд фирм заявили о применении в своих препаратах эпиламных полимерных соединений, наиболее известные из препаратов: «Универсальный модификатор-2» производства ЗАО «Автокон», марки «КАМП» производства ООО «Автостанкопром» (Россия) и серия препаратов под торговой маркой Energie 3000 (Энергия 3000) производства фирмы E 3000 (Франция).

Эпиламные препараты Energie 3000 были разработаны по заказу заводской гоночной команды французской фирмы «Renault» для участия в международных ралли «VX‑Racing», где достаточно успешно апробированы и только затем перешли в розничную торговлю.

Особенность применения препаратов этой марки – они должны вводиться примерно за 1000 км до смены моторного масла. Затем масло с препаратом сливается, двигатель обрабатывается промывочными маслами и заправляется новым маслом. По утверждениям разработчиков, необходимая обработка трущихся соединений происходит ещё до смены масла, и дополнительное введение препарата не требуется.

За счет таких мероприятий, во – первых, достигается очистка систем двигателя от образовавшихся шламов, нагара и лаков. Во – вторых, удаляется из системы не израсходованный (не осевший) полимерный компонент, дальнейшее нахождение которого в двигателе нежелательно из‑за опасности его коагуляции (слипания) и блокировки масляного фильтра и приемного грибка масляного насоса. Однако не совсем корректно считать повышение эффективности работы двигателя после залива нового моторного масла только результатом действия обработки препаратом, уже слитым вместе с отработавшим маслом.

Из промышленных эпиламов наиболее известны марки 6–СФК-180–05 и 6–СФК-180–20, представляющие собой растворы перфторполиэфира карбоновой кислоты общего вида RfCOOH (где Rf – фторсодержащий радикал) в хладоне 113 (ГОСТ 23344—79).

В процессе обработки эпиламными препаратами фторсодержащие поверхностно – активные вещества (ПАВ) образуют так называемые структуры Ленгмюра в виде перпендикулярно ориентированных к поверхностям трения спиралей толщиной около 30…50 Å, способных выдерживать удельную нагрузку до 3 000 мН/мм 2 (см. рис. 9).

По некоторым данным, применение эпиламов значительно снижает поверхностную энергию материала, например, для металлов с 3 000…5 000 до 2…4 мНм, т. е. в 1000…10 000 раз.

Такие структуры, по данным разработчиков, способны надежно удерживать в зоне трения смазочный материал и в связи с этим значительно снижать интенсивность изнашивания и коэффициент трения обработанных подвижных соединений. Так, момент трения может снизиться до 10 раз, а момент страгивания в 10 000 раз по сравнению с необработанными поверхностями. Установлено, что ПАВ заполняет все микропоры и микротрещины на поверхности, вытесняя из них кислород и водород, предотвращая окисление и водородное изнашивание, а также рост микротрещин. Одно из достоинств эпиламов – возможность их применения в широком диапазоне рабочих температур, от очень низких (—200 оС) до достаточно высоких (+520 оС).

При тяжелых режимах работы соединений, приводящих к росту температуры и появлению очагов схватывания, фторорганические соединения (типа эпилама) могут вступать в реакцию с ювенальными (свободными от оксидных и других пленок) поверхностями с образованием на глубине до 40 Å фторида железа, что обеспечивает их высокие противозадирные свойства и снижение интенсивности изнашивания.

В связи с вышесказанным, эпиламы нашли широкое применение не только в качестве добавок к смазочным материалам, но и к смазочно – охлаждающим технологическим средам (СОТС) при механической обработке изделий из металлов, а также при специальной обработке резин, полимеров и других материалов в машиностроении.

Рассмотрим также более подробно силиконовые препараты. Полисилоксаны или силиконы – это полимерные кремнийорганические соединения (разнообразные жидкости, каучуки и смолы), находящие все более широкое применение в качестве специальных смазочных материалов и препаратов, в том числе при производстве синтетических моторных масел. Их основу составляет цепочка из чередующихся атомов кремния и кислорода. Углеводородные и другие органические радикалы различного структурного строения занимают боковые связи атомов кремния. Наибольшее практическое применение в качестве смазочных материалов имеют полимеры с метильными (метилполисилоксаны) и этильными (этилполисилоксаны) радикалами.

Кремнийорганические полимерные жидкости не имеют запаха, сильно различаются по вязкости, температуре кипения и замерзания. Они очень термостойки и, если горят, то с большим трудом, мало подвержены воздействию воды, большинства химических и физических факторов, разрушающих обычные органические материалы. В свою очередь, и они очень мало влияют или не влияют совсем на большинство таких органических материалов, как пластмассы, каучуки, краски или живые ткани и организмы. Кремнийорганические жидкости являются хорошими электроизоляционными материалами, они прозрачны и обладают гидрофобными (водоотталкивающими) свойствами.

Редкое сочетание физических свойств объясняет такие разные области их применения. Их используют в присадках для моторных масел; при изготовлении различных смазочных веществ, гидравлических и демпферных жидкостей, работающих в широком диапазоне положительных и отрицательных температур; в кулинарии в составе варенья и джемов (для предупреждения вспенивания); в косметике; лакокрасочных покрытиях; при пропитке одежды и обивочных тканей; в пленках, покрывающих стенки сосудов для хранения некоторых жидких лекарств, чувствительных к контакту со стеклянной поверхностью; в составе мебельных и автомобильных полиролей; медицинском оборудовании; при производстве асфальта и пр. Тонкие пленки, оставляемые после обработки поверхности кремнийорганическими полиролями и пропитанными ими полировальными тканями, обладают исключительными пыле– и водоотталкивающими свойствами. Поверхность после такой обработки не смачивается водой и легко очищается от грязи.

Полисилоксаны (полиорганосилоксаны) отличаются низкой температурой застывания, имеют пологую вязкостно – температурную кривую, термостабильны. Эти смазочные материалы и препараты на их основе химически инертны, не вызывают коррозию стали, чугуна, цветных сплавов даже при нагревании до температуры 150 оС.

Кремнийорганические полимерные жидкости используются и в чистом виде. Точность чувствительных приборов и устойчивость их к повреждениям часто повышаются, если в качестве амортизирующих жидкостей применяются кремнийорганические полимеры. Хорошо подобранная жидкость устраняет нежелательное дрожание и скачки стрелки, даже если прибор испытывает значительные вибрации. Кремнийорганические жидкости позволяют снимать вибрацию маховиков в двигателях различных типов – от автомобильных моторов до локомотивных дизелей. Кремнийорганические полимеры обладают хорошей сжимаемостью, что дает возможность применять их в жидкостных амортизаторах.

Недостатками препаратов этой группы являются низкие смазывающая способность и противоизносные свойства, которые, в свою очередь, повышаются введением в них самих дополнительных присадок. Поэтому полисилоксаны более перспективны для применения в качестве рабочих жидкостей в гидравлических системах и гидроамортизаторах, а также для изготовления пластичных смазочных материалов и добавок к ним.

Анализ показывает, что, несмотря на доказанную результативность применения полимерсодержащих препаратов, существует целый ряд серьезных проблем при их широком использовании.

1. Так, лабораторные исследования и длительные эксплуатационные испытания одного из известных тефлоновых препаратов, проведенные в конце прошлого века Институтом автомобилей и прицепов в г. Радоме (Польша), выявили ряд негативных последствий использования данного восстановителя.

Было замечено, что образовавшееся на поверхностях трения тефлоновое покрытие может постепенно насыщаться мелкодисперсными частицами (продуктом износа) и абразива. Образуется подобие абразивного круга с пластичной матрицей из полимера и режущих элементов из застрявших в ней высокотвердых частиц. В результате, возможен переход от трения полимер по полимеру к трению в режиме абразивный круг – деталь.

2. Отмечено также, что применение тефлоновых препаратов способствует образованию смолистых отложений с белым налетом и нагара на днищах поршней и поршневых кольцах.

Похожие отложения на ряде поверхностей масляной системы двигателя, в том числе в фильтрах и каналах коленчатого вала, отмечаются и при применении некоторых других полимерсодержащих препаратов.

3. Рекомендуемые концентрации многих полимерсодержащих препаратов для введения в моторное масло необоснованно завышены (до 25 % от объема моторного масла), что сказывается на химмотологических свойствах базового масла.

Химмотология – наука о рациональном использовании топлив, масел и автохимии в технике.

4. Применение полимерсодержащих препаратов (особенно содержащих тефлон) на новых автомобилях, преимущественно японского производства, имеющих жёсткие допуски на изготовление трущихся соединений, например «шейка коленчатого вала – вкладыш», может привести к «забиванию» ими масляных каналов коленчатого вала и отказу двигателя.

В связи с этим в инструкциях по применению ряда полимерсодержащих препаратов указывается: «Не применять в период обкатки!» Учитывая близкий состав и механизм действия, целесообразно это предупреждение распространить на ВСЕ препараты этой группы.

5. По данным разработчиков, примененный однажды полимерсодержащий препарат может находиться на трущихся поверхностях до 80 000 км пробега и блокировать применение других РВП и технологий, которые либо не окажут никакого влияния на состояние обработанного узла, либо, хуже того, могут осесть в уже суженных тефлоном каналах и фильтрах.

6. В настоящее время в странах Западной Европы и США применение в автохимии препаратов, содержащих фторсодержащие материалы, крайне ограничено. Это вызвано том, что при их горении возможно образование в отработавших газах ядовитых химических соединений, близких по составу к боевым отравляющим веществам типа «фосген» и некоторых других.

Геомодификаторы

В настоящее время в ряде научно – технических центров разрабатывается новое направление в автохимии и трибологии в целом. Это направление получило наименование «геотрибология» (от греческого геос – земля) – т. е. трение, износ и смазывание в условиях применения различного рода минералов и других соединений геологического происхождения.

Геомодификатор (РВС – технология) – специальная добавка в смазочные материалы и технологические среды на базе минералов геологического (реже искусственного) происхождения, которые могут вступать во взаимодействие с контактируемыми (трущимися) участками деталей и формировать на них металлокерамический слой, частично устраняющий дефекты поверхностей трения.

Целью работ в этом направлении является создание специальных добавок в топливно – смазочные материалы, способствующих формированию металлокерамического слоя на контактирующих участках поверхностей трения, что приведет к частичному устранению дефектов и обеспечению высоких антифрикционных и противоизносных свойств. Такие материалы, главным образом на основе измельченного и модифицированного серпентина, а также других минералов естественного и искусственного происхождения, получили наименование «геомодификаторы» или РВС – технологии.

Началу исследований в данном направлении положило необычное явление, обнаруженное еще во времена Советского Союза при бурении сверхглубокой скважины на Кольском полуострове. Было выявлено, что при прохождении буровым инструментом (долотом) горных пород, богатых минералом серпентином (змеевиком), ресурс режущих кромок инструмента резко увеличивался.

Серпентин – группа природных минералов, которые встречаются в нескольких видах. Все серпентины – зеленые минералы, образующие жирные на ощупь массивные агрегаты и имеющие слоистую структуру, отдалённо напоминающую графит. Из серпентиновых пород добывают природный асбест (хризотил – асбест). Хризотил – асбест является минералом группы серпентинита, залегает жилами, в виде блестящих зеленоватых поперечно– или продольноволокнистых агрегатов. Элементарные волокна хризотила представляют собой свернутые в тончайшие трубочки серпентиновые листочки, различимые лишь под электронным микроскопом (рис. 10).


Рис. 10. Слоистая структура строения серпентина (слева) и волокна хризотила под электронным микроскопом (справа)


Формула серпентина – Mg6[Si4010](OH)8, или 3MgO2SiO22H20 или (МgОН)6Si4011Н2О.

Серпентин включает несколько минеральных видов:

– антигорит (Mg, Fe)2+3[Si2O5](OH)4;

– хризотил (клинохризотил, ортохризотил, парахризотил) Mg3[Si205](OH)4;

– лизардит Mg5[(OH)8|Si4O10].

Компонентный состав серпентина: МgО – 43 %, SiO2 – 44 %, Н2О —12,1…12,9 % (серпентин содержит около 13 % конституционной воды (в виде ионов гидроксила ОН и в единичных случаях ионов Н+, располагающихся в узлах кристаллической решетки минерала). Эта вода прочно удерживается внутри минерала при комнатной температуре, но выделяется при нагревании в температурном интервале 300…1300 оС. Выделение воды сопровождается разрушением кристаллической решетки минерала.

Рентгенофазовый анализ геомодификаторов показывает, что эти составы бывают двух видов: один содержит в основном 75…80 % лизардита и 10…15 % хризотила, другой, наоборот, – 10…15 % лизардита и 75…80 % хризотила.

Все слоистые силикаты состоят из двух сеток [Si205]2—, соединенных вместе катионами в компактные пакеты состава [Si4O10]4—. Особенностью каждой сетки [Si2O5]2— является наличие нескомпенсированного электростатического заряда, обусловленного тем, что сетки из кремнекислородных тетраэдров с одной стороны имеют одну свободную валентность, и это определяет появление тетраэдров отрицательного заряда только на одной стороне сетки. В сдвоенных пакетах [Si4O10]4— отрицательные заряды обеих сеток направлены внутрь пакета и скомпенсированы катионами Мg+. Фактически в слоистых пакетах [Si4O10]4— между двумя сетками состава [Si2O5]2— располагается бруситовый слой Мg(ОН)2.

Специфическое строение слоистых силикатов – наличие пакетов, состоящих из гексагональных сеток – слоев, связанных друг с другом очень слабыми связями, определяет и свойства этих минералов: низкую твердость, весьма совершенную спайность и расщепляемость на тонкие пластинки.

Изучение данного явления проводилось в конце 80–х годов прошлого столетия в институте «МеханОбр» (г. Ленинград) под руководством академика В. И. Ревнивцева и при участии к. т. н. Т. Л. Маринича. Ими было установлено, что данный эффект – следствие разложения серпентина в зоне бурения с дополнительным выделением большого количества тепловой энергии. Вследствие этого наблюдается разогрев материала шарошки бурового долота, диффузия в него разложившихся элементов минерала и образование композиционной металлокерамической структуры, обладающей высокой твердостью и износостойкостью.

В 1992 году коллектив ученых (А. Ю. Хренов, Н. В. Уткин, В. В. Казарезов, А. И. Голубицкий, И. В. Никитин) из научно – производственной инновационной фирмы «ЭНИОН – БАЛТИКА» (Санкт – Петербург), созданной на базе ленинградского филиала «Федерация инженеров СССР «ЭНИОН»», продолжила работы над созданием препаратов на базе серпентина. Разработанный ими препарат был назван НИОД («Направленная ИОнизация Диспергированием»).

В январе 1993 года группа в следующем составе: ушедший из «ЭНИОН – БАЛТИКА» И. В. Никитин, а также А. К Агафонов, П. Б. Арацкий, С. И. Бахматов и Е. А. Гамидов, – выпустила первый ремонтно – восстановительный состав (РВС) на базе Кольских серпентинов. Ими были созданы две самостоятельные фирмы – «Промремонт» (Санкт – Петербург) и «Высокие технологии» (Харьков).

С апреля 1996 по сентябрь 1999 года И. В. Никитин работал с группой московских исследователей В. И. Неждановым и В. И. Ермаковым в научно – техническом центре «Конверс – Ресурс», который был образован Международным фондом конверсии для реализации РВС – технологии на практике.

В 1999 году специалистами новосибирской компании ЗАО «Промышленные технологии» подана заявка, а в 2001 году получен патент на изобретение собственного ремонтного состава, получившего торговое наименование – «Motor Doctor».

В настоящее время на отечественном рынке автохимии наиболее известными препаратами этого класса являются: синтезатор металлов Forsan nanoceramics, выпускаемый российской компанией «Нанопром»; восстановители RVS Technology, изготовляемые в Финляндии фирмой «RVC – ТЕС Оу» по лицензии НПО «Руспром – ремонт»; смазочные композиции марки Супротек компания «Супротек», а также нанокондиционер Fenom Nanotechnology российской компании «Автохимпроект».

Рассмотрим более подробно химический состав «геомодификаторов», механизм действия и основные свойства получаемых защитных покрытий.

Точный компонентный и количественный состав своих разработок фирмы держат в строжайшем секрете, поэтому здесь мы можем привести только результаты независимых исследований препаратов сторонними фирмами и литературно – патентного поиска.

По химическому и фазовому составу многие геомодификаторы представляют собой смесь классического магнезиально – железистого силиката (серпентина – Mg6{Si4O10}(OH)8, являющегося формой целого ряда минеральных руд класса оливинов), конечными фазами которого являются форстерит Mg2SiO4 и фаялит Fe2SiO4, а также в незначительных количествах кремнезём SiO2 и доломит CaMg(CO3)2.

В качестве основы (и в определенной степени растворителя) в геомодификаторах, например в ГТМ, используется осветительный керосин ГОСТ 10227—88 (38,5 % по объёму) в полусинтетическим моторном масле 10W-40 (60 %).

В ряде работ предлагается для повышения эффективности образования геомодификаторами керамических защитных покрытий в качестве дисперсионной среды дополнительно к силикатам металлов (антигорит – естественный силикат магния, ревдинскит – минерал, смесь силикатов магния и никеля и др.), измельченным до размера зёрен от 1 до 10 мкм, добавлять мономеры с непредельными связями (диметиловый эфир малеиновой кислоты, пропиоловая кислота и др.).

В основе метода лежит способность этих составов при определенных условиях диффундировать в глубину приповерхностного слоя металла атомов углерода, вызывая образование упрочняющих его дислокаций (возникновение «булатного» эффекта). Базой для этих препаратов служат синтетические порошки оксидов металлов – катализаторов. Их основой являются следующие серпентинизирующие ультрабазиты: амфибол, биотит, ильнетит, магнантит, коротковолокнистый асбест, лизоргит, пирротин, петрандит, серпентин, тальк, альфа, орто– и клинохризотил, халькопирит и т. д. Кроме того, в состав триботехнических смесей могут входить такие минералы, как каолинит, доломит, графит, шунгит.

В последнее время на рынке геомодификаторов появились препараты с новыми минеральными компонентами – бёмитом и цеолитом.

Минерал бёмит, названный по имени немецкого ученого – минералога XX века И. Бёма, в чистом виде в природе встречается довольно редко. Диаспор и бёмит, Al2O3. Н2О и AlO(OH), – полиморфные разновидности одноводного оксида алюминия, находятся в природе в составе бокситов в кристаллической и скрытокристаллической формах. При температуре около 500 °C диаспор и бёмит теряют кристаллизационную воду, превращаясь в безводный глинозем.

Бёмит – минерал из группы окислов и гидроокислов металлов (по имени немецкого минералога XX века И. Бёма (J. Böhm)), применяемый для изготовления ряда ремонтно – восстановительных препаратов автохимии.

Промышленностью налажено производство очень дешевого нанодисперсного искусственного бёмита. Исследования, проведенные в ГНУ ГОСНИТИ по применению синтезированного нанокристаллического бёмита в качестве добавок к смазочным материалам, показывают возможность повышения ресурса деталей и уменьшения трения в процессе эксплуатации на 30…33 %.

Цеолиты – минералы из группы водных алюмосиликатов щелочных и щелочноземельных элементов. В 1756 году Ф. Кронштедт обнаружил увеличение объема образца, сопровождающееся выделением воды из минерала стильбита (гидратированные силикаты алюминия) при нагревании. Поэтому он и ввел термин «цеолит» (в переводе с греческого «кипящий камень»). Оказалось, что подобным свойством обладают и другие минералы этого семейства: клиноптилолит, морденит, фожазит, шабазит. В отличие от кристаллогидратов (серпентинов и бёмита), также выделяющих значительное количество воды при нагреве, цеолиты поглощают и выделяют не только воду, но и другие молекулы без изменения кристаллической структуры.

Цеолит – (греч. zéo – киплю и lithos – камень, т. е. «кипящий камень») – большая группа близких по составу и свойствам минералов и синтетических веществ, служащих для разработки и производства ряда каталитических препаратов автохимии.

Химический состав цеолитов в обобщенном виде может быть представлен формулой: Mx/n(AlO2)x. (SiO2)y. zH2O, где М – катионы с валентностью n (обычно это Na+, K+, Ca2+, Ba2+, Si4+, Mg2+), z – число молекул воды, а отношение у/х может изменяться от 1 до 5 для различных видов цеолитов. Например, основной состав природных цеолитов Сокирницкого месторождения, %: SiO2 – 71,5; Al2O3 – 13,1; Fe2O3 – 0,9; MnO – 0,19; MgO – 1,07; CaO – 2,1; Na2O – 2,41; K2O – 2,96; P2O5 – 0,033; SO3 – следы. В качестве основных микропримесей могут содержаться: никель, ванадий, молибден, медь, олово, свинец, кобальт и цинк.

Цеолиты имеют строго определенный диаметр входных отверстий (от 0,3 до 1 нм в зависимости от вида минерала) и являются высокоактивными адсорбентами (рис. 11).



Рис. 11. Внешний вид минерала и нанопористая структура цеолита


В настоящее время известно более 600 видов цеолитов и только около 50 из них имеют природное (естественное) происхождение. Искусственные или синтетические цеолиты имеют классификацию А; Х и Y.

Цеолиты, вследствие особенностей своей структуры, обладают высокой адсорбцией – концентрированием вещества из газовой фазы на поверхности твердого тела (адсорбента) или в порах, образуемых его структурой. При использовании цеолитов в качестве адсорбирующего элемента происходит молекулярно – ситовый отбор при сорбции молекул из газа в жидкости, позволяющей разделять молекулярные смеси в интервале размера молекул 10…20 нм.

Внимание! Это не конец книги.

Если начало книги вам понравилось, то полную версию можно приобрести у нашего партнёра - распространителя легального контента. Поддержите автора!

Страницы книги >> Предыдущая | 1 2 3 4 5
  • 4 Оценок: 5

Правообладателям!

Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.

Читателям!

Оплатили, но не знаете что делать дальше?


Популярные книги за неделю


Рекомендации