Автор книги: Адам Роджерс
Жанр: Кулинария, Дом и Семья
Возрастные ограничения: +18
сообщить о неприемлемом содержимом
Текущая страница: 7 (всего у книги 21 страниц) [доступный отрывок для чтения: 7 страниц]
Из-за слишком большого количества переменных последовательность аминокислот этого предкового фермента нельзя было определить очень точно. Группа Беннера получила двенадцать возможных вариантов АДГА. Они экспериментировали со всеми этими версиями, добавляя в среду то этанол, то уксусный альдегид, – чтобы посмотреть, как дрожжи могут менять концентрацию этих веществ.
Оказалось, что АДГА гораздо лучше справлялся с превращением уксусного альдегида в этанол, чем этанола в уксусный альдегид.
Так что же – проблема решена? Древние дрожжи производили этанол, чтобы разрушить свои ферменты, а не для того, чтобы после подкрепляться алкоголем для поднятия духа.
К сожалению, все не так просто, говорит Беннер. «Дрожжи становятся устойчивыми к этанолу, – отмечает он. – Так же как и лакто-бактерии, мы с вами приобрели устойчивость к молочной кислоте. Это наш эволюционный выбор, связанный с особенностями окружающей нас среды». У дрожжей нет системы циркуляции, которая бы выводила из организма отходы – как это делает кровеносная система с нашими продуктами метаболизма, в том числе с молочной кислотой. В отличие от нас этим маленьким существам приходится полагаться на окружающую среду. Ученые предполагают, что до появления растений с цветами и плодами дрожжи жили в древесных экссудатах (соках), контактируя с воздухом. Что хорошо в этаноле – так это его летучесть, то есть способность легко испаряться (вспомним, почему Патрик Макговерн не мог найти следов этанола в археологических артефактах). Дрожжи не пытались обеззаразить свое окружение. Они всего лишь стремились избавиться от мусора в доме, и этанол оказался для этого самым эффективным инструментом.
Затем появились покрытосеменные растения. «И теперь дрожжи живут в мякоти фруктов, – говорит Беннер. – Но они стали устойчивы к этанолу. Так что дрожжи за последнее время резко эволюционировали. Мы изучаем то, что, по прошествии всего этого времени, мы считаем дрожжами, приспособившимися к жизни во фруктах. Но это неправильно».
Почему же дрожжи запускают брожение? Потому что с эволюционной точки зрения для них это оказалось самым эффективным способом выжить на меняющейся планете. «И, конечно, вы скажете – да и бог с ними, зато у меня есть спирт, и я не дам ему пропасть. И вы будете пить этот спирт, – говорит Беннер. – Но это так, просто истории».
Все эти штаммы дрожжей из паба White Labs производят этанол – не говоря уже о штаммах, при помощи которых производят вино, саке и дистилляты, а также о диких штаммах. При этом у продукта из каждого штамма получается свой особый вкус, который зависит от стартовых условий. «Пино-гриджио» по вкусу отличается от «Пино-нуар». Пиво по вкусу отличается от вина. Так что очевидно, что брожение – это не только превращение глюкозы в этанол. На пути превращения молекул глюкозы в молекулы алкоголя есть множество объездных дорог и съездов. Да, в результате метаболизма вырабатывается энергия, но помимо этого образуется питательная среда для формирования белков – строительного материала для клеточных оболочек и мембран, а также создаются условия для постоянного воспроизводства.
Первым это заметил Пастер – именно он понял, что в образуемом брожением веществе содержится не только этанол. Он обнаружил глицерин, масляную и янтарную кислоты, а также целлюлозу. Будучи весьма дотошным экспериментатором, он понял, что результат брожения зависит от того, какие дрожжи он использовал и как именно. Это было еще одним важным доказательством того, что живые клетки преобразуют одни органические вещества в совершенно другие[200]200
David Dressler and Huntington Porter. «Discovering Enzymes» (New York: Scientific American Library, 1991): 34–35.
[Закрыть], [201]201
Gerald L. Geison. «The Private Science of Louis Pasteur» (Princeton: Princeton University Press, 1995): 107.
[Закрыть].
Некоторые из различий возникают не из-за дрожжей. Например, свой цвет вино приобретает благодаря пигментам[202]202
Hornsey, Chemistry and Biology of Wine, 79.
[Закрыть], содержащимся в кожице винограда. А цвет пива в наибольшей степени зависит от молекул, называемых меланоидинами (тот же корень, что и у слова «меланин» – пигмент кожи). Температура в печи при обжаривании солода запускает в сахарах и аминокислотах ячменя реакцию Майяра – так же, как при зарумянивании выпечки в духовке. Поскольку ячмень для эля принято обжаривать более долгое время, эли обычно имеют более темный цвет по сравнению с лагерами[203]203
Bamforth, Scientific Principles, 17.
[Закрыть].
Уроженец Южной Африки Айзек Преториус является вице-президентом по исследованиям и инновациям в Университете Южной Австралии, а раньше он возглавлял Австралийский институт исследования вина. Он работает над улучшением дрожжей для производства вина. Его исследовательская команда, состоящая из виноделов, микробиологов и генетиков, занимается всем – от опытов с виноградом на экспериментальной винодельне до поиска новых диких видов дрожжей. «На коммерческом рынке используется около 230 штаммов, и многие из них не сильно отличаются друг от друга, – говорит Преториус. – Но должен сказать, что по меньшей мере 150 из них действительно различаются. Они все относятся к виду Saccharomyces cerevisiae. Выглядят они почти одинаково, и большинство из них вырабатывает одинаковое количество этанола. Но вкусовые профили получаемых продуктов действительно очень разные»[204]204
Isak S. Pretorius, Christopher D. Curtin, and Paul J. Chambers. «The Winemaker’s Bug: From Ancient Wisdom to Opening New Vistas with Frontier Yeast Science». Bioengineered Bugs 3, no. 3 (2012): 150.
[Закрыть].
Вот пример: исследователи Стэнфордского университета и винодельни EJ Gallo, в которой ведутся активные лабораторные изыскания, взяли сок винограда сорта шардоне и подвергли его брожению при помощи 69 различных штаммов винодельческих дрожжей, купленных у различных поставщиков. Исследователи измерили количество выделенного этанола, а также 29 других продуктов обмена веществ – различных спиртов, сложных эфиров, уксусного альдегида, диоксида серы, глицерина и так далее. Если бы они использовали разные сорта винограда, можно было бы ожидать некоторых различий в результатах брожения. Например, разные аминокислоты в винограде привели бы к выработке разных спиртов. Но и в случае одинакового для всех виноградного сока исследователи зафиксировали не одну тысячу вариаций выработки дрожжами определенных веществ, и при этом скорость преобразования веществ тоже была различной для разных сочетаний штаммов[205]205
Chandra L. Richter et al. «Comparative Metabolic Footprinting of a Large Number of Commercial Wine Yeast Strains in Chardonnay Fermentations». FEMS Yeast Research 13, no. 4 (June 2013): 394–410.
[Закрыть].
Сам Преториус исследует виноград сорта совиньон-блан. Этот сорт отличается высоким содержанием веществ под названием тиолы. Это аналоги спиртов, отличительной чертой которых является содержание в них серы. Они соединены с аминокислотой под названием цистеин, которая лишает их летучести, и поэтому мы не можем ощущать их запах и вкус. «Но дрожжи способны отделять небольшое количество тиолов от цистеина, – говорит Преториус. – Благодаря этому совиньон-блан имеет свой типичный привкус „маракуйи“ или „тропических фруктов“. Эти вещества содержатся в винограде, но именно дрожжи в ходе своего метаболизма делают их летучими. То же самое происходит с пахнущими розой или фиалкой терпенами винограда сорта гевюрцтраминер. В соке они содержатся в связанном, не летучем виде. А дрожжи их высвобождают».
Вооруженный этими знаниями, Преториус работает над тем, чтобы усовершенствовать дрожжи и заставить их создавать определенные эффекты. В лаборатории Преториуса выделили из бактерии ген фермента, который разрушает связь между тиолами и цистеином, и привили этот ген винодельческим дрожжам. Затем Преториус взял сок винограда совиньон-блан из самых жарких регионов Австралии – там этот сорт дает довольно нейтральный вкус, потому что для правильного вызревания ему нужен более прохладный климат. Генномодифицированные дрожжи Преториуса преобразовали этот сок в вино, в котором уровень тиолов оказался в 20 раз выше, чем в вине, получаемом от обычных дрожжей. «Когда мы в моем кабинете переливали это вино из лабораторной колбы, через несколько секунд его запах почувствовали люди, находившиеся в зоне ресепшн в 50 метрах от нас. Это, конечно же, было чересчур, но суть была понятна», – говорит он.
Внедрение конкретного гена – или поиск штаммов, у которых этот ген уже есть (в конце концов Преториусу и его коллегам пришлось так и сделать – слишком велико было международное сопротивление, с которым они столкнулись при попытке продать свои генномодифицированные винодельческие дрожжи), – по сути, можно сравнить с печатаньем на клавиатуре двумя пальцами. А исследователям дрожжей хочется печать всеми пальцами – они стремятся понять, как каждый из генов связан с запахом или вкусом. Эта работа только началась. Хотя дрожжи и стали первым организмом с секвенированным геномом, генетики расшифровали лишь лабораторный штамм; при этом полученная последовательность недостаточно подробна и не позволяет выделить вкусы. Но начало уже положено: в White Labs работают с аппаратом для секвенирования Illumina – с его помощью они расшифровывают геномы многих своих штаммов. Исследователи надеются, что это лишь начало программы по определению роли каждого из генов в процессе и в получении результатов ферментации.
При изготовлении некоторых алкогольных напитков брожение происходит не только за счет дрожжей. Им помогают другие остающиеся в тени микроорганизмы, и даже профессиональным исследователям веселящей жидкости не всегда удается понять, как это происходит.
В Америке при производстве виски нередко в питательную среду для дрожжей подмешивается некоторое количество отфильтрованной жидкости, оставшейся от прошлой партии перебродившей зерновой массы – барды. Весь процесс из-за кисловатого вкуса барды называется «кислым суслом»[206]206
Кислое сусло (англ. sour mash). В российской литературе эта технология называется также «кислым затором». – Прим. пер.
[Закрыть] – именно это выражение можно найти на бутылках с бурбоном. Такая технология брожения появилась в 1800-х годах – возможно, в попытке сохранить дрожжевой штамм неизменным[207]207
Clay Risen. «Whiskey Myth No. 2». Mash Notes, last modified July 27, 2012, accessed September 7, 2013; http://clayrisen.com/?p=126
[Закрыть]. Но с перебродившей бардой можно делать не только это.
Казалось бы, изготовление рома должно быть более простым. Меласса или сок сахарного тростника должны содержать огромное количество сахара, которым могут питаться дрожжи. Но оказывается, что это скорее проблема, чем возможность. Меласса вообще иногда содержит слишком мало пригодных для брожения сахаров. Что касается тростникового сока, то его можно сразу отправлять в бродильную емкость, однако нужно торопиться. Теплый и влажный тропический климат, в условиях которого и производится лучший ром, предоставляет идеальные условия для размножения микроорганизмов, и сок сахарного тростника немедленно подвергается их атаке. Так что перегонный цех нужно строить прямо на тростниковой плантации[208]208
Robert Piggot. «Rum: Fermentation and Distillation». In: The Alcohol Textbook, 5th ed. W. M. Ingeldew, D. R. Kelsall, G. D. Austin, C. Kluhspies, eds. (Nottingham: Nottingham University Press, 2009): 476.
[Закрыть].
Однако производители рома научились извлекать пользу из агрессивной местной микрофлоры. Ямайка славится своими плотными темными ромами с большим количеством эфиров – пахнущих фруктами веществ, образуемых при соединении спиртов с сахарами. Эти ромы производятся при помощи местных бактерий, а не дрожжей. Иногда при производстве рома то самое кислое сусло заражают бактериями и добавляют к следующей партии.
Еще более отважные производители рома используют технологию, которая называется dunder pit – это яма в земле, в которую сбрасываются оставшиеся после дистилляции отходы, иногда немного фруктов или патоки и, при необходимости, щелочной раствор – чтобы понизить кислотность среды. Странная смесь хранится в яме годами. А потом эта навозная жижа – ее так и называют – добавляется в брагу перед дистилляцией. Мысль о такой яме и ее содержимом вызывает отвращение, но, вероятно, опасные микроорганизмы не выживают при высоких температурах внутри перегонного аппарата. При такой технологии при бактериальном брожении образуются особые кислоты, которые смешиваются с брагой и при перегонке превращаются в сложные эфиры, которых иным способом не получить.
В конце 1930-х и начале 1940-х годов перед исследователем рома по имени Рафаэль Арройо была поставлена задача разработать стандарты производства этого напитка: правительство Пуэрто-Рико, обеспокоенное растущей конкуренцией со стороны других производящих ром стран, построило для Арройо лабораторию и предоставило полную свободу действий[209]209
Rafael Arroyo. «Studies on Rum». Research Bulletin no. 5, University of Puerto Rico Agricultural Experimental Station, Rio Piedras (December 1945): 3.
[Закрыть]. Один из интересовавших его вопросов состоял в том, какие бактерии нужны для производства рома – и нужны ли они вообще.
Готовя партию за партией, Арройо с коллегами меняли время брожения и состав бактериальной смеси. В конце концов, как сказал Арройо, выяснилось, что результат зависит от того, что вы хотите сделать. «Легкому рому с тонкими ароматами, который нынче в моде и который лучше пить чистым, бактерии только вредят», – пишет он. Именно такой ром делали Бакарди, его обычно мешали с кока-колой. «Некоторые из наших лучших ромов производятся только при помощи тщательно отобранных дрожжей, по технологии брожения на чистых культурах. Однако стоит признать, что более глубокий и яркий вкус и аромат получается, когда в брожении участвуют еще и бактерии и другие микроорганизмы».
Но Арройо не высказывался в пользу технологии выгребной ямы. Он хотел знать, какие именно бактерии и какие штаммы дают наилучший результат. Не следует использовать дикие штаммы.
От микроорганизмов требуется, чтобы они потребляли мало сахара, выделяли нужные кислоты в правильных количествах и сами не производили алкоголь.
Испробовав несколько вариантов, Арройо пришел к выводу, что наиболее интересные кислоты вырабатывает бактерия Clostridium saccharbutyricum. А еще ему удалось выделить плесень, которая растет на кофейных деревьях[210]210
Ibid., 94.
[Закрыть]. Арройо понравилась эта плесень – по его словам, ром благодаря ей приобретал яблочный запах.
Арройо проводил свои исследования семьдесят пять лет назад, и до сих пор его работа остается стандартом для производства рома и изучения связанных с ним микроорганизмов. Если подумать, это довольно странно. Насколько мне известно, никто не пытался разобраться в микрофлоре, которая царит в ямах dunder pit, или поискать другие микроорганизмы – помимо рекомендованных Арройо. Ром – весьма недооцененный напиток, особенно те его странные темные разновидности с необычными эфирами. Но микроорганизмы, благодаря которым происходит брожение при его изготовлении, волнуют только его производителей – наука этим не интересуется.
В сусле «Напа Шардоне» можно найти семейства Firmicutes и Eu-rotiomycetes (последнее включает в себя грибы Aspergillus и Penicillium). В то же время в главном винодельческом районе на побережье Калифорнии культуры совсем другие: Bacteroides, Actinobacteria, Saccha-romycetes и Erysiphe necator. Вот так и получается, что у каждого сорта винограда есть собственные, отличные от других «поселенцы», отвечающие в конечном итоге за вкус и аромат продукта. Исследователи, которые занимались всем этим, называют такой огород «микробным терруаром».
Этанол и другие продукты метаболизма микроорганизмов – это не полный перечень составляющих продукта брожения. Кроме них, при брожении выделяется углекислый газ. То есть пузырьки. А пузырьки все меняют.
Пекари ценят дрожжи именно за их способность вырабатывать углекислый газ, который формирует в тесте маленькие полости, что делает хлеб легким и вкусным. Этанол испаряется, да пекарям он и не нужен. Все, кто использует брожение, – не только производители алкоголя, но и те, кто готовит квашеные овощи при помощи молочнокислых бактерий, – никак не контролируют выработку CO2. Вот почему, открывая банку с корейской маринованной капустой кимчи, стоит соблюдать осторожность: газ может так быстро выходить из раствора, что унесет с собой часть жидкости, и тогда вы окажетесь в луже ароматного острого рассола.
Углекислый газ имеет собственный вкус, который влияет на общий вкус напитка[211]211
Jayaram Chandrashekar et al. «The Taste of Carbonation». Science 326, no. 5951 (October 16, 2009): 443.
[Закрыть]. (При высоком парциальном давлении – то есть когда количество CO2 превышает количество других газов – углекислый газ воздействует на болевые рецепторы организма – ноцицепторы. Почти на каждом алкогольном производстве, которое я посещал, со мной пытались проделать один и тот же фокус: заставить заглянуть в бродильный чан во время финальной стадии брожения, когда свободное пространство над жидкостью целиком заполнено CO2. Если вы вдохнете этот газ, то боль будет такая, будто кто-то засунул вам в нос острую спицу. Если газа слишком много – можно вырубиться и свалиться прямо в чан с брагой. Умора!)
Во время брожения газ действительно стремится вырваться из жидкости. Некоторые производители улавливают его, а потом впрыскивают обратно в пиво[212]212
White, Yeast, 115.
[Закрыть]. Классическая же технология предписывает добавить в конечный продукт немного дрожжей и запечатать емкость. При вторичном брожении – «дображивании» – образуется CO2 и удаляется свободный кислород, который может придать пиву странный вкус, но при этом дрожжи могут привести к помутнению пива, а образующаяся взвесь часто воспринимается как грязь.
В вине, медовухе, саке и дистиллятах углекислый газ может отсутствовать, а может и сохраняться, и тогда напитки получаются слегка газированными. Но для двух конкретных напитков – игристого вина и пива – наличие CO2 является непременным атрибутом, важной составляющей их вкуса. При этом данные два вида алкоголя радикально отличаются друг от друга с точки зрения своих взаимоотношений с пузырьками.
В бутылке углекислый газ находится под давлением, которое удерживается крышкой или пробкой[213]213
Растворимость газов в жидкости подчиняется закону Генри. В общем случае она тем выше, чем выше давление и ниже температура. – Прим. ред.
[Закрыть]. При высоком давлении он растворяется в жидкости, и никаких пузырьков мы не видим. Но если раскупорить бутылку и тем самым снизить давление, CO2 начнет выходить из раствора, образуя пузырьки. В игристых винах типа шампанского или просекко маленькие пузырьки выносят с собой на поверхность жирные кислоты и другие ароматные вещества. Добираясь до поверхности, они лопаются – на верхушке пузырька образуется отверстие, его края расширяются со скоростью около 35 километров в час, образуя кольцо высокого давления, которое врезается в область низкого давления на дне пузырька, впрыскивая коническую струю шампанского в свободное пространство над жидкостью[214]214
Gérard Liger-Belair. «Uncorked: The Science of Champagne» (Princeton: Princeton University Press. 2004): 88–96.
[Закрыть], тем самым усиливая издаваемый напитком аромат (или хотя бы ускоряя его появление). А еще эти пузырьки вызывают щекотание в носу.
В бутылке пива содержание CO2 составляет 5 граммов на литр жидкости. Когда вы открываете бутылку пива или шампанского, раствор CO2 внутри нее становится перенасыщенным – то есть давление растворенного газа оказывается выше внешнего атмосферного давления. Поэтому CО2 должен выйти наружу. Он это делает при помощи пузырьков. Так, давление в бутылке шампанского в шесть раз выше атмосферного давления на уровне моря[215]215
Liger-Belair, Uncorked, 37.
[Закрыть] – этого достаточно, чтобы пробка из шампанского вылетала со скоростью около 50 километров в час[216]216
Gérard Liger-Belair, Guillaume Polidori, and Philippe Jeandet. «Recent Advances in the Science of Champagne Bubbles». Chemical Society Reviews 37, no. 11 (November 2008): 2493.
[Закрыть]. Впрочем, позволить пробке вылететь при открытии бутылки – не слишком изысканно и довольно опасно.
В идеальном случае лучше насладиться пузырьками в своем бокале, чем позволить им выплеснуться через горлышко бутылки. Чтобы это произошло, молекулы газа должны отыскать друг друга в жидкости и объединиться. Проблема в том, что молекулы жидкости держатся вместе[217]217
Liger-Belair, Uncorked, 40.
[Закрыть]. Молекулы CO2 подобны влюбленным героям романтических комедий, которые за десять минут до конца фильма продираются сквозь толпу в аэропорту, а молекулы жидкости – это стоящие бок о бок люди в этой толпе.
Конечно, они найдут друг друга – мы же все смотрели такие фильмы. Но молекулы CO2 несколько умнее героев романтических комедий – у них есть заранее условленное место встречи: там, где есть отверстие определенного размера. В случае шампанского полости образуются на стенках бокала – размер этих полостей составляет 0,2 микрона и больше. Процесс формирования пузырьков называется зарождением, и в 2002 году физик Жерар Лигр-Белэйр из Университета Реймса во Франции решил пронаблюдать, как это происходит. Он установил камеру, способную различать объекты размером с микрометр – одну миллионную метра – и снимать со скоростью 3000 кадров в секунду[218]218
Ibid., 41–42.
[Закрыть], и направил ее на бокал шампанского.
Считается, что пузырьки образуются в местах шероховатостей на стекле[219]219
Ibid.
[Закрыть]. Некоторые производители даже наносят при помощи лазера на дно своих бокалов крошечные риски для зарождения пузырьков, чтобы добиться приятного глазу и гарантированного их образования[220]220
Bamforth, Foam, 9.
[Закрыть]. Но Лигр-Белэйр обнаружил кое-что другое, а именно – целлюлозу. Остающиеся после ручной протирки посуды кусочки ткани или бумаги – такие крошечные, что невооруженным глазом их не увидеть[221]221
Liger-Belair, Uncorked, 44.
[Закрыть]. Внутри этих волокон целлюлозы достаточно пространства для образования пузырьков, они фактически оказываются «пузырьковыми пушками»[222]222
Ibid., 51.
[Закрыть], выпуская в сторону поверхности по 30 штук в секунду. Кстати, из шампанского, поданного в низких широких фужерах-купе, углекислый газ выходит быстрее, чем из бокалов формы флюте, так что, если вы предпочитаете, чтобы ваше игристое продолжало «играть», – используйте флюте. В игристых винах эти пузырьки ведут себя так же, как в газировке: они ударяются о поверхность и лопаются[223]223
Liger-Belair, Chemical fingerprints, 16545.
[Закрыть].
А вот в пиве пузырьки сохраняются. Они не улетучиваются, а образуют пенную шапку на поверхности. Это одна из важных особенностей пива – согласно опросам, среди ценителей пива распространено мнение, что пиво, образующее плотную пену и оставляющее «кружева» (характерный след на стенках бокала), имеет более приятный и выраженный вкус, чем пиво, которое такими способностями не обладает[224]224
Bamforth, Foam, 3.
[Закрыть].
Чарли Бэмфорт – лучший эксперт по пузырькам. Чарли работает профессором в Калифорнийском университете в Дейвисе, где изучает процессы пивоварения. Финансирует эти исследования пивоварня Anheuser-Busch. Возможно, в научном сообществе Чарли – единственный исследователь этой темы. Пить пиво с Чарли Бэмфортом – все равно что слушать музыку с Дэвидом Боуи. Когда мы с ним сидели за столиком почти пустого паба в нескольких минутах от университетской лаборатории Бэмфорта, я спросил его, способен ли он на данном этапе своей карьеры просто сидеть и наслаждаться холодным пивом?
«Я критичен, – отвечает Бэмфорт и слегка кивает, как бы подтверждая наличие небольшого дефекта характера. – Думаю, что я знаю, что искать и что должно быть в этом пиве, и я полон предубеждений – я ведь работаю в пивоваренной отрасли». Он признает, что у него есть личные предпочтения. Импортное пиво в большинстве случаев доходит до американского потребителя в окисленном или испорченном виде. Но людям оно все равно нравится. По большей части в этом нет ничего страшного.
Но неправильная пенная шапка – это действительно скверно. «Посмотрите-ка на это пиво, – говорит Бэмфорт, указывая на свой полупустой бокал. – Нет, вы только посмотрите. Жалкое зрелище. Подача полностью провалена». Я смотрю на его стакан и вдруг начинаю понимать его критику. На пиве вообще не осталось пены – лишь тонкое кольцо вдоль стенки бокала. Никаких «кружев» нет и в помине. Это пиво – просто недоразумение. Как это я не заметил раньше? «У нас тут примерно семидесяти процентам людей на это начхать, – говорит Бэмфорт. – А если бы такое подали в Германии или Бельгии – клиент потребовал бы замены. А я вот этого не делаю, правда ведь?»
Да, он не требует замены. Но я вижу, что он всерьез рассматривает такую возможность.
Как только пиво попадает в бокал, оно начинает пузыриться. Когда в бокале уже есть хоть немного жидкости, формируется пенная шапка. А через несколько минут пена оседает. Все это кажется довольно простым, но эти надувание и сдувание – на самом деле макроскопическое проявление происходящей на микроскопическом уровне суровой битвы. Физика стремится полопать все эти пузырьки, а химия хочет удержать их вместе.
Когда пузырьки в стакане двигаются вверх, они притягивают молекулы гликопротеинов, состоящих из белков и сахаров. В 1970-х годах Бэмфорт вместе с коллегой обнаружили[225]225
Ibid., 16.
[Закрыть], что ось молекулы гликопротеина направлена одним концом в сторону газа внутри пузырька, а другим – в сторону жидкости[226]226
James J. Hackbarth. «Multivariate Analyses of Beer Foam Stand». Journal of the Institute of Brewing 112, no. 1 (2006): 17.
[Закрыть]. Вещества с такими молекулами называются поверхностно активными – ПАВ. Они содержатся и в синтетических моющих средствах – например, при стирке они попадают между водой и пятнами на ткани, вытягивая из волокон грязь. В пиве ПАВ образуют вокруг пузырька оболочку, которая не дает ему лопаться и заставляет приклеиваться к соседним пузырькам. Поэтому-то пивная пена такая устойчивая, а пузырьки шампанского пены не образуют вовсе. Пена – это результат совместных усилий всех пивных пузырьков[227]227
Bamforth, Foam, 10.
[Закрыть].
Пузырьки поднимают жидкость – собственно пиво – к поверхности и превращают в пену, но сила тяжести тянет это пиво обратно вниз, внутрь стакана, – большая его часть опускается в первую минуту после образования пены[228]228
Hackbarth, Multivariate analyses, 18.
[Закрыть]. Пузырьки начинают сливаться друг с другом, увеличиваются в размере и лопаются. Вот почему пенная шапка вскоре опадает.
Когда в хороших ирландских пабах вам подают Guinness, бармены прибегают к такому фокусу: они наливают из краника почти полную пинту и отставляют на три минуты. Затем они доливают бокал и только тогда подают. Это называется «двойной разлив». Доливаемое пиво просачивается между пузырьками первого слоя пены, образуемая им более влажная пена остается внизу, толкая пенную шапку первого разлива вверх, где она служит изоляционным слоем между новой пеной и воздухом и замедляет выделение CO2. В результате верхний слой становится таким плотным, что бармен может для вас вырезать на нем изображение трилистника[229]229
Трилистник – графическое изображение тройного листа клевера, символ Ирландии. – Прим. пер.
[Закрыть].
Чем холоднее пиво – тем дольше держится шапка. Если наливать пиво «с высоты» – оно успеет набрать из атмосферы больше азота, и это тоже делает пену более устойчивой. Эти прозаичные решения способны разрешить кризис пивной пены. Но, по-видимому, Бэмфорта тревожит такая простота. Можно подумать, что любой может сделать все как надо. Но это не так. «Попробую-ка разобраться с чертовыми пузырьками», – говорит он, решившись наконец-то прикончить свое пиво. Затем осматривает бокал, на стенках которого нет ничего похожего на «кружева». «Да они его просто неправильно помыли, – говорит он удрученно. – А может, они моют стаканы вместе с тарелками. Не знаю, что они там делают, но они это делают неправильно, потому что я-то знаю, что у этого пива был огромный пенный потенциал. Девяносто пять, да все девяносто восемь процентов проблем с пеной не имеют никакого отношения к пиву. Все это из-за того, как это пиво, черт побери, наливают».
Патрик Макговерн осторожно возвращает глиняный артефакт из Цзяху в пластиковый пакет и кладет обратно на полку, и мы решаем, что самое время пообедать и выпить пива. Выйдя из музея, мы идем к ресторану в паре кварталов от него. Макговерн сказал, что здесь найдется бутылка-другая Midas Touch – это пиво из дорогой его сердцу пивоварни Dogfish Head в Делавэре, и пиво это сварено с использованием компонентов, содержащихся в обнаруженном Макговерном в одном из горшков из древнего захоронения осадка возрастом в 2700 лет[230]230
Dogfish Head Brewing. «Midas Touch», accessed September 8, 2013; http://www.dogfish.com/brews-spirits/the-brews/year-round-brews/midas-touch.htm
[Закрыть]. Dogfish Head делает несколько сортов на основе ингредиентов, найденных Макговерном во время его исследований. Для одного из сортов, который готовится по египетскому рецепту, пивовары даже раздобыли дикие дрожжи с египетской финиковой плантации[231]231
Abigail Tucker. «The Beer Archaeologist». Smithsonian, July-August 2011; http://www.smithsonianmag.com/history-archaeology/The-Beer-Archaeologist.html?c=y&story=fullstory
[Закрыть].
Правда, в ресторане не оказывается пива из Dogfish, к которому Макговерн приложил руку. И в соседнем ресторане тоже. С перекрестка я звоню в пару других мест, где, по мнению Макговерна, оно могло быть, в том числе в одно модное местечко, расположенное на пришвартованной у берега реки Скулкилл яхте. Там оно тоже закончилось. В конце концов мы загружаемся в такси, чтобы отправиться в абсолютно надежное место. «Пересечение шестнадцатой и Спрюс, – говорит Макговерн таксисту. – „Кафе монаха“».
«Кафе монаха» оказывается длинным и узким бельгийским пабом, расположенным в одном из районов Филадельфии недалеко от центра. Макговерн уверенно пробирается по плотно уставленному столиками помещению в сторону столовой, расположенной позади барной стойки. Бармен приветливо машет Макговерну. «Здесь я в первый раз попробовал пиво, которое напомнило мне вино, – говорит Макговерн, усаживаясь за стол. – Это был выдержанный Chimay – классический бельгийский эль».
Здесь тоже нет пива Midas Touch (да что же это!), но бармен говорит, что есть другое пиво из Dogfish Head – называется Theobroma. Это тоже пойдет – Макговерн заказывает нам бутылку. «Это пиво готовится на основе ингредиентов, которые мы нашли во время изучения древнего шоколада из Гондураса, – объясняет он, пока на непроглядно темном пиве оседает пена. – Там использовали плоды шоколадного дерева. Бобы находятся внутри мякоти, которая содержит 15 процентов сахара, и, чтобы добраться до бобов, нужно было дождаться, пока мякоть перебродит. В результате получался алкогольный напиток крепостью в 7–8 градусов. Мы думаем, что, может быть, поэтому-то люди и решили одомашнивать шоколад – благодаря этому элитному напитку».
Я пробую пиво – сначала вкус напоминает хороший шоколадный белковый крем. А потом вдруг мою глотку охватывает огонь. Макговерн делает большой глоток из своего стакана и говорит: «Там еще есть чили анчо».
Вот в чем дело: возможно, индейцы майя, которые готовили шоколадный напиток – типа того, на основе которого Макговерн смоделировал сорт Theobroma, – пили его после того, как алкоголь выветривался. Конечно, история показывает, что люди никогда не позволяют алкоголю выветриваться, но все же такая вероятность существует. «Проблема с такими воссозданными напитками в том, что мы не можем узнать, насколько они близки к оригиналу, – объясняет Макговерн, налегая на суп из моллюсков. – Мы просто пытаемся сделать что-то такое, что будет приятно пить. Мне всегда хотелось положить сюда больше шоколада, но Сэм считает, что он должен едва чувствоваться». Речь о Сэме Каладжоне, основателе Dogfish Head. Еще сильнее Макговерн недоволен тем, что, по законам Соединенных Штатов, любое пиво здесь должно содержать ячмень. Это относится и к пиву «Цзяху», которое готовится на базе китайской находки, а ведь в древнем Китае не было ячменя. Тем не менее у Макговерна установилось отличное сотрудничество с Dogfish Head. Такие сорта, как навеянный Египтом Ta Henket (а также Chateau Jiahu и Theobroma), получают хорошие отзывы и хорошо укладываются в общую концепцию, суть которой можно описать словом «экспериментальный» – или «чудной», в зависимости от точки зрения. В любом случае компромиссы между исторической достоверностью и чутьем Каладжона не противоречат исследовательскому методу Макговерна, который он называет «экспериментальной археологией»[232]232
Tucker, Beer Archaeologist.
[Закрыть]. Артефакты и осадки на дне древних сосудов способны много сообщить о ферментации. Возможно, это пиво не полностью совпадает с тем, что варили древние египтяне, индейцы майя или минойцы, но если уж Макговерну хочется побольше узнать о древнем пивоваре Цзяху, впервые склонившемся над горшком с забродившей жидкостью, – то ему в определенной степени приходится самому быть пивоваром.
Внимание! Это не конец книги.
Если начало книги вам понравилось, то полную версию можно приобрести у нашего партнёра - распространителя легального контента. Поддержите автора!Правообладателям!
Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.Читателям!
Оплатили, но не знаете что делать дальше?