Электронная библиотека » Яков Перельман » » онлайн чтение - страница 2


  • Текст добавлен: 19 декабря 2019, 08:40


Автор книги: Яков Перельман


Жанр: Прочая образовательная литература, Наука и Образование


Возрастные ограничения: +12

сообщить о неприемлемом содержимом

Текущая страница: 2 (всего у книги 8 страниц) [доступный отрывок для чтения: 2 страниц]

Шрифт:
- 100% +
33
Коровы на лугу

ЗАДАЧА

«При изучении наук задачи полезнее правил», – писал Ньютон в своей «Всеобщей арифметике» и сопровождал теоретические указания рядом примеров. В числе этих упражнений находим задачу о быках, пасущихся на лугу, – родоначальницу особого типа своеобразных задач наподобие следующей.

«Трава на всем лугу растет одинаково густо и быстро. Известно, что 70 коров поели бы ее в 24 дня, а 30 коров – в 60 дней. Сколько коров поели бы всю траву луга в 96 дней?»

Задача эта послужила сюжетом для юмористического рассказа, напоминающего чеховский «Репетитор». Двое взрослых, родственники школьника, которому эту задачу задали для решения, безуспешно трудятся над нею и недоумевают:

– Выходит что-то странное, – говорит один из решающих. – Если в 24 дня 70 коров поедают всю траву луга, то сколько коров съедят ее в 96 дней? Конечно,  от 70, т. е.  коров… Первая нелепость! А вот вторая: 30 коров поедают траву в 60 дней; сколько коров съедят ее в 96 дней? Получается еще хуже:  коровы. Кроме того: если 70 коров поедают траву в 24 дня, то 30 коров употребляют на это 56 дней, а вовсе не 60, как утверждает задача.


Рис. 5


– А приняли вы в расчет, что трава все время растет? – спрашивает другой.

Замечание резонное: трава непрерывно растет, и если этого не учитывать, то не только нельзя решить задачи, но и само условие ее будет казаться противоречивым.

Как же решается задача?


РЕШЕНИЕ

Введем и здесь вспомогательное неизвестное, которое будет обозначать суточный прирост травы в долях ее запаса на лугу. В одни сутки прирастает у, в 24 дня – 24у; если общий запас принять за 1, то в течение 24 дней коровы съедают


1 + 24у.


В сутки все стадо (из 70 коров) съедает


а одна корова съедает


Подобным же образом из того, что 30 коров поели бы траву того же луга в 60 суток, выводим, что одна корова съедает в сутки



Но количество травы, съедаемое коровой в сутки, для обоих стад одинаково. Поэтому


откуда


Найдя у (величину прироста), легко уже определить, какую долю первоначального запаса травы съедает одна корова в сутки:



Наконец, составляем уравнение для окончательного решения задачи: если искомое число коров х, то



откуда х = 20.

20 коров поели бы всю траву в 96 дней.

Задача Ньютона

Рассмотрим теперь ньютонову задачу о быках, по образцу которой составлена сейчас рассмотренная.

Задача, впрочем, придумана не самим Ньютоном; она является продуктом народного математического творчества.

«Три луга, покрытые травой одинаковой густоты и скорости роста, имеют площади: га, 10 га и 24 га. Первый прокормил 12 быков в продолжение 4 недель; второй – 21 быка в течение 9 недель. Сколько быков может прокормить третий луг в течение 18 недель?»


РЕШЕНИЕ

Введем вспомогательное неизвестное у, означающее, какая доля первоначального запаса травы прирастает на 1 га в течение недели. На первом лугу в течение недели прирастает травы , а в течение 4 недель  того запаса, который первоначально имелся на 1 га. Это равносильно тому, как если бы первоначальная площадь луга увеличилась и сделалась равной


гектаров. Другими словами, быки съели столько травы, сколько покрывает луг площадью в  гектаров. В одну неделю 12 быков поели четвертую часть этого количества, а 1 бык в неделю  часть, т. е. запас, имеющийся на площади


гектаров.

Подобным же образом находим площадь луга, кормящего одного быка в течение недели, из данных для второго луга:


недельный прирост на 1 га = у,

9-недельный прирост на 1 га = 9y,

9-недельный прирост на 10 га = 90у.


Площадь участка, содержащего запас травы для прокормления 21 быка в течение 9 недель, равна


10 + 90y.


Площадь, достаточная для прокормления 1 быка в течение недели, —


гектаров. Обе нормы прокормления должны быть одинаковы:



Решив это уравнение, находим


Определим теперь площадь луга, наличный запас травы которого достаточен для прокормления одного быка в течение недели:


гектаров. Наконец, приступаем к вопросу задачи. Обозначив искомое число быков через х, имеем:


откуда x = 36. Третий луг может прокормить в течение 18 недель 36 быков.

Перестановка часовых стрелок

ЗАДАЧА

Биограф и друг известного физика А. Эйнштейна А. Мошковский, желая однажды развлечь своего приятеля во время болезни, предложил ему следующую задачу (рис. 6):

Рис. 6


«Возьмем, – сказал Мошковский, – положение стрелок в 12 часов. Если бы в этом положении большая и малая стрелки обменялись местами, они дали бы все же правильные показания. Но в другие моменты, – например, в 6 часов, взаимный обмен стрелок привел бы к абсурду, к положению, какого на правильно идущих часах быть не может: минутная стрелка не может стоять на 6, когда часовая показывает 12. Возникает вопрос: когда и как часто стрелки часов занимают такие положения, что замена одной другою дает новое положение, тоже возможное на правильных часах?

– Да, – ответил Эйнштейн, – это вполне подходящая задача для человека, вынужденного из-за болезни оставаться в постели: достаточно интересная и не слишком легкая. Боюсь только, что развлечение продлится недолго: я уже напал на путь к решению.

И, приподнявшись на постели, он несколькими штрихами набросал на бумаге схему, изображающую условие задачи. Для решения ему понадобилось не больше времени, чем мне на формулировку задачи…»

Как же решается эта задача?


РЕШЕНИЕ

Будем измерять расстояния стрелок по кругу циферблата от точки, где стоит цифра 12, в 60-х долях окружности.

Пусть одно из требуемых положений стрелок наблюдалось тогда, когда часовая стрелка отошла от цифры 12 на х делений, а минутная – на у делений. Так как часовая стрелка проходит 60 делений за 12 часов, т. е. 5 делений в час, то х делений она прошла за  часов. Иначе говоря, после того как часы показывали 12, прошло  часов. Минутная стрелка прошла у делений за у минут, т. е. за  часов. Иначе говоря, цифру 12 минутная стрелка прошла  часов тому назад, или через


часов после того, как обе стрелки были на двенадцати. Это число является целым (от нуля до 11), так как оно показывает, сколько полных часов прошло после двенадцати.

Когда стрелки обменяются местами, мы найдем аналогично, что с двенадцати часов до времени, показываемого стрелками, прошло


полных часов. Это число также является целым (от нуля до 11).

Имеем систему уравнений


где m и n — целые числа, которые могут меняться от 0 до 11. Из этой системы находим:


Давая m и n значения от 0 до 11, мы определим все требуемые положения стрелок. Так как каждое из 12 значений m можно сопоставлять с каждым из 12 значений n, то, казалось бы, число всех решений равно 12 · 12 = 144. Но в действительности оно равно 143, потому что при m = 0, n = 0 и при m = 11, n = 11 получается одно и то же положение стрелок.

При m = 11, n = 11 имеем:


х = 60, y = 60,


т. е. часы показывают 12, как и в случае m = 0, n = 0.

Всех возможных положений мы рассматривать не станем; возьмем лишь два примера. Первый пример:


т. е. часы показывают 1 ч  мин; в этот момент стрелки совмещаются; их, конечно, можно обменять местами (как и при всех других совмещениях стрелок).

Второй пример:


Соответствующие моменты: 8 ч 28,53 мин и 5 ч 42,38 мин.

Число решений мы знаем: 143. Чтобы найти все точки циферблата, которые дают требуемые положения стрелок, надо окружность циферблата разделить на 143 равные части: получим 143 точки, являющиеся искомыми. В промежуточных точках требуемые положения стрелок невозможны.

Совпадение часовых стрелок

ЗАДАЧА

Сколько есть положений на правильно идущих часах, когда часовая и минутная стрелки совмещаются?


РЕШЕНИЕ

Мы можем воспользоваться уравнениями, выведенными при решении предыдущей задачи: ведь если часовая и минутная стрелки совместились, то их можно обменять местами – от этого ничего не изменится. При этом обе стрелки прошли одинаковое число делений от цифры 12, т. е. х = у. Таким образом, из рассуждений, относящихся к предыдущей задаче, мы выводим уравнение


где m — целое число от 0 до 11. Из этого уравнения находим:



Из двенадцати возможных значений для т (от нуля до 11) мы получаем не 12, а только 11 различных положений стрелок, так как при m = 11 мы находим x = 60, т. е. обе стрелки прошли 60 делений и находятся на цифре 12; это же получается при m = 0.

Искусство отгадывать числа

Каждый из вас, несомненно, встречался с «фокусами» по отгадыванию чисел. Фокусник обычно предлагает выполнить действия следующего характера: задумай число, прибавь 2, умножь на 3, отними 5, отними задуманное число и т. д. – всего пяток, а то и десяток действий. Затем фокусник спрашивает, что у вас получилось в результате, и, получив ответ, мгновенно сообщает задуманное вами число.

Секрет «фокуса», разумеется, очень прост, и в основе его лежат все те же уравнения.

Пусть, например, фокусник предложил вам выполнить программу действий, указанную в левой колонке следующей таблицы:



Затем фокусник просит вас сообщить окончательный результат и, получив его, моментально называет задуманное число. Как он это делает?

Чтобы понять это, достаточно обратиться к правой колонке таблицы, где указания фокусника переведены на язык алгебры. Из этой колонки видно, что если вы задумали какое-то число х, то после всех действий у вас должно получиться 4х + 1. Зная это, нетрудно «отгадать» задуманное число.

Пусть, например, вы сообщили фокуснику, что получилось 33. Тогда фокусник быстро решает в уме уравнение 4x + 1 = 33 и находит: х = 8. Иными словами, от окончательного результата надо отнять единицу (33 – 1 = 32) и затем полученное число разделить на 4 (32: 4 = 8); это и дает задуманное число (8). Если же у вас получилось 25, то фокусник в уме проделывает действия 25 – 1 = 24, 24: 4 = 6 и сообщает вам, что вы задумали 6.

Как видите, все очень просто: фокусник заранее знает, что надо сделать с результатом, чтобы получить задуманное число.

Поняв это, вы можете еще более удивить и озадачить ваших приятелей, предложив им самим, по своему усмотрению, выбрать характер действий над задуманным числом. Вы предлагаете приятелю задумать число и производить в любом порядке действия следующего характера: прибавлять или отнимать известное число (скажем: прибавить 2, отнять 5 и т. д.), умножать[1]1
  Делить лучше не разрешайте, так как это очень усложнит «фокус».


[Закрыть]
на известное число (на 2, на 3 и т. п.), прибавлять или отнимать задуманное число. Ваш приятель нагромождает, чтобы запутать вас, ряд действий. Например, он задумывает число 5 (этого он вам не сообщает) и, выполняя действия, говорит:

– Я задумал число, умножил его на 2, прибавил к результату 3, затем прибавил задуманное число; теперь я прибавил 1, умножил на 2, отнял задуманное число, отнял 3, еще отнял задуманное число, отнял 2. Наконец, я умножил результат на 2 и прибавил 3.

Решив, что уже совершенно вас запутал, он с торжествующим видом сообщает вам:

– Получилось 49.

К его изумлению вы немедленно сообщаете ему, что он задумал число 5.

Как вы это делаете? Теперь это уже достаточно ясно. Когда ваш приятель сообщает вам о действиях, которые он выполняет над задуманным числом, вы одновременно действуете в уме с неизвестным х. Он вам говорит: «Я задумал число…», а вы про себя твердите: «значит, у нас есть х». Он говорит: «…умножил его на 2…» (и он в самом деле производит умножение чисел), а вы про себя продолжаете: «теперь 2x». Он говорит: «…прибавил к результату 3…», и вы немедленно следите: 2x + 3, и т. д. Когда он «запутал» вас окончательно и выполнил все те действия, которые перечислены выше, у вас получилось то, что указано в следующей таблице (левая колонка содержит то, что вслух говорит ваш приятель, а правая – те действия, которые вы выполняете в уме):


В конце концов вы про себя подумали: окончательный результат 8x + 9. Теперь он говорит: «У меня получилось 49». А у вас готово уравнение: 8x + 9 = 49. Решить его – пара пустяков, и вы немедленно сообщаете ему, что он задумал число 5.

Фокус этот особенно эффектен потому, что не вы предлагаете те операции, которые надо произвести над задуманным числом, а сам товарищ ваш «изобретает» их.

Есть, правда, один случай, когда фокус не удается. Если, например, после ряда операций вы (считая про себя) получили x + 14, а затем ваш товарищ говорит: «…теперь я отнял задуманное число; у меня получилось 14», то вы следите за ним: (x + 14) – х = 14 – в самом деле получилось 14, но никакого уравнения нет и отгадать задуманное число вы не в состоянии. Что же в таком случае делать? Поступайте так: как только у вас получается результат, не содержащий неизвестного х, вы прерываете товарища словами: «Стоп! Теперь я могу, ничего не спрашивая, сказать, сколько у тебя получилось: у тебя 14». Это уже совсем озадачит вашего приятеля – ведь он совсем ничего вам не говорил! И, хотя вы так и не узнали задуманное число, фокус получился на славу!

Вот пример (по-прежнему в левой колонке стоит то, что говорит ваш приятель):


В тот момент, когда у вас получилось число 12, т. е. выражение, не содержащее больше неизвестного х, вы и прерываете товарища, сообщив ему, что теперь у него получилось 12.

Немного поупражнявшись, вы легко сможете показывать своим приятелям такие «фокусы».

Мнимая нелепость

ЗАДАЧА

Вот задача, которая может показаться совершенно абсурдной:

Чему равно 84, если 8 · 8 = 54?

Этот странный вопрос далеко не лишен смысла, и задача может быть решена с помощью уравнений.

Попробуйте расшифровать ее.


РЕШЕНИЕ

Вы догадались, вероятно, что числа, входящие в задачу, написаны не по десятичной системе, – иначе вопрос «чему равно 84» был бы нелепым. Пусть основание неизвестной системы счисления есть х. Число «84» означает тогда 8 единиц второго разряда и 4 единицы первого, т. е.


«84» = 8х + 4.


Число «54» означает 5х + 4.

Имеем уравнение 8 · 8 = 5х + 4, т. е. в десятичной системе 64 = 5x + 4, откуда x = 12.

Числа написаны по двенадцатеричной системе, и «84» = 8 · 12 + 4 = 100. Значит, если 8 · 8 = «54», то «84» = 100.

Подобным же образом решается и другая задача в этом роде:

Чему равно 100, когда 5 · 6 = 33?

Ответ: 81 (девятеричная система счисления).

Уравнение думает за нас

Если вы сомневаетесь в том, что уравнение бывает иной раз предусмотрительнее нас самих, решите следующую задачу.

Отцу 32 года, сыну 5 лет. Через сколько лет отец будет в 10 раз старше сына?


РЕШЕНИЕ

Обозначим искомый срок через х. Спустя х лет отцу будет 32 + х лет, сыну 5 + х. И так как отец должен тогда быть в 10 раз старше сына, то имеем уравнение


32 + х = 10 (5 + х).


Решив его, получаем х = –2.

«Через минус 2 года» означает «два года назад». Когда мы составляли уравнение, мы не подумали о том, что возраст отца никогда в будущем не окажется в 10 раз превосходящим возраст сына – такое соотношение могло быть только в прошлом. Уравнение оказалось вдумчивее нас и напомнило о сделанном упущении.

Курьезы и неожиданности

При решении уравнений мы наталкиваемся иногда на ответы, которые могут поставить в тупик малоопытного математика. Приведем несколько примеров.

I. Найти двузначное число, обладающее следующими свойствами. Цифра десятков на 4 меньше цифры единиц. Если из числа, записанного теми же цифрами, но в обратном порядке, вычесть искомое число, то получится 27.

Обозначив цифру десятков через х, а цифру единиц – через у, мы легко составим систему уравнений для этой задачи:


Подставив во второе уравнение значение х из первого, найдем:


а после преобразований:


36 = 27.


У нас не определились значения неизвестных, зато мы узнали, что 36 = 27… Что это значит?

Это означает лишь, что двузначного числа, удовлетворяющего поставленным условиям, не существует и что составленные уравнения противоречат одно другому.

В самом деле: умножив обе части первого уравнения на 9, мы найдем из него:


9y – 9x = 36,


а из второго (после раскрытия скобок и приведения подобных членов):


9у – 9x = 27.


Одна и та же величина 9у – 9х согласно первому уравнению равна 36, а согласно второму 27. Это безусловно невозможно, так как 36 ≠ 27.

Подобное же недоразумение ожидает решающего следующую систему уравнений:


Разделив первое уравнение на второе, получаем:


ху = 2,


а сопоставляя полученное уравнение со вторым, видим, что



т. е. 4 = 2. Чисел, удовлетворяющих этой системе, не существует. (Системы уравнений, которые, подобно сейчас рассмотренным, не имеют решений, называются несовместными.)

II. С иного рода неожиданностью встретимся мы, если несколько изменим условие предыдущей задачи. Именно будем считать, что цифра десятков не на 4, а на 3 меньше, чем цифра единиц, а в остальном оставим условие задачи тем же. Что это за число?

Составляем уравнение. Если цифру десятков обозначим через х, то число единиц выразится через х + 3. Переводя задачу на язык алгебры, получим:


Сделав упрощения, приходим к равенству 27 = 27.

Это равенство неоспоримо верно, но оно ничего не говорит нам о значении х. Значит ли это, что чисел, удовлетворяющих требованию задачи, не существует?

Напротив, это означает, что составленное нами уравнение есть тождество, т. е. что оно верно при любом значении неизвестного х. Действительно, легко убедиться в том, что указанным в задаче свойством обладает каждое двузначное число, у которого цифра единиц на 3 больше цифры десятков:


14 + 27 = 41,

47 + 27 = 74,

25 + 27 = 52,

58 + 27 = 85,

36 + 27 = 63,

69 + 27 = 96.


III. Найти трехзначное число, обладающее следующими свойствами:

1) цифра десятков 7;

2) цифра сотен на 4 меньше цифры единиц;

3) если цифры этого числа разместить в обратном порядке, то новое число будет на 396 больше искомого.

Составим уравнение, обозначив цифру единиц через х:


100x + 70 + x – 4 – [100(x – 4) + 70 + x] = 396.


Уравнение это после упрощений приводит к равенству


396 = 396.


Читатели уже знают, как надо толковать подобный результат. Он означает, что каждое трехзначное число, в котором первая цифра на 4 меньше третьей[2]2
  Цифра десятков роли не играла.


[Закрыть]
, увеличивается на 396, если цифры поставить в обратном порядке.

До сих пор мы рассматривали задачи, имеющие более или менее искусственный, книжный характер; их назначение – помочь приобрести навык в составлении и решении уравнений. Теперь, вооруженные теоретически, займемся несколькими примерами задач практических – из области производства, обихода, военного дела, спорта.

В парикмахерской

ЗАДАЧА

Может ли алгебра понадобиться в парикмахерской? Оказывается, что такие случаи бывают. Мне пришлось убедиться в этом, когда однажды в парикмахерской подошел ко мне мастер с неожиданной просьбой:

– Не поможете ли нам разрешить задачу, с которой мы никак не справимся?

– Уж сколько раствора испортили из-за этого! – добавил другой.

– В чем задача? – осведомился я.

– У нас имеется два раствора перекиси водорода: 30-процентный и 3-процентный. Нужно их смешать так, чтобы составился 12-процентный раствор. Не можем подыскать правильной пропорции…

Мне дали бумажку, и требуемая пропорция была найдена.

Она оказалась очень простой. Какой именно?


РЕШЕНИЕ

Задачу можно решить и арифметически, но язык алгебры приводит здесь к цели проще и быстрее. Пусть для составления 12-процентной смеси требуется взять х граммов 3-процентного раствора и у граммов 30-процентного. Тогда в первой порции содержится 0,03x граммов чистой перекиси водорода, во второй 0,3y, а всего


0,03x + 0,3y.


В результате получается (х + у) граммов раствора, в котором чистой перекиси должно быть 0,12 (х + у). Имеем уравнение


0,03х + 0,3у = 0,12(х + у).


Из этого уравнения находим х = 2y, т. е. 3-процентного раствора надо взять вдвое больше, чем 30-процентного.

Трамвай и пешеход

ЗАДАЧА

Идя вдоль трамвайного пути, я заметил, что каждые 12 минут меня нагоняет трамвай, а каждые 4 минуты я сам встречаю трамвай. И я и трамваи движемся равномерно.

Через сколько минут один после другого покидают трамвайные вагоны свои конечные пункты?


РЕШЕНИЕ

Если вагоны покидают свои конечные пункты каждые х минут, то это означает, что в то место, где я встретился с одним из трамваев, через х минут приходит следующий трамвай. Если он догоняет меня, то в оставшиеся 12 – х минут он должен пройти тот путь, который я успеваю пройти в 12 минут. Значит, тот путь, который я прохожу в 1 минуту, трамвай проходит  в минут.

Если же трамвай идет мне навстречу, то он встретит меня через 4 минуты после предыдущего, а в оставшиеся (x – 4) минуты он пройдет тот путь, который я успел пройти в эти 4 минуты. Следовательно, тот путь, который я прохожу в 1 минуту, трамвай проходит в  минуты. Получаем уравнение


Отсюда x = 6. Вагоны отходят каждые 6 минут. Можно также предложить следующее (по сути дела арифметическое) решение задачи. Обозначим расстояние между двумя следующими один за другим трамваями через а. Тогда между мной и трамваем, двигающимся навстречу, расстояние уменьшается на  в минуту (так как расстояние между только что прошедшим трамваем и следующим, равное а, мы вместе проходим за 4 минуты). Если же трамвай догоняет меня, то расстояние между нами ежеминутно уменьшается на . Предположим теперь, что я в течение минуты шел вперед, а затем повернул назад и минуту шел обратно (т. е. вернулся на прежнее место). Тогда между мной и трамваем, двигавшимся вначале мне навстречу, за первую минуту расстояние уменьшилось на , а за вторую минуту (когда этот трамвай уже догонял меня) на . Итого за 2 минуты расстояние между нами уменьшилось на . То же было бы, если бы я стоял все время на месте, так как в итоге я все равно вернулся назад. Итак, если бы я не двигался, то за минуту (а не за две) трамвай приблизился бы ко мне на , а все расстояние а он проехал бы за 6 минут. Это означает, что мимо неподвижно стоящего наблюдателя трамваи проходят с интервалом в 6 минут.

Внимание! Это не конец книги.

Если начало книги вам понравилось, то полную версию можно приобрести у нашего партнёра - распространителя легального контента. Поддержите автора!

Страницы книги >> Предыдущая | 1 2
  • 0 Оценок: 0

Правообладателям!

Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.

Читателям!

Оплатили, но не знаете что делать дальше?


Популярные книги за неделю


Рекомендации