Электронная библиотека » Александр Килов » » онлайн чтение - страница 1


  • Текст добавлен: 12 апреля 2016, 21:40


Автор книги: Александр Килов


Жанр: Учебная литература, Детские книги


сообщить о неприемлемом содержимом

Текущая страница: 1 (всего у книги 19 страниц) [доступный отрывок для чтения: 5 страниц]

Шрифт:
- 100% +

Килов А. С., Мансуров Р. Ш.
Производство заготовок. Трубы

Предисловие

Любую машину (машину-двигатель, машину – преобразователь, машинуорудие) собирают из деталей (элементарных частей), изготовленных без применения сборочных операций и приспособлений. Надежность и долговечность машины зависит от качества деталей, из которых она собрана. Качество детали, в основном, определяется заготовкой, которую получают тем или иным методом: литьем; сваркой; обработкой резанием или обработкой давлением (ковкой, объемной или листовой штамповкой).

В современном машиностроении детали (заготовки) делают из металлов и сплавов, а также из неметаллических (пластмасс, резины, древесины, керамики) и порошковых материалов.

К заготовкам, независимо от метода и способа их получения, предъявляются следующие требования:

– поверхности, используемые как базовые на первой операции обработки, должны быть чистыми без заусенцев и других дефектов, чтобы избежать значительных погрешностей установки при дальнейшей обработке или сборке;

– механические и физические свойства материала заготовки, его химический состав, структура и зернистость должны быть стабильными по всему объему;

– все поверхности заготовки не должны иметь механических повреждений, в противном случае возможен выпуск некачественных деталей;

– геометрические размеры заготовок должны приближаться к геометрическим размерам готовой детали;

– коэффициент использования материала должен быть максимальным, а трудоемкость дальнейшей обработки – минимальной, но при этом должно быть обеспечено получение качественной детали (по размерам и шероховатости поверхности) в соответствии с чертежом после механической обработки на металлорежущих станках;

– все внутренние напряжения должны быть сняты за счет применения термообработки.

Каждый из указанных методов представляет самостоятельную отрасль машиностроения и описан в специальной литературе, но, в тоже время, отсутствуют обобщенные сведения по производству заготовок различными методами и способами, что вызывает затруднения при выполнении студентами курсовых и дипломных проектов.

В связи с этим по инициативе авторов разрабатывается и издается серия учебных пособий, которая признана способствовать лучшему обеспечению студентов учебно-методической литературой.

В серии книг «ПРОИЗВОДСТВО ЗАГОТОВОК» рассмотрены такие вопросы, как получение штампованных и литых заготовок, труб, а также методические указания к лабораторным работам по трубным заготовкам.

Введение

Формообразование при производстве деталей, как и при производстве и обработке труб осуществляется одним из четырех видов:

– литейное производство;

– обработка давлением;

– сварка;

– обработка резанием.

Особенности технологических методов производства заготовок, в том числе и труб влияют на конструкцию и прочностные данные отдельных элементов и устройства в целом. Вариантность любого технологического процесса определяется многими факторами (назначением, размерами, массой, количеством, материалом и др.).

Литейное производство (ЛП) – отрасль машиностроения, изготовляющая заготовки или детали (отливки). Это технологический процесс изготовления заготовок заливкой расплавленного металла заданного химического состава в литейную форму, полость которой имеет конфигурацию заготовки или детали. При охлаждении после затвердевания залитый металл сохраняет конфигурацию полости формы. Литые трубы в дальнейшем не подвергаются дополнительной обработке резанием.

Отливки труб получают из чугуна и из сплавов цветных металлов с высокими механическими и эксплуатационными свойствами, что обуславливают их широкое применение в различных отраслях промышленности. Литьем изготовляют отливки, как простой, так и сложной формы, которые нельзя получить другими технологическими методами. Например, чугунный радиатор отопления, один из вариантов которого запатентован автором Киловым А.С.

Роль процессов обработки металлов давлением в техническом плане различных отраслей хозяйства все более возрастает. Процессы обработки металлов давлением позволяют получать детали и заготовки требуемых форм, размеров и свойств путем пластического деформирования металла в холодном или горячем состоянии. По сравнению с изготовлением деталей резанием, когда часть металла удаляется в стружку, обработка давлением позволяет более экономно расходовать металл, существенно улучшает структуру, а следовательно, и механические свойства металла. Поэтому детали ответственного назначения изготовляют из заготовок, полученных обработкой давлением. Наряду с изготовлением заготовок и деталей из металла обработка давлением широко используется и при переработке пластмасс, что менее трудоемко, чем из металлов, себестоимость их значительно ниже себестоимости металлических изделий. Применение пластических масс дает возможность постоянно совершенствовать конструкции.

Обработка давлением основана на использовании свойства материалов пластически деформироваться в холодном или горячем состоянии. Этот метод широко применяли при изготовлении оружия, орудий, в кораблестроении и т.д.

В настоящее время обработке материалов давлением (далее ОМД) подвергают заготовки из черных и цветных металлов и сплавов, из пластических масс и других не металлических материалов. ОМД включает прокатку, волочение, прессование, объемную и листовую штамповку которые позволяют получать детали, идущие непосредственно на сборку. В основе жестяницких работ, большой группы ремонтных работ и обработки поверхностей без снятия стружки также лежит обработка давлением. Разновидности метода обработки давлением обеспечивают изготовление сложных фасонных профилей с малой шероховатостью поверхностей.

Для получения сварных заготовок применяют практически все виды сварки (под флюсом, дуговую, контактную, в среде защитного газа, электрошлаковую, электронным лучом, лазерную, плазменную, ультразвуковую и т.д.), что вызвано широкой номенклатурой марок и толщиной заготовок для сварных изделий.

При производстве сварных заготовок материал выбирают не только исходя из конструктивных и эксплуатационных соображений, но и его свариваемости, т.е. с учетом возможности обеспечения хорошей сварки.

При производстве сварных заготовок вследствие действия температур происходит изменение формы и размеров заготовки (сварочные деформации), которые снижают точность заготовки и требуют назначения больших припусков на механическую обработку. Также надо учитывать то, что сварочные напряжения, возникающие в околошовном пространстве, могут снижать работоспособность сварочных конструкций в условиях работы при динамических нагрузках или при низких температурах. Для борьбы с этим явлением используют высокотемпературный отпуск при температурах от 550 до 680 0С в течение нескольких часов.

В производстве и применении труб обработка резанием применяется как для разделки исходных заготовок на мерные, так и для подготовки торцов трубных заготовок и при получении фланцевых либо резьбовых соединений.

1 Материалы заготовок и деталей

В качестве исходного продукта при производстве труб используют металлы в виде слитков, листов, карточек или рулонов и неметаллические материалы, в том числе, пластмассы, резину, стекло, керамику и бетон.

При выборе материала для конструкции исходят из комплекса свойств, которые подразделяют на: механические, физико-химические, технологические и эксплуатационные.

К механическим свойствам относят прочность, твердость, износостойкость, пластичность или хрупкость (способность материала подвергаться деформации или разрушению).

Твердость – способность сопротивляться проникновению в него другого тела, например, шарика.

Износостойкость – способность материала сопротивляться поверхностному разрушению под действием поверхностного трения.

К физико-химическим свойством относят температуру плавления, плотность, электро– и теплопроводность.

К технологическим свойствам относят способность материала поддаваться разным способам обработки, в том числе, литейные свойства, ковкость (штампуемусть), свариваемость, обрабатываемость резанием.

Особенности технологических методов и прочностные данные влияют на конструкцию и процессы обработки и поэтому вариантность технологического процесса определяется многими факторами (назначением, размерами, массой, материалом и их строением.)

Конструкционные материалы удобно рассматривать по группам с близкими свойствами и применением. Группу материала, необходимого для конструирования конструктор определяет до начала проектирования и, как правило, без специальных расчетов, на основании представлений о размерах труб, рабочих температурах и действующих нагрузках при эксплуатации, способе ее изготовления. Лишь после выбора группы материала возможно уточнение способа ее изготовления, а после чего можно осуществить и окончательный выбор марки материала.

Трубы в промышленности чрезвычайно разнообразны. Для их изготовления необходимы материалы с различными свойствами. В последние годы значительно расширилась номенклатура материалов, применяемых в машиностроении. Для современного автомобиля детали изготавливают примерно из 70 различных материалов.

Все конструкционные материалы, в основном, делят на две группы: металлические и неметаллические и их группы приведены на рисунке 1.

Металлы и сплавы – основной машиностроительный материал, который обладает свойствами, обусловленными внутренним строением сплава.

Металлы – кристаллические тела, атомы которых расположены в геометрически правильном порядке, образуя кристаллы. Характерным признаком кристалла является твердое состояние до температуры плавления, причем процесс плавления происходит при постоянной температуре.


Рисунок 1 – Основные группы конструкционных материалов


Методы формообразования деталей машин подразделены на 4 вида: литейное производство, обработка давлением, сварка и обработка резанием.

Указанные методы обработки материалов используют практически на любом машиностроительном предприятии. Возможная схема состава и взаимосвязи цехов машиностроительного предприятия показана на рисунке 2.


Рисунок 2 – Состав и взаимосвязь цехов машиностроительного предприятия


Основным материалом машиностроения являются металлы.

Металлы – кристаллические тела, атомы которых расположены в геометрически правильном порядке, образуя кристаллы.

Все металлы подразделяются на два класса:

– черные;

– цветные.

К черным относят сплавы на основе железа (сталь, чугун). Основные свойства черных металлов определяются количеством углерода. Сплавы с содержанием углерода до 2,14 % – стали, а выше – чугуны.

1.1 Свойства металлов

При выборе материала для конструкции исходят из комплекса свойств, которые подразделяют на механические, физико-химические, технологические и эксплутационные.

К механическим относят:

– прочность;

– твердость;

– износостойкость;

– пластичность.

Прочность – способность материала сопротивляться деформации или разрушению. Показателем прочности является предел прочности:

δd= Р/F0,

где Р – нагрузка разрушения стандартного образца, Н;

F 0 – площадь поперечного сечения, мм2.

Пластичность – способность твердых тел изменять форму и размеры без разрушения под действием внешней нагрузки. Пластичность определяется максимальным относительным удлинением при разрыве:

δ = ((l-l0)/l)100 %,

где l – длина после разрыва, мм;

l 0 – первоначальная длина, мм.

Твердость – способность материала сопротивляться проникновению в него другого тела, например шарика.

Износостойкость – способность материала сопротивляться поверхностному разрушению под действием поверхностного трения.

К физико-химическим свойствам относят:

– температуру плавления;

– плотность;

– электро– и теплопроводность.

К технологическим свойствам относят их способность поддаваться различным способам обработки (литейные свойства, ковкость, свариваемость, обрабатываемость режущими инструментами).

Способность металлов и сплавов к литью.

Не все сплавы в одинаковой степени пригодны для изготовления отливок. Из одних сплавов (серого чугуна, силумина) можно легко изготовить отливку сложной конфигурации, а из других (титановых сплавов, легированных сталей и др.) получение отливок сопряжено с определенными трудностями. Получение качественных отливок без раковин, трещин и других дефектов зависит от литейных свойств сплавов. К основным литейным свойствам сплавов относят жидкотекучесть, усадку сплавов, склонность к образованию трещин, газопоглощение и ликвацию.

Жидкотекучесть – способность расплавленного металла течь по каналам литейной формы, заполнять ее полости и четко воспроизводить контуры отливки. При высокой жидкотекучести литейные сплавы заполняют все элементы литейной формы, при низкой – полость формы заполняется частично, в узких сечениях образуются недоливы. Жидкотекучесть сплавов определяют по специальным пробам. За меру жидкотекучести принимают длину заполненной спирали в литейной форме, и она зависит от многих факторов. Например, повышение температуры заливки увеличивает жидкотекучесть всех сплавов. Чем выше теплопроводность материала формы, тем быстрее отводится тепло от залитого металла, тем ниже жидкотекучесть. Неметаллические включения снижают жидкотекучесть сплавов. На жидкотекучесть влияет химический состав сплавов: с увеличением в исходном материале содержания серы, кислорода и хрома жидкотекучесть снижается, а с повышением содержания Р, Si, Al, C – увеличивается.

В зависимости от жидкотекучести сплава выбирают минимальную толщину стенок отливок. Например, при изготовлении мелких отливок из серого чугуна в песчаных формах минимальная толщина стенок составляет от 3 до 4 мм, для средних от 8 до 10 мм, в для крупных от 12 до 15 мм; для стальных отливок, соответственно, от 5 до 7, от 10 до 12 и от 15 до 20 мм.

Способность материала к обработке давлением.

Способность материала деформироваться под действием внешних нагрузок не разрушаясь и сохранять измененную форму после прекращения действия усилий, называется пластичностью. Таким образом, пластичность – это возможность металла изменять форму или деформироваться при обработке давлением без нарушения целостности.

Количественно пластичность можно характеризовать величиной максимальной деформации, которую можно сообщить металлу до появления в нем разрушения. Общая пластическая деформация поликристаллов (это практически все применяемые металлы и сплавы) складывается из двух видов деформаций – внутрикристаллитной и межкристаллитной. Внутрикристаллитная деформация это скольжение и образование двойников в кристаллах, а межкристаллитная – это повороты и смещения зерен относительно друг друга.

В результате обработки давлением зерна кристаллов частично раздробляются и вытягиваются в направлении наибольшего течения металла, что вызывает его упрочнение. Превышение напряжений пластической деформации приводит к возникновению трещин, то есть приводит к разрушению металла. Следовательно, в обработке давлением важно знать условия деформирования, при которых происходит пластическая деформация и при которых наступает разрушение.

Способность металлов и сплавов к сварке.

Свариваемостью металла называют совокупность его технологических свойств, определяющих способность обеспечить при принятом технологическом процессе экономичное, надежное в эксплуатации сварное соединение. Соединение считают качественным или равнопрочным, если его механические свойства близки к характеристикам основного металла и в нем отсутствуют поры, шлаковые включения, раковины. Кроме того, в некоторых случаях соединение должно иметь химические и физические свойства такие же, как свойства основного металла.

Свариваемость – это сложная характеристика, определяемая не только свойствами свариваемого металла, но и выбором технологического процесса, режимом сварки, свойствами применяемых сварочных материалов. Поэтому нет единого вида испытания на свариваемость, а следует применять несколько видов для определения различных характеристик. Число и вид испытаний обусловлен свойствами материала, назначением конструкции и условиями ее работы. Чаще всего признаком плохой свариваемости является наличие в сварном соединении отдельных дефектов. Дефектом является существенная разница свойств основного металла сварного шва и зоны термического влияния. При сварке заготовок из углеродистых и легированных сталей твердость зоны термического влияния возрастает, в то время как пластические свойства значительно снижаются, что повышает хрупкость.

Свариваемость – свойство металла или сочетания металлов образовывать при установленной технологии сварки соединение, отвечающее требованиям, обусловленным конструкцией и эксплуатацией изделия.

Способность металлов и сплавов к обработке резанием.

Обработка резанием является одной из наиболее часто применяемых операций машиностроения, без которой не обходится изготовления ни одной детали. Способность металлов и сплавов к обработке резанием определяется химическим составом и видом термической обработки. Для обработки резанием наиболее часто применяют автоматные стали А12, А20, А40, имеющие повышенное содержание серы (от 0,08 до 0,3 %), фосфора (<=0,05 %) и марганца (от 0,7 до 1,0 %). Сталь 40Г содержит от 1,2 до 1,55 % Mn.

Фосфор, повышая твердость, прочность и охрупчивая сталь, способствует образованию ломкой стружки и получению высокого качества поверхности. Такие стали обладают большой анизотропией механических свойств, склонны к хрупкому разрушению, имеют пониженный предел выносливости. Поэтому сернистые автоматные стали применяют лишь для изготовления неответственных изделий – преимущественно нормалей или метизов.

1.2 Сплавы на основе черных металлов

Железоуглеродистые сплавы, в основном, классифицируют по содержанию углерода. По этому признаку их подразделяют на стали содержащие углерода менее 2,14 % и чугуны – углерода более 2,14 %.

1.2.1 Стали

Жесткие, прочные, стойкие к удару и нагреву детали изготавливают из конструкционной углеродистой или легированной стали. По назначению стали бывают конструкционные, инструментальные и специальные.

По качеству все стали подразделяют по содержанию серы и фосфора на обыкновенные (до 0,05 % S и 0,04 % Р), качественные (не более 0,04 % S и 0,035 % Р), высококачественные (не более 0,025 % S и 0,025 % Р) и особовысококачественные (не более 0,015 % S и 0,025 % Р).

На качество и свойства стали существенное влияние оказывают постоянные примеси, которые бывают постоянные, скрытые и случайные.

Постоянные примеси – Mn (от 0,3 до 0,7 %), Si (от 0,2 до 0,4 %), S и P (до 0,03 %);

Скрытые – O2, H2, N.

Случайные – Ni, Cr (от месторождения).

Углерод – его увеличением повышается твердость и прочность, уменьшается пластичность и вязкость.

Mn и Si – полезные примеси и их добавляют при раскисании.

Сера и фосфор – повышают хрупкость, причем сера повышает хрупкость при нагреве (красноломкость), а фосфор вызывает хладоломкость.

Газы (O2, N, H2) – разрыхляют металл, снижают его деформируемость, повышают хрупкость, металл крошится.

Углеродистые стали (состав в масс. процентах: от 0,12 до 0,6 С; от 0,2 до 0,5 Si; от 0,5 до 0,8 Мп; до 0,05 Р и до 0,05 S) имеют более высокие механические свойства, чем серый и ковкий чугуны. Их применяют для изготовления различных цилиндров, станин прокатных станов, зубчатых колес и других изделий. Качественная углеродистая конструкционная сталь обозначается сотыми долями процента углерода, например, сталь 35 содержит примерно 0,35 % углерода.

Легированные стали отличаются от углеродистых составом легирующих, т. е. дополнительно добавленных элементов (хром, никель, молибден, титан и др.) или повышенным содержанием марганца и кремния. Легирующие элементы придают стали высокую коррозионную стойкость, жаропрочность и другие специальные свойства. Легированная конструкционная сталь обозначается буквенно-цифровым индексом, например, сталь марки 45ХН2А. Цифра 45 – сотые доли процента углерода, буквы – обозначение легирующих элементов Х – хром, Н – никель, цифра 2-процентное содержание элемента в легированной стали, никеля – примерно 2 %, отсутствие цифры после буквы указывает, что количество легирующего элемента (хрома) ~1 %, обозначение других легирующих элементов Г – марганец, С – кремний, В – вольфрам, Т – титан, Ю – алюминий, Д – медь, М – молибден, Ф – ванадий, Б – ниобий, Р – бор, К – кобальт. Значение буквы А в маркировке стали зависит от места ее написания. В начале шифра она обозначает автоматную сталь, в середине шифра – количество азота в сплаве, в конце шифра – высококачественную сталь. Из легированных сталей получают турбинные лопатки, коллекторы выхлопных систем, различную арматуру и прочие подобные детали.

Инструментальные стали бывают углеродистые, обозначают от У 7 до У 13 (цифры означают десятые доли процента углерода в сплаве) и легированные, например, 9ХС, ШХ9, ШХ15 и стали карбидного класса Х12М, Х6ВФ, в том числе и быстрорежущие (рапид) Р6М5 и Р18 (цифра после Р – процентное содержание вольфрама в сплаве).


Страницы книги >> 1 2 3 4 5 | Следующая
  • 0 Оценок: 0

Правообладателям!

Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.

Читателям!

Оплатили, но не знаете что делать дальше?


Популярные книги за неделю


Рекомендации