Электронная библиотека » Владимир Онищенко » » онлайн чтение - страница 5


  • Текст добавлен: 24 декабря 2013, 16:50


Автор книги: Владимир Онищенко


Жанр: Хобби и Ремесла, Дом и Семья


сообщить о неприемлемом содержимом

Текущая страница: 5 (всего у книги 32 страниц) [доступный отрывок для чтения: 9 страниц]

Шрифт:
- 100% +
Классификация горных пород

Согласно генетической классификации, горные породы подразделяются на три большие группы: изверженные (к этой группе принято относить подгруппу излившихся горных пород), осадочные и метаморфические.

Изверженные горные породы

Среди изверженных горных пород различают массивные, изменившиеся и обломочные, образовавшиеся в результате разрушения массивных пород.

Массивные глубинные горные породы (граниты, сиениты, диориты и габбро) образовались в результате медленного охлаждения магмы на большой глубине под значительным давлением и в результате этого полной ее кристаллизации. Все глубинные породы характеризуются высокой плотностью и ярко выраженной кристаллической (крупнокристаллической) структурой.

Гранит – наиболее распространенная глубинная горная порода, состоящая в основном из кварца, полевого шпата и слюды. Иногда слюда заменена темноокрашенными (железисто-магнезиальными) минералами. Цвет гранита зависит от главной составной части – полевого шпата и наличия темных минералов. Он бывает серый, красный и пр. Зерна минералов имеют настолько прочную спайность, что излом чаще происходит не по плоскости спайности, а по зернам минералов. Плотность гранита в среднем 2600 кг/м3, предел прочности при сжатии – 100–300 МПа при расширении 1/40—1/60 предела прочности при сжатии. Большая механическая прочность, стойкость против выветривания и морозостойкость обусловливают высокие строительные свойства гранита и изготовленных из него строительных материалов и изделий. Гранит применяют для изготовления облицовочных плит, лестничных ступеней, полов, бортовых камней, щебня и др., используют при строительстве гидротехнических сооружений и сооружений памятников.

Сиенит состоит в основном из полевого шпата (ортоклаза) и какого-нибудь темноокрашенного минерала. Строение сиенита сходно с гранитом. Плотность составляет 2400–2900 кг/м3, предел прочности при сжатии – 150–200 МПа. Сиениты мягче гранитов, лучше поддаются полировке, обладают большей вязкостью. Используют сиениты наряду с гранитами. Между гранитами и сиенитами имеются переходные разности – граносиениты.

Диориты по минералогическому составу представлены плагиоклазом, роговой обманкой, реже – биотитом и авгитом. Цвет диорита от темно-зеленого до черно-зеленого. Плотность – 2700–2900 кг/м3, предел прочности при сжатии – 180–200 МПа. Диориты трудно обрабатываются, обладают большим сопротивлением истиранию, хорошо полируются, стойки против выветривания. Применяют диориты в дорожном строительстве и в виде облицовочных плит.

Габбро — кристаллическая горная порода, состоящая в основном из плагиоклаза и темноокрашенных минералов (пироксены в виде авгита). Реже в состав габбро входят биотит и роговая обманка. Цвет габбро может быть от серого и зеленого до черного. К группе габбро относится также лабрадорит – горная порода, состоящая в основном из минерала лабрадора (разновидности полевого шпата) серого, зеленовато-серого или темного цвета с синим отблеском на плоскостях спайности. Плотность габбро очень высокая и равна 2900–3160 кг/м3, предел прочности при сжатии – 100–280 МПа, а иногда и до 350 МПа. Габбро стоек против выветривания, трудно обрабатывается, но дает хорошую долговечную полировку. Применяют его для гидротехнических и других видов сооружений в виде разнообразных строительных материалов – щебня, облицовочных плит и т. д. Лабрадорит, обладающий красивой расцветкой, используют как облицовочный материал.

Излившиеся горные породы образовались при остывании магмы, излившейся на поверхность земной коры. Структура излившихся горных пород может быть полукристаллической, зернистой и стекловидной. Излившиеся породы имеют химический и минералогический состав такой же, как и глубинные, обладают примерно теми же физико-механическими свойствами, но отличаются мелкокристаллической (до стекловидной) структурой.

Кварцевый порфир – аналог гранита – имеет стекловатую структуру с вкраплением крупных зерен кристаллов кварца. При выветривании эти зерна могут выпадать из основной массы горной породы. Плотность – 2400–2600 кг/м3, предел прочности при сжатии – 130–180 МПа. Используют его в виде щебня или штучного камня. Наряду с кварцевым порфиром существует бескварцевый порфир (аналог сиенитов), в котором кварц отсутствует.

Трахит — горная порода, по химико-минералогическому составу сходная с порфиром, но образовавшаяся в более поздние геологические периоды. Трахит отличается высокой пористостью и относительно низким пределом прочности при сжатии – 60–70 МПа.

Диабаз — аналог габбро – состоит из плагиоклаза и авгита и имеет в своем составе примеси кварца и роговой обманки. Плотность равна 2800–3000 кг/м3, предел прочности при сжатии составляет 200–300 МПа, цвет темно-серый. Диабаз хорошо полируется. Применяют его в виде щебня, штучных камней, плит, брусчатки, в качестве облицовочного материала. Из расплавленного диабаза при температуре 1200–1350 °C отливают различные изделия. Плавленый диабаз стоек к кислотам и щелочам, обладает высокими диэлектрическими свойствами. Прочность плавленого диабаза составляет около 500 МПа.

Базальт по химическому и минералогическому составу является аналогом габбро. Это минерал темного цвета, скрытокристаллической структуры с некоторым количеством вулканического стекла, и состоит он из плагиоклаза и авгита. Плотность – 2700–3300 кг/м3, предел прочности при сжатии – 100–150 МПа. Высокая твердость и прочность базальтов позволяют использовать их в качестве материалов для дорожных покрытий. Применяют базальт как сырье для изготовления каменного литья.

Порфирит и андезит — аналоги диорита. Порфирит – более старая, а андезит – более молодая горная порода; цвет их серый, серовато– и желтовато-зеленый. Плотность – 2200–2800 кг/м3, предел прочности при сжатии – 60—240 МПа. Порфириты применяют в качестве облицовочного материала, щебня и дорожной брусчатки, а андезит (как кислотостойкий материал) – в качестве заполнителя в кислотоупорных бетонах, а также для специальных облицовок.

Обломочные породы делят на рыхлые (пемза, вулканические пеплы и др.) и цементированные (вулканический туф).

Пемза образовалась при быстром остывании магмы и интенсивном выделении из нее газов, вспучивающих массу. Последующее быстрое остывание вспученных кусков магмы приводит к образованию стекловидной пористой породы. Цвет пемзы серый, черный и иногда белый. Пемза состоит из кремнезема (до 70 %) и глинозема. Залегает пемза в виде обломков размеров 5—50 мм в диаметре, выброшенных во время извержения вулканов. Плотность пемзы в куске – 400—1400 кг/м3, пористость до 80 %, предел прочности при сжатии – 0,4–2,0 МПа, твердость – 6. Используют пемзу как щебень для легких бетонов, в качестве теплоизоляционного материала, а также как активную минеральную добавку к извести и цементам.

Вулканический пепел встречается в виде порошка от серого до черного цвета. Применяют его для получения легких растворов и бетонов, а также в качестве активной минеральной добавки к вяжущим веществам.

Вулканические туфы — сцементированная туфовая лава, образованная при примешивании во время извержений к жидкой лаве пепла и песка. В результате быстрого охлаждения туфы имеют стекловидное строение. Типичным представителем вулканического туфа является артикский туф. Плотность туфа в куске – 1250–1350 кг/м3, пористость – 40–70 %, предел прочности при сжатии– 8—19 МПа и выше, теплопроводность – 0,21—0,33. Цвет розовато-фиолетовый. Применяют вулканические туфы в качестве песка или щебня для легких бетонов и растворов, крупных стеновых блоков, а также активной добавки к воздушной извести или цементу. Высокие декоративные качества и морозостойкость позволяют широко применять туф в качестве облицовочного материала для фасадов зданий.

Осадочные горные породы

Осадочные горные породы образовались в результате осаждения солей в высыхающих водоемах – органогенные (химические осадки, скопления остатков растительного и животного мира), а также в результате разрушения массивных горных пород магматического или осадочного происхождения – обломочные.

К химическим осадкам относят гипс, ангидрит, магнезит, доломит и известковые туфы.

Гипс — горная порода, состоящая из минерала того же названия. Гипс применяют для производства воздушного вяжущего – строительного гипса, а также в качестве облицовочного материала внутренних частей зданий в виде искусственного мрамора.

Ангидрит состоит из одноименного минерала – ангидрита. Применяют его в качестве облицовочного материала, а также сырья для производства ангидритового цемента.

Магнезит состоит из минерала того же названия – магнезита. Иногда он содержит примеси углекислых кальция и железа. Твердость магнезита 3,5–4,0, цвет белый, от желтоватого до бурого. Применяют магнезит в качестве сырья для производства воздушного вяжущего – каустического магнезита и огнеупорных материалов.

Доломит состоит в основном из минерала доломита с примесями глинистого, железистого, кремнистого и других веществ. Цвет серый, от желтоватого до бурого, структура – зернистая. По свойствам доломиты близки к плотным известнякам, иногда они обладают и более высокими, чем известняки, механическими свойствами. Применяют доломиты Са(НС03)2 для производства щебня, изготовления облицовочных плит, огнеупоров и вяжущих материалов.

Известковые туфы образовались при выделении СаС03 из кислого уклекислого кальция, растворенного в воде. Очень пористые известковые туфы используют как сырье для получения извести, а плотные с мелкими равномерно расположенными порами туфы применяют в виде штучных камней для кладки стен и в качестве щебня для легких бетонов.

К органогенным породам относят различные карбонатные и кремнистые породы. Для строительных целей используют известняки, известняки-ракушечники, мел, диатомиты и трепелы.

Известняк образовался в водных бассейнах из остатков животного и растительного мира (или как продукт химических осадков). Рыхлые скопления раковин и их осколков скреплялись углекислым кальцием. Известняк состоит в основном из кальцита и примесей глины, доломита, кварца и др. Плотность известняка – 1700–2600 кг/м3, прочность при сжатии – 10—100 МПа. Цвет белый, от желтоватого до бурого. Известняк используют для производства щебня, облицовочных плит и архитектурных деталей, а также для производства извести и портландцемента.

Известняк-ракушечник — пористая горная порода, состоящая из раковин и их обломков, сцементированных известковым веществом. Плотность – 900—2000 кг/м3, предел прочности при сжатии – 0,4—15,0 МПа и более. Применяют этот минерал для изготовления стеновых камней и блоков, а также в качестве заполнителя для легких бетонов.

Мел — землистая горная порода, состоящая почти полностью из чистого карбоната кальция. В качестве примесей встречаются глинистые вещества и зерна кварца. Мел обладает высокой дисперсностью. Применяют его в качестве белого пигмента, для приготовления замазки, а также при производстве извести, портландцемента и стекла.

Диатомиты – слабо сцементированная, очень пористая кремнеземистая порода, состоящая от панцирей диатомовых водорослей и частично из скелетов животных организмов. Плотность 400—1000 кг/м3, пористость – 60–70 %.

Трепелы — очень легкая глиноподобная порода, содержащая аморфный кремнезем в виде мельчайших шариков опала. Плотность – 500—1200 кг/м3, пористость – 60–70 %, коэффициент теплопроводности – 0,17—0,23.

Применяют диатомиты и трепелы для изготовления теплоизоляционных материалов, легкого кирпича, а также в производстве гидравлических вяжущих в качестве активных минеральных добавок.

Механические отложения образовались в результате физического выветривания горных пород под влиянием воды и температуры. Продукты разрушения переносились ветром и водными потоками на различные расстояния и оседали. Так образовались глины, песок, щебень и гравий из массивных горных пород.

Химическое выветривание проявлялось в результате взаимодействия составных частей горных пород с различными веществами, находящимися в атмосфере. Так, полевой шпат (ортоклаз) под действием воды и углекислоты, находящейся в воздухе, разрушался, образуя минерал каолинит.

К физическому и химическому выветриванию (разрушению) горных пород часто присоединяется еще биохимическое выветривание, являющееся результатом жизнедеятельности животных и растительных организмов. В результате выветривания горных пород образуются дисперсные частицы, зерна и крупные обломки; некоторые из них цементируются глиной, кальцитом или кремнеземом, образуя цементированные горные породы. В зависимости от крупности зерен и цементации их различают следующие виды механических отложений осадочных горных пород.

Песок – рыхлая смесь зерен различных пород крупностью 0,16—5,0 мм. В зависимости от условий образования пески бывают горные, речные, морские, дюнные, барханные и др. Применяют их для приготовления бетонов и растворов.

Гравий — окатанной формы зерна крупностью 5—70 мм. Применяют в качестве заполнителя для бетонов.

Песчаники — горная порода, состоящая из зерен кварца, сцементированная глинистым, кремнеземистым или известковым веществом. Прочность песчаника зависит от вида цементирующего вещества, крупности и формы сцементированных зерен. Наиболее прочные кремнеземистые песчаники имеют предел прочности при сжатии 200 МПа и более. Используют песчаники в качестве щебня для бетона, облицовки опор мостов и зданий, для дорожных покрытий, так как они имеют высокие морозостойкость и прочность при истирании.

Конгломераты — горная порода, состоящая из сцементированных зерен гравия, а брекчии — из сцементированных зерен щебня. Конгломераты и брекчии используют в качестве щебня для бетонов, штучного камня и облицовочных плит.

Метаморфические (видоизмененные) горные породы

Метаморфические горные породы образовались из магматических и осадочных путем их преобразования под влиянием высокой температуры и давления. В строительстве применяют гнейсы, глинистые сланцы, мраморы, кварциты.

Гнейсы по минералогическому составу являются аналогами гранита и имеют сланцевое строение. Используют гнейсы преимущественно в качестве облицовочных плит, в виде бутового камня для кладки фундаментов и стен неотапливаемых зданий, для тротуаров.

Глинистые сланцы состоят из уплотненных сланцевых глин. Цвет темно-серый, иногда черный. Глинистые сланцы раскалываются на тонкие плитки, обладают высокой атмосферостойкостью и долговечностью, что позволяет использовать их в качестве кровельного материала.

Мрамор — кристаллическая порода, образовавшаяся из известняков или доломитов. Кристаллы соединены без цементирующего вещества. Прочность мрамора достигает 300 МПа, твердость небольшая – 3,0–3,5. Он сравнительно легко пилится на плиты и хорошо полируется. Применяют мрамор для облицовки внутренних частей зданий, так как снаружи зданий полировка быстро утрачивается, что объясняется слабой химической стойкостью мрамора при воздействии на него атмосферы.

Кварциты – метаморфическая разновидность кремнистых песчаников с перекристаллизованными и сросшимися зернами кварца, так что цементирующее вещество неразличимо. Кварциты стойки против выветривания, их прочность достигает 400 МПа. Используют кварциты для облицовки зданий, опор мостов, а также как сырье для производства огнеупорных изделий.

Разработка и обработка природных каменных материалов

Горные породы, пригодные для изготовления каменных материалов, называют полезными ископаемыми. Породы, сопровождающие полезные ископаемые и не используемые для указанной цели, относят к пустой породе. Работы, связанные с добычей полезных ископаемых, называют горными работами. Выработанные пространства, образующиеся в процессе добычи полезного ископаемого, именуются выработками, разрабатываемые месторождения – карьерами.

Выбор способа добычи природных каменных материалов зависит от вида горной породы, глубины и условий ее залегания, твердости и других параметров. Рыхлые горные породы – песок, гравий, глину – добывают открытым способом с помощью различных машин, из которых наиболее распространенными являются одно– и многоковшовые экскаваторы, а также гидромеханическим способом. Сущность гидромеханизации заключается в том, что вода подводится к месту добычи грунта под давлением, создаваемым насосами, проходит через гидромонитор и, вылетая с большой скоростью из его насадки, производит размыв породы. Затем из смеси грунта с водой (пульпы) выделяется товарная продукция (песок или гравий). Песок и гравий в карьерах классифицируют по крупности зерен на несколько фракций.

Щебень получают дроблением горных пород, добываемых взрывным или другим способом.

Поскольку нерудные материалы, поступающие с карьеров, по крупности, зерновому составу, количеству примесей обычно непригодны для непосредственного использования в бетонах, необходима их переработка, включающая операции по дроблению, фракционированию, выработке мелких фракций, мойке, обогащению и складированию.

Дроблению подвергаются зерна горной породы крупностью до 1200–1500 мм. Для сборного железобетона используется щебень крупностью 5—40 мм. Существующие конструкции дробильных установок не могут обеспечить измельчение кускового материала необходимых фракций при однократном прохождении, поэтому применяют двух– или трехступенчатые схемы дробления. Для дробления используют дробилки щековые, конусные, валковые и ударного действия (молотковые и роторные). Выбор схемы дробления и типа дробильного оборудования производят с учетом свойств исходного сырья и условий обеспечения максимального выхода качественного по размерам и форме заполнителя.

Эффективность работы дробильных агрегатов повышается при многоступенчатом дроблении с применением классификаторов, например виброгрохотов. Дробление нерудных материалов, как правило, производят в стационарных установках на заводе, однако в последнее время все большее применение находят передвижные дробильные установки.

Простейший вид классификации – грохочение; с его помощью производят разделение материала на фракции заданных размеров. На предприятиях нерудных строительных материалов широко применяют плоские вибрационные грохоты. Для получения чистых, свободных от примесей заполнителей окончательное грохочение совмещают с промывкой.

После дробления и грохочения в материале остаются загрязняющие примеси в виде глины, ила и др., ухудшающие качество заполнителя. Для промывки нерудных строительных материалов широко используют наклонные лопастные двухвальные корытные мойки, а также барабанные промывочные машины. Барабанные промывочные машины в зависимости от направления движения отработанной воды со шламом бывают прямоточные и противоточные. Более эффективны противоточные машины, они выдают чистый заполнитель различной степени крупности от мелкого до 350 мм. В последнее время получили распространение вибрационные промывочные машины как более эффективные, потребляющие относительно мало энергии и воды, и менее металлоемкие. Эффективен в работе также виброкаскадный промывочный грохот, который предназначен для промывки зерен крупностью до 100 мм с содержанием глины до 10 %.

Наряду с грохочением применяется более точная гидравлическая классификация. Из гравитационных наиболее совершенны вертикальные классификаторы с восходящей струей. Классификация осуществляется в две стадии. Сначала пульпа разделяется в обогатительной камере, где основная часть мелких фракций выносится в слив, а оседающие крупные зерна песка поступают в классификационную камеру, где происходит окончательное разделение гидросмеси. Частицы крупнее заданного размера оседают к разгрузочному устройству, а мелкие – восходящим потоком выносятся в слив. Центробежные классификаторы (гидроциклоны, центрифуги) используют для выделения и разделения из песка зерен крупностью 0,15—0,3 мм. Обезвоживание нерудных материалов производят различными способами. Чаще применяют дренирование, широко используют для обезвоживания нерудных материалов сушку – естественную (в штабелях) или искусственную (в сушильных барабанах).

Операции по технологической переработке нерудных материалов одновременно способствуют их обогащению и повышению качества, но существуют и специальные способы обогащения, рассчитанные на переработку особых видов сырья, например с высоким содержанием слабых пород, а также на получение специальных видов заполнителя, обогащение щебня в грануляторах, тяжелых средах и др.

Правильные условия складирования нерудных строительных материалов обеспечивают сохранность их высокого качества и уменьшают потери. По способу хранения склады различают: открытые – штабельные, штабельно-траншейные, штабельно-эстакадные; закрытые – полу бункерные, бункерные и силосные. Заполнители хранятся раздельно по видам, фракциям и сортам.

Массивные изверженные горные породы разрабатывают, как правило, взрывом. При отделении глыб слоистых, трещиноватых, столбчатых пород применяют механические средства (клинья, механические лопаты и др.). Мягкие породы (известковые туфы и др.) добывают путем распиловки массива камнерезной машиной на блоки определенных размеров и правильной геометрической формы. При разработке месторождений некоторых разновидностей гранитов, туфов, мраморов (в открытых выработках) на штучный камень, плиты, блоки и т. д. применяют также способ распиловки породы механическими пилами.


Страницы книги >> Предыдущая | 1 2 3 4 5 6 7 8 9 | Следующая
  • 3.4 Оценок: 5

Правообладателям!

Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.

Читателям!

Оплатили, но не знаете что делать дальше?


Популярные книги за неделю


Рекомендации