Автор книги: Алекс Беллос
Жанр: Зарубежная образовательная литература, Наука и Образование
Возрастные ограничения: +12
сообщить о неприемлемом содержимом
Текущая страница: 7 (всего у книги 20 страниц) [доступный отрывок для чтения: 7 страниц]
Галилей и Кеплер изменили представление об ученых, превратившись из пассивных исследователей в героев-первооткрывателей. Имея перед собой единственную Вселенную, каждый из них хотел получить признание как человек, определивший ее строение. После Галилея многие ученые, в том числе Роберт Хук, Христиан Гюйгенс и Исаак Ньютон, использовали не поддающиеся расшифровке анаграммы, для того чтобы защитить свою интеллектуальную собственность. Так продолжалось до тех пор, пока публикация в журнале не стала в XVIII столетии стандартным способом объявить о последних научных достижениях.
Галилей принял теорию Коперника о том, что Земля вращается вокруг Солнца, но опровергал гипотезу Кеплера об эллиптической форме орбит планет[68]68
David Wootton, Galileo, Watcher of the Skies, Yale University Press, 2010.
[Закрыть]. Несмотря на это, Галилей добился серьезных успехов в изучении движения сферических объектов другого типа. Летом 1592 года в качестве молодого профессора математики он посетил своего друга и покровителя, маркиза Гвидобальдо дель Монте в его замке в Урбино. Маркиз был назначен генеральным инспектором укреплений Тосканского герцогства, а это означало, что для него особый интерес представляла траектория движения пушечных ядер. Они летят по прямой линии, а затем падают вниз, как предполагала традиционная аристотелевская механика, или двигаются по какой-то кривой, прежде чем долетят до цели?
Для того чтобы выяснить это, друзья провели эксперимент, который оказался настолько простым, что трудно было поверить, как никто не додумался до этого раньше. Они взяли два небольших металлических шара, окунули их в чернила и запустили по диагонали по наклонной плоскости. След, оставленный каждым из шаров, представлял собой симметричную дугу. Галилей видел, что шары поднимаются вверх точно так же, как и опускаются вниз: траектория движения вверх представляет собой зеркальное отображение траектории падения. Эта симметрия навела Галилея на мысль о том, что движение можно разделить на горизонтальные и вертикальные элементы. В свободном полете характер движения объекта по горизонтали отличается от характера вертикального движения. Впоследствии Галилей провел и другие эксперименты с шарами, покрытыми чернилами, продемонстрировав, что если тело брошено со стола горизонтально, то:
1) – горизонтальное смещение пропорционально затраченному времени. Так, если тело проходит 1 единицу расстояния за 1 секунду, оно пройдет 2 единицы за 2 секунды, 3 единицы за 3 секунды и т. д.;
2) – вертикальное смещение пропорционально квадрату затраченного времени. Так, если тело падает на 1 единицу расстояния за 1 секунду, оно упадет на 4 единицы за 2 секунды, на 9 единиц за 3 секунды и т. д.
На основании знаний о свойствах конических сечений, открытых Аполлонием, Галилей смог сделать вывод, что траектория движения шара, запущенного со стола, представляет собой параболу, как показано на рисунке слева[69]69
Stillman Drake and James MacLachlan, Galileo’s Discovery of the Parabolic Trajectory, Scientific American, 1975.
[Закрыть]. Когда какое-либо тело, например баскетбольный мяч, запускается под углом (рисунок справа), оно тоже движется по параболе, но сначала мяч должен подняться по одной ее стороне, а затем опуститься по другой ее стороне. Такая парабола является траекторией движения объекта, свободно движущегося под воздействием силы тяжести. Это может быть струя фонтана, полет стрелы или движение мяча, брошенного в воздух. Писатель Томас Пинчон назвал свой выдающийся роман Gravity’s Rainbow{16}16
Пинчон Т. Радуга тяготения. М.: Эксмо, 2012.
[Закрыть] в соответствии с описанием оставленного немецкой ракетой «Фау-2» параболического следа, представляющего собой метафору расцвета и падения культур.
На протяжении почти двух тысяч лет конические сечения считались вершиной древнегреческой математической мысли, красивыми кривыми без какой-либо практической функции. Затем были открыты сразу две области их применения, которые, как оказалось, «скрывались» у всех на виду: планеты перемещаются по эллиптическим орбитам, а брошенные тела – по параболам. В конце XVII века Исаак Ньютон продемонстрировал, как оба эти следствия вытекают из его законов движения и всемирного тяготения. Галилей и Кеплер изучали одну и ту же проблему в разных масштабах. (Строго говоря, брошенный в воздух камень на самом деле начинает двигаться по эллиптической орбите вокруг Земли, и он бы завершил процесс, если бы масса Земли была сосредоточена в ее центре. Однако, с точки зрения наблюдателя, мы можем предположить, что брошенный камень движется по параболе.)
У парабол есть одно важное, удивительное свойство: все они имеют одну и ту же форму. Как параболу ни уменьшай или ни увеличивай, она останется подобной другим параболам, точно так же как окружность не меняет своей формы при изменении диаметра. Это вытекает из нашего первоначального определения конических сечений, согласно которому каждый угол наклона секущей плоскости образует уникальную фигуру. Окружность и парабола могут быть образованы только под одним углом: в случае окружности секущая поверхность должна быть параллельной основанию конуса, а в случае параболы – боковой поверхности конуса. Эллипс и гипербола могут быть получены под разными углами наклона секущей поверхности, а значит, они могут иметь разную форму.
Для описания параболы существуют два определения: 1) это геометрическое место точек, равноудаленных от заданной точки и заданной линии, известных как фокус и директриса (см. рисунок 1); и 2) это кривая, которая, будучи сделанной из отражающего материала, отражает все лучи света, исходящего из фокуса, параллельно друг другу (см. рисунок 2).
Геометрия параболы
Первое определение предоставляет оригамистам легкий способ построения параболы. Обозначьте точку F на листе бумаги, как продемонстрировано на первом рисунке ниже. Возьмите произвольную точку P на нижней кромке листа и сложите лист так, чтобы совместить эти точки друг с другом, как показано стрелкой. Полученную линию сгиба отметьте пунктиром. Повторите данную процедуру для множества точек, расположенных на нижней кромке листа бумаги. Полученная в итоге кривая – это парабола. (Подсказка: каждый сгиб образует линию, точки которой равноудалены от фокуса и произвольной точки.)
Построение параболы посредством сгибания листа бумаги
Второе определение объясняет, почему парабола – самая распространенная кривая в магазине осветительных приборов. Если лампочка установлена в фокусе параболического зеркала, лучи света отражаются параллельно. Вращение параболы вокруг ее центральной оси образует параболоид, в форме которого и сделаны отражающие зеркала в фонариках, прожекторах и автомобильных фарах.
Этот процесс работает и в обратном направлении. Параллельные лучи света, поступающие в параболоид, отражаются его поверхностью в фокус. Следовательно, если задача рефлектора – собрать в пучок солнечные лучи (которые можно считать параллельными, поскольку Солнце находится очень далеко), понадобится параболическая поверхность. Параболоиды широко применяются в технологии использования солнечной энергии. Например, отражатель Шеффлера, параболическая металлическая чаша, повсеместно используется в развивающихся странах для приготовления пищи. Он направлен на Солнце и медленно поворачивается вслед за его движением, для того чтобы поймать как можно больше солнечных лучей, отражая их в одну и ту же точку (фокус), в которой находится плита. Самая мощная солнечная печь представляет собой параболическое зеркало высотой 45 метров, расположенное во французских Пиренеях, неподалеку от Одейо. Из-за огромных размеров само зеркало не двигается, а принимает отраженный солнечный свет от 63 маленьких плоских вращающихся зеркал. В фокусе зеркала находится круглый щит, который в солнечные дни нагревается до 3500 °С – достаточно высокая температура, для того чтобы варить свинец, плавить вольфрам или превратить дикого кабана в пепел.
Солнечная печь в Одейо, Франция
© Иэн Фрейзер/Shutterstock.com
Параболические антенны служат также для приема электромагнитных и звуковых волн, поступающих в фокус от удаленных объектов. Такие антенны уже стали привычным элементом городского пейзажа: чаще всего они устанавливаются на крышах домов тех людей, которые смотрят спутниковое телевидение, но их можно встретить и на командно-диспетчерских пунктах и военных объектах. Шпионы, инженеры звукозаписи на телевидении и орнитологи используют параболические микрофоны для улавливания тихих звуков с большого расстояния. Принцип во всех случаях один и тот же. Параболоид – единственная геометрическая фигура, отражающая параллельные волны в определенную точку.
В 1668 году Исаак Ньютон построил первый «отражающий» телескоп, ключевыми элементами которого были зеркала, а не линзы, использовавшиеся в телескопах до этого. Ньютон понял, что для основного зеркала самая оптимальная форма – параболоид, но не смог изготовить такое зеркало, поэтому ему пришлось довольствоваться сферическим. Однако даже при наличии подобного дефекта отражающий телескоп был гораздо лучше, чем предыдущие модели, поэтому, начиная с XVII века, большинство телескопов были зеркальными.
Кроме того, Ньютон сделал в отношении парабол одно открытие, которое представляло в то время сугубо теоретический интерес, а сейчас успешно применяется в промышленном производстве телескопов. Если вращать цилиндрический сосуд, наполненный жидкостью, ее поверхность принимает форму параболоида. Под воздействием вращения жидкость поднимается выше у стенок сосуда и образует углубление в центре, создавая поперечное сечение в форме параболы. На этом свойстве построен один из способов изготовления параболических зеркал – вращать сосуд с расплавленным стеклом и дать этому стеклу застыть в таком положении. Большой бинокулярный телескоп, один из самых мощных телескопов в мире, был сделан именно так. Телескоп состоит из двух параболических зеркал диаметром 8,4 метра, изготовленных в огромной вращающейся печи в подземной лаборатории, расположенной под футбольным полем Аризонского университета в Тусоне. Хотя лаборатория может выпускать в год всего по одному зеркалу ценой в десятки миллионов долларов, это все равно более дешевый и быстрый метод, чем изготовление аналогичного зеркала посредством шлифовки стекла.
Еще дешевле телескоп с жидким зеркалом – в нем используется вращающийся цилиндр, наполненный отражающей жидкостью. Большой зенитный телескоп возле Ванкувера представляет собой чашу, наполненную ртутью, которая во время вращения принимает форму параболоида. На настоящий момент это самый дешевый из крупных телескопов мира, но у него есть один серьезный недостаток: чаша вращается в горизонтальной плоскости, а значит, телескоп может быть направлен только прямо вверх, в зенит.
В 1637 году французский математик Рене Декарт изобрел систему координат, что стало самым значительным прорывом в понимании конических сечений со времен Аполлония. Декартова система координат определяет положение точки на плоскости по ее расстоянию от вертикальной и горизонтальной оси[70]70
Декарт использовал косоугольную систему координат, а «декартова» система координат в современном понимании (с перпендикулярными осями) была предложена впоследствии другими учеными, уточнившими его систему.
[Закрыть]. Каждая точка имеет уникальные координаты (a, b), где a – это позиция на горизонтальной оси, а b – на вертикальной (см. рисунок 1 ниже). Данная система позволяла математикам описывать кривые посредством уравнений и представлять уравнения в виде кривых. Следовательно, она создала мост между геометрией, изучающей фигуры, и алгеброй, изучающей уравнения, которые были до этого разными математическими дисциплинами.
По сложившейся традиции мы записываем уравнения с помощью переменных x и y, отображающих позицию на горизонтальной и вертикальной оси, другими словами – координаты (x, y). Например, график уравнения x = y представляет собой совокупность всех точек с координатами (x, y), где x = y. Как показано на рисунке 2, это точки с координатами (1, 1), (2, 2), (3, 3) и т. д. С другой стороны, график уравнения y = x² – это совокупность всех точек, у которых y = x². Это точки с координатами (0, 0), (1, 1), (2, 4), (3, 9) и т. д. Такая кривая, представленная на рисунке 3, представляет собой параболу, касающуюся горизонтальной оси в начале системы координат или в точке с координатами (0, 0). Но, поскольку школьная программа больше ориентирована на алгебру, чем на геометрию, наша первая встреча с параболой происходит в момент построения графика уравнения y = x². Возможно, вы узнаете ее как старого друга, первую U-образную кривую, которая встретилась вам в процессе изучения элементарной математики.
Декартова система координат
Корни алгебры лежат в решении практических задач. Например, какова формула площади квадрата? Если предположить, что x – это сторона квадрата, а y – его площадь, то эта формула выглядит так: y = x². Когда в уравнении есть x² или y², но не более высокая степень x или y, оно называется квадратным уравнением. Вавилоняне изобрели собственные методы решения квадратных уравнений, в частности для задач, связанных с расчетом площадей. К началу эпохи Возрождения решение квадратных уравнений уже было хорошо изученной областью. Что же еще оставалось о них неузнанным?
Благодаря прямоугольной системе координат было установлено, что квадратные уравнения – это не что иное, как конические сечения. Другими словами, каждое квадратное уравнение описывает определенное коническое сечение, и каждое коническое сечение может быть описано квадратным уравнением. Два тщательно изученных раздела математики оказались альтернативным представлением друг друга. Общее квадратное уравнение Ax² + Bxy + Cy² + Dx + Ey + F = 0, где A, B, C, D, E и F – это константы и хотя бы одна из констант A, B и C отлична от нуля, всегда отображается на графике в виде конического сечения, и наоборот: любое коническое сечение, отображенное на графике, может быть выражено в виде приведенного выше уравнения. На рисунке 4 уравнение эллипса будет таким: 2x² + y² + 8x = 0, а уравнение параболы – таким: 16x² − 24xy + 9y² − 38x − 84y + 121 = 0. В середине XIX века немецкий математик Август Фердинанд Мебиус открыл поразительное свойство параболы y = x²: эта кривая представляет собой Multiplikationsmaschine – «машину умножения»[71]71
A. F. Mobius, Geometrische Eigenschaften einer Factorentafel, Journal fur die reine und angewandte Mathematik, 1841.
[Закрыть].
Мебиус хорошо разбирался в геометрических изгибах: в буквальном смысле слова, как в случае ленты Мебиуса (скрученной полоски бумаги со склеенными концами), и в более абстрактном смысле – при вычислениях с помощью параболы. Этот метод представлен ниже на первом рисунке. Для того чтобы выполнить операцию a × b, достаточно нарисовать прямую линию между точками на параболе, где x = –a и x = b. Точка, в которой эта линия пересекает ось у, – и есть ответ! Все, что нужно, – это нарисовать линию и отметить точку пересечения. На рисунке справа – пример выполнения операции 2 × 3. Требуемая линия проходит через точки на параболе, в которых x = –2 и x = 3, и пересекает ось у в точке 6. Данный метод применим к любым двум числам (доказательство можно найти в Приложении 4).
Как умножить два числа с помощью параболы
Мебиус представил свою оригинальную машину умножения в 1841 году в ссылке к статье, опубликованной в августовском номере журнала Journal für die reine und angewandte Mathematik («Журнал чистой и прикладной математики»), и больше никогда не упоминал об этом методе. Однако идею решения арифметических задач с помощью геометрии впоследствии переосмыслил молодой французский математик Морис д’Окань[72]72
Rodolphe Soreau, Nomographie; ou, Traite des abaques, Chiron, 1921; Ron Doerfler, The Lost Art of Nomography, The UMAP Journal, 2009; H. A. Evesham, Origins and Development of Nomography, Annals of the History of Computing, 1986.
[Закрыть]. Он обнаружил, что кроме операции умножения можно, построив прямую линию между двумя точками на графике и записав ответ, выполнять и многие другие операции. В 1891 году д’Окань ввел термин «номограмма» для обозначения любой таблицы, которую можно использовать для таких вычислений, и сам составил множество таких таблиц. Каждая номограмма подходит для вычислений лишь по одной формуле. На представленном ниже рисунке изображена составленная в 1921 году номограмма для формулы расчета скорости перемещения потока воды через прямоугольное отверстие в плотине, где V – это скорость потока, h1 и h2 – высота верхнего и нижнего края отверстия. Прямая линия, проведенная через точки h1 и h2, пересечется с вертикальной линией в точке, соответствующей искомому значению V. Все, что необходимо для решения этого громоздкого уравнения, – линейка и твердая рука. Номограммы помогли избавиться от трудоемких вычислений, затратных по времени. Они широко применялись в инженерном и военном деле до 1970-х годов, когда электронный калькулятор в одночасье сделал их устаревшими. Гениальные, практические и зачастую красивые номограммы вышли из употребления, а номография стала забытым искусством.
До изобретения карманного калькулятора широко использовались вспомогательные вычислительные инструменты под названием «номограммы». Эта номограмма, составленная в 1921 году, вычисляет скорость потока воды в водосливе плотины
Из книги: Rodolphe Soreau, Nomographie, Chiron, 1921
Гипербола выделяется на фоне остальных конических сечений, поскольку состоит из двух частей. Для того чтобы понять, почему так происходит, мы должны вернуться к первоначальному определению конических сечений. Если нарисовать рисунок, отображающий весь процесс построения гиперболы, то на нем было бы видно, что на самом деле наш нож рассекает двойной конус, когда один конус расположен в перевернутом виде над другим идентичным конусом[73]73
Martin Gardner, Mathematical Games: The Entire Collection of His Scientific American Columns, CD, 2005.
[Закрыть]. В случае эллипса и параболы угол наклона секущей плоскости указывает, что эта плоскость никогда не достигнет верхнего конуса. Хотя, как показано на рисунке 1 ниже, в случае гипербол секущие плоскости всегда пересекают как верхний, так и нижний конусы, образуя при этом две симметричные U-образные ветви.
Благодаря гиперболе в геометрии появилась совершенно новая концепция – асимптота (еще один термин, введенный Аполлонием), прямая линия, к которой другая кривая приближается бесконечно близко, но никогда с ней не соприкасается. Как показано на рисунке 2, гипербола ограничена двумя пересекающимися асимптотами. Каждый незамкнутый фрагмент кривой постоянно приближается к асимптоте, но никогда не пересекается с ней. «Я уверен, что если бы геометр сознавал безнадежное и отчаянное стремление гиперболы соединиться со своими асимптотами, – писал испанский философ Мигель де Унамуно, – то он охарактеризовал бы гиперболу как живое и трагическое существо!» Гиперболы часто встречаются в быту. Как показано на рисунках 3 и 4, это могут быть дугообразные волны на заточенном карандаше (кончик – это конус, а плоская боковая сторона – секущая плоскость), а также тень, отбрасываемая лампой (пучок лучей света – это конус, а стена – секущая плоскость).
Гиперболы Асимптоты
У гиперболы два фокуса, как и у эллипса. Ее можно представить себе как эллипс, вытянутый до бесконечности в одном направлении, а затем развернутый в обратном направлении. Кроме того, гиперболу можно определить по свойствам двух ее фокусов, как это было сделано и в отношении эллипса. Гипербола – это путь, пройденный точкой, расстояния от которой до двух фокусов образуют постоянную разность, тогда как в случае эллипса они образуют постоянную сумму. На верхнем рисунке a – это расстояние от произвольной точки P до одного фокуса, а b – расстояние от точки P до другого фокуса. Гипербола – это геометрическое место точки P, для которой разность (a – b) имеет постоянное значение. Кроме того, гиперболу можно определить и через поведение лучей света. Лучи света от источника, находящегося в одном из фокусов, отражаются вовне гиперболического зеркала в направлении, противоположном другому фокусу, как показано на нижнем рисунке. Телескоп Ричи-Кретьена, наиболее распространенный тип больших астрономических телескопов, содержит именно гиперболические зеркала.
Геометрия гиперболы
Выше я уже предложил вам способы построения эллипса и параболы, поэтому считаю своим долгом сделать это и для гиперболы. На этот раз нам предстоит создать трехмерную модель. Мы сделаем гиперболоид – фигуру, напоминающую популярный в 1970-х годах пластиковый табурет, имеющий форму, которую можно получить посредством вращения гиперболы вокруг своей оси, как показано ниже на рисунке слева. Для создания данной конструкции нам понадобятся два круга из картона и несколько кусков проволочной нити (струны). На первом этапе, как показано на среднем рисунке, необходимо протянуть нить от одного круга к другому таким образом, чтобы образовать фигуру в форме цилиндра. На втором этапе (рисунок справа) нужно повернуть один из кругов. Полученная в итоге фигура и есть гиперболоид.
Гиперболоид и способ его построения с помощью проволочной нити
В XVII веке молодой английский профессор астрономии Кристофер Рен увидел в витрине магазина плетеную корзину, напоминающую своими очертаниями ту модель, которая показана на рисунке выше[74]74
J. A. Bennett, The Mathematical Science of Christopher Wren, CUP, 1982.
[Закрыть]. Эта корзина навела его на мысль об одном поразительном свойстве гиперболоида: имея гладкую изогнутую поверхность, он состоит исключительно из прямых линий. Рен сразу же понял, как можно использовать это свойство для создания гиперболоидов из твердого материала с помощью прямой лопатки. Представьте себе, что на гончарном круге находится кусок глины цилиндрической формы. Разместите лопатку по диагонали к цилиндру таким образом, чтобы она немного погрузилась в глину. Удерживая лопатку в одном положении, сделайте один оборот гончарного круга – и цилиндр из глины превратится в гиперболоид. Рен заинтересовался изготовлением гиперболоидных линз для телескопов. Он даже не подозревал, что спустя столетия его открытие данного свойства гиперболоида найдет свое применение в архитектуре – области, в которой сам Рен получит впоследствии гораздо большую известность.
В XIX веке французский преподаватель математики Теодор Оливье создал несколько моделей гиперболоидов и других трехмерных конических фигур для использования в качестве учебных пособий[75]75
Henry Moore and Stringed Surfaces, exhibition at the Royal Society, 2012.
[Закрыть]. Сделанные из каркасов из дерева и металла, а также цветных проволочных нитей (струн), они стали весьма популярны в университетах. Некоторые из моделей Оливье были выставлены в лондонском Музее истории науки. В 1930-х годах британский художник Генри Мур посетил этот музей и пришел в такой восторг от увиденных моделей, что начал использовать проволочные нити в своих скульптурах. «Меня взволновало не научное назначение моделей, а возможность посмотреть сквозь эти струны, как через птичью клетку, и увидеть одну форму внутри другой», – объяснил он. Струнные модели Оливье – прекрасные объекты, завораживающие подобно оптической иллюзии, представляя кривые поверхности, образованные, как становится очевидным при ближайшем рассмотрении, прямыми линиями. (В конце XIX столетия личную коллекцию моделей Оливье выкупил Колледж Союза в городе Скенектади, в котором много лет спустя Арт Фриго создал свою игру «эллиптипул».)
Охлаждающие башни в виде гиперболоидов
© Kletr/Shutterstock.com
В представленной выше проволочной модели верхний круг вращается по часовой стрелке, поэтому на передней наклонной плоскости куски проволочной нити наклонены следующим образом: . Если повернуть этот круг на аналогичный угол в противоположном направлении, получится идентичный гиперболоид, но наклон проволочной нити будет таким: /. Для того чтобы плетеная корзина в форме гиперболоида была прочной, ее следует изготовлять из прутьев лозы, переплетенных в обоих направлениях. Более крупные гиперболоидные конструкции, выполненные в виде решетки из стальных балок, невероятно устойчивы. Это и есть способ создания больших криволинейных конструкций с использованием только прямых балок. Первым гиперболоидным сооружением в архитектуре была 37-метровая водонапорная башня в Нижнем Новгороде, построенная в 1896 году; впоследствии появилось много сооружений подобного типа. Бетонные охлаждающие башни электростанций имеют форму гиперболоида, как и телебашня Гуанчжоу высотой 600 метров – четвертое по высоте автономное сооружение в мире.
Я рассказал о гиперболе в последнюю очередь, хотя это именно то коническое сечение, с которым мы уже встречались. Когда две величины обратно пропорциональны друг другу, как было с частотностью употребления слов в романе Джеймса Джойса «Улисс» и их порядковым номером в списке, их математическую зависимость можно представить в таком виде: y=k/x, где k – это константа. Данное уравнение описывает гиперболу, в которой в качестве асимптот выступают горизонтальная и вертикальная оси. Многие законы природы включают в себя обратно пропорциональные величины – например закон Бойля – Мариотта, который гласит, что давление газа обратно пропорционально его объему. Следовательно, гиперболы широко распространены в науке. Даже такой общеизвестный статистический термин, как «длинный хвост», используется во многих случаях как эвфемизм для замещения гиперболы и ее асимптоты.
Кривая y=1/x – это гипербола
Мы начали эту главу с определения конических сечений как фигур, образующихся в результате рассечения конуса секущей плоскостью, а затем проанализировали свойства каждой фигуры в отдельности. А завершим последним, всеобъемлющим определением: конические сечения – это кривые, для которых отношение расстояний до точки (фокуса) и до прямой (директрисы) представляет собой постоянную величину. Если отношение расстояния от кривой до точки к расстоянию от кривой до прямой линии больше 1 (а это значит, что кривая всегда пропорционально ближе к директрисе, чем к фокусу), мы имеем гиперболу, как показано на рисунке ниже. Когда это соотношение равно 1 – параболу, а когда оно меньше 1 – речь идет об эллипсе. Данные соотношения известны как эксцентриситеты каждой кривой, поскольку они показывают степень их отклонения от окружности. На представленном ниже рисунке изображены три кривые с общим фокусом F и общей директрисой. Эксцентриситет эллипса составляет 0,75, гиперболы – 1,25.
Конические сечения: семейство эксцентриков
А теперь представьте, что вы – астроном, а размещенный выше рисунок – модель Солнечной системы. Пусть F – это Солнце. Конические сечения с фокусом в точке F и есть совокупность всех возможных орбит небесных тел.
Планеты вращаются вокруг Солнца по эллипсам: у орбиты Земли эксцентриситет 0,0167, что очень близко к окружности. Чем быстрее объект перемещается по своей орбите, тем больше ее эксцентриситет. Например, орбитальная скорость кометы Галлея в два раза больше орбитальной скорости Земли. Орбита кометы напоминает доску для серфинга, на одном конце которой находится Солнце; именно поэтому на протяжении всех 75 лет, требующихся комете Галлея для прохождения орбиты, она находится слишком далеко, чтобы увидеть ее невооруженным глазом. Эксцентриситет орбиты кометы Галлея – 0,967, что близко к параболе. Когда эксцентриситет орбиты кометы равен 1, она представляет собой параболу, а это значит, что комета пройдет рядом с Солнцем только один раз за время своего существования, после чего покинет Солнечную систему навсегда. Если эксцентриситет орбиты кометы больше 1, эта орбита является гиперболой. Однако такие кометы – крайне редкие явления, а орбитальная скорость тех, которые обнаружены, незначительно превышает скорость, необходимую для того, чтобы отклониться от эллиптической орбиты. Комета C/1980 E1, замеченная в 1980 году, перемещается по орбите с эксцентриситетом 1,057 – это самый большой эксцентриситет из всех когда-либо зарегистрированных.
Представьте, что директриса и фокус F на рисунке зафиксированы. Посмотрим, что произойдет с коническими сечениями в случае изменения эксцентриситета. Когда он равен нулю, кривая представляет собой окружность с центром в фокусе F. Теперь медленно увеличим эксцентриситет от 0 до 1. Появляется эллипс, который становится все больше и больше. Поскольку точка F зафиксирована, другой фокус, обозначенный как f, начнет медленно смещаться вправо по мере увеличения эллипса. Как только эксцентриситет достигнет значения 1, эллипс превратится в параболу, а точка f станет бесконечно удаленной. Если сделать эксцентриситет больше 1, кривая превратится в гиперболу, а в левой части рисунка появится второй фокус f. По мере дальнейшего роста эксцентриситета все полученные кривые будут гиперболами, а фокус f будет смещаться все дальше вправо. В своем труде The Optical Part of Astronomy («Оптика в астрономии») Иоганн Кеплер впервые высказал идею о том, что конические сечения могут превращаться друг в друга так, как это показано выше. Подобно многим другим идеям Кеплера, эта имела переломное значение, поскольку позволила по-новому взглянуть на две концепции, над которыми веками бились философы: непрерывность и бесконечность. Это был важный шаг на пути к новому способу выполнения математических вычислений. Мы вернемся к великому немцу и его пониманию данных концепций чуть позже, при обсуждении исчислений бесконечно малых величин.
Конические сечения – одно из величайших наследий древнегреческой математики: простые в описании, поддающиеся наблюдению повсюду, они положены в основу прекрасных теорий и нашли неподвластное времени применение во многих областях. Возможно, у вас создалось впечатление, что окружность – наименее интересная разновидность эллипса. Но это далеко не так. Окружность сама по себе заслуживает отдельной главы.
Внимание! Это не конец книги.
Если начало книги вам понравилось, то полную версию можно приобрести у нашего партнёра - распространителя легального контента. Поддержите автора!Правообладателям!
Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.Читателям!
Оплатили, но не знаете что делать дальше?