Текст книги "Александр фон Гумбольдт. Вестник Европы"
Автор книги: Александр Филиппов-Чехов
Жанр: Биографии и Мемуары, Публицистика
Возрастные ограничения: +12
сообщить о неприемлемом содержимом
Текущая страница: 6 (всего у книги 17 страниц) [доступный отрывок для чтения: 6 страниц]
Публикация результатов экспедиции в Америку – Переселение в Берлин
Это знаменитое путешествие остается и до сих пор единственным в своем роде. Гумбольдт впервые предпринял исследование отдельных стран, известных дотоле едва по имени, невзирая на почти непреодолимые препятствия, притом на собственные средства, без помощи правительства, без всяких честолюбивых помыслов, единственно ввиду научных интересов. Труды его явились в настоящем свете и величии по мере разработки собранных им материалов, когда не только ученые-специалисты, но и масса публики познакомилась с добытыми путешествием и исследованиями Гумбольдта результатами. Этой деятельности – разработке собранного, он и посвятил следующие годы своей жизни, поселившись в Париже, где он в то время мог найти не только все необходимые ученые пособия, но и пользоваться содействием первых авторитетов науки: Кювье, Гей-Люссака, Араго, Воклена, Ольтманнса, Лапласа и др. Из Парижа он отлучался только в Италию для свидания с братом, бывшим поверенным Пруссии при папском дворе, причем он не упустил случая вместе с Л. фон Бухом и Гей-Люссаком, привлеченными деятельностью Везувия, наблюдать его извержения и затем провел некоторое время, до 1807 г., в Пруссии.
Собственно с этого времени, после возвращения Гумбольдта в Париж, начинается его литературная деятельность и постепенное издание при посредстве сотрудников по всем областям естествоведениия его научных сокровищ, собранных во время пятилетнего его путешествия по Америке. Колоссальный труд этот, изданный под заглавием: Voyage aux regions équinoxiales du nouveau continent, fait en 1799, 1800, 1801, 1802, 1803 et 1804 [1829], состоит из 6 отделов, из которых каждый составляет самостоятельное целое. Первый отдел – Relation historique, 13 томов, (1816-1832) возник, несмотря на свое заглавие, позднее остальных. Гумбольдт первоначально не намеревался издать описание своего путешествия, но по мере деятельной разработки материалов оказалось, что путевые заметки его заключают еще столько важных данных, которые некуда было приурочить, что Гумбольдт решился изложить их в особой форме. В этой Relation, кроме описания собственно путешествия, помещен целый ряд монографий о самых разнообразных предметах: Гольфстриме, географическом распространении разных растений и животных, о реках, речных системах, человеческих племенах, землетрясениях и т. п. Рядом с этим в ней встречаем политические этюды и статистические исследования стран, им посещенных; так напр. Венесуэлы, Кубы, Мексики, которые тем важнее, что Гумбольдту открыты были все архивы стран, составлявших тогда достояние испанской короны, так ревниво охранявшей свои владения. В третьем отделе Voyage, в Essai politique sur le royaume de la Nouvelle Espagne [1814], он рассматривает физическое положение страны, пространство ее, народонаселение, сельское и горное хозяйство, промышленность, торговлю, доходы, военные издержки. Существенное прибавление к первому отделу составляет физический атлас посещенных Гумбольдтом стран с текстом об истории, географии Нового света и успехах морской астрономии в XV и XVI столетиях [1838] и живописный атлас (известный тоже под названием «Виды Кордильеров» [1810.1]). В последнем кроме изображений американской природы встречаются тоже виды сооружений, памятников, иероглифов, религиозных обычаев, астрологических представлений древних индейцев и т. п. Второй отдел (2 т.) Voyage заключает зоологические и сравнительно-анатомические наблюдения Гумбольдта; отдел насекомых разработан Латрейлем; отдел рыб и раковин – Валансьеном; тут же помещены и статьи Кювье. В четвертом отделе (2 т.) находятся астрономические наблюдения Гумбольдта и сделанные по ним объяснения Ольтманнса [36]36
Яббо Ольтманнс (Jabbo Oltmanns, 1783-1833) – математик и астроном, многолетний коллега Гумбольдта. С 1805 г. сотрудник Берлинской обсерватории. Помогая Гумбольдту, Ольтманнс впервые точно определил широту и долготу местоположений важнейших географических объектов Нового света. Дарование юного Ольтманнса принесло ему славу и внимание в том числе и со стороны королевского двора, он был произведен в члены Прусской академии наук и до конца своих дней занимал преподавательские должности в Берлинском университете.
[Закрыть]. Пятый отдел (1 т.) заключает созданную Гумбольдтом растительную географию и картины тропической природы, наконец шестой (18 т.) – описание собранных им и Бонпланом растений. Бонплан и Кунт, берлинский профессор, внесли сюда самую значительную часть вкладов [37]37
Для того чтоб дать наглядное понятие, чего стоило издание, не говоря, конечно, о трудах самого автора, которые нельзя выразить деньгами, – достаточно сказать, что в 1844 г., когда сочинение это было далеко еще от окончания, оно стоило уже 2 700 талеров за экземпляр! А издержки на бумагу, печатание и таблицы простирались до 226 000 талеров! – Прим. авт. ст.
[Закрыть].
Лучшим патриотам в период самого позорного и унизительного положения прусской монархии, после йенского разгрома, в числе которых был и Вильгельм Гумбольдт, удалось тогда убедить близорукое правительство, что возрождение и спасение отечества можно ожидать только от распространения образования в народе. К числу мероприятий на этом поприще относится и учреждение Берлинского университета, куда вызваны были лучшие современные ученые. К этому же времени относится и приглашение прусского министерства, сделанное Александру Гумбольдту, принять участие в управлении народным образованием. Не желая, однако, стеснять себя бюрократическими путами, он отклонил от себя это предложение. Новое путешествие, которое Гумбольдт надеялся совершить по приглашению Румянцева в обществе русского посольства, собиравшегося через Кашгар в Тибет, не состоялось благодаря войне 1812 г. Не теряя надежды посетить среднюю Азию в будущем, он приступил посреди своих занятий к изучению персидского языка и знакомился с географической литературой востока. В постоянных занятиях и общении с французскими учеными шли годы, и Гумбольдт до 1827 г. прожил в Париже, исключая непродолжительных отлучек его оттуда по вызову короля прусского в Ахен и Верону на конгрессы и путешествий к брату в Берлин и с королем в Венецию, Рим и Неаполь. В этом году он получает от Фридриха-Вильгельма III приглашение переселиться в Берлин в качестве «ученого советника». Как ни трудно было решиться на это, Гумбольдт принял предложение, не столько из тщеславия, сколько из желания и потребности жить с братом своим. В ноябре этого года он открывает публичные чтения о физическом описании вселенной – чтения, собравшие вокруг его кафедры не только весь просвещенный Берлин, но привлекшие и короля со всем двором, прилежно посещавшим каждый вечер его лекции. Они оказали такое магическое действие на публику, что Гумбольдт был вынужден вскоре открыть в залах певческой академии новый цикл их. В них все было своеобразно: воззрение, изложение, форма, доступная большинству образованной публики. Эта 61 лекция, результат его частных исследований, послужили первым очерком будущего «Космоса» [1862], явившегося в печати гораздо позднее, уже после его путешествия по России, помешавшего ему заняться немедленным опубликованием этих чтений. 1828 г. ушел на приготовление к этому давно желанному путешествию, о котором мы будем иметь случай распространиться подробно. Теперь же бросим взгляд на главнейшие результаты, добытые Гумбольдтом в течение бегло очерченного нами периода его страннической и научной деятельности.
IVРезультаты экспедиции – Климат и воздух Южной Америки
Исследование метеорологических явлений, так важных для человека по своим непосредственным, каждому заметным последствиям, занимало давно ученых. Они старались, с одной стороны, постичь причины этих явлений и, с другой, основываясь на них, предсказывать предстоящие метеорологические изменения.
Законы, которым повинуются атмосферические явления, необыкновенно сложны. Климат данной местности зависит не только от положения и очертания ее, но и от положения Земли относительно Солнца и общего рельефа нашей планеты. Поэтому нет отдела физики, где математика оказала бы так мало помощи, как в метеорологии. Весь успех последней зависит только от постоянных, неутомимых и верных наблюдений.
Разные части этой науки – химический состав воздуха, теплота, давление воздуха, водяные, световые и воздушные метеоры, – находясь в тесной, неразрывной связи между собой, не имеют смысла одна без другой. Чтобы представить метеорологическую картину данной местности, необходимо рассматривать их совокупно. Мы видели выше, что Гумбольдт, которому принадлежит честь уже в первых своих метеорологических наблюдениях, сделанных в Зальцбурге, впервые обратить внимание на связь метеорологических отделов между собой, оставил ряд наблюдений по всем из них. Но краткость периода, который они обнимали, а также обстоятельство, что они являлись особняком, касаясь только одной местности, были причиной, почему они не дали положительных результатов. Метеорологические наблюдения в северных местностях только тогда могут представить их, если они распространяются на целый ряд годов, и сделаны добросовестно и одновременно в различных местностях. Но об этом нельзя было и помышлять в начале нашего столетия. Америка представляла в этом отношении гораздо более благодарную почву нежели Европа, так как метеорологические явления под тропиками отличаются от явлений этих в полосе умеренной и северной своим относительным постоянством. Здесь в течение нескольких дней можно уже заключить о правильности явлений, на отыскание которых в Европе необходимо употребить несколько лет усидчивых наблюдений.
Мы попытаемся в общем очерке представить труды Гумбольдта по части метеорологии на американской почве и начнем с химического состава воздуха.
Главная ошибка при исследовании его химиками конца XVIII в., которой не избежал и Гумбольдт, состояла в том, что они принимали слишком высокие процентные цифры кислорода в составе воздуха. Так, Гумбольдт находил его 27%. Ученые того времени не могли помириться с мыслью, чтобы элемент, играющий такую важную роль в экономии природы, мог находиться в воздухе в меньшем количестве. Другая ошибка состояла в том, что химики того времени смотрели на воздух, как на химическое, а не как на механическое соединение составляющих его элементов.
Успехи, сделанные химией, показали, что несмотря на то, что хотя количество кислорода в воздухе и незначительно в сравнении с количеством азота, но все-таки вся масса его громадна и, следовательно, нет причины принимать самые высокие процентные цифры его, ошибочно найденные при исследовании как несомненно верные потому только, что в противном случае окажется количество кислорода, недостаточное для исполнения возложенных на него природой отправлений. Открытие стихиометрии еще более подтвердило это положение. Прежде предполагали (и Бертолле был главным защитником этой теории), что химическое тело может соединяться в произвольном количестве с другим телом. Например, смешивая безводный спирт с водой в каком угодно количестве, каждая капля смеси будет заключать и спирт и воду в таком же отношении, в каком они находятся в целом. Если мы желаем отделить путем дистиллировки составные части смеси, то при перегонке спирт как вещество, превращающееся легче в пары, нежели вода, будет переходить в чан в большем количестве, чем последняя. Таким образом, первоначальная перегонка даст нам много спирта с незначительной примесью воды, последующие – все менее и менее первого и более последней, наконец, окончательная даст большое количество воды и только незначительные следы спирта. Факт, что как первоначально перегоняемый спирт заключает примесь воды, хотя и незначительную, а окончательно перегоняемая вода – небольшое количество спирта, Бертолле объяснял тем, что дистилляция не может преодолеть притяжения, находящегося между обоими химическими веществами. Химическое родство, так утверждал он, тем сильнее между двумя телами, чем больше количество одного в сравнении с другим. Так, по этой теории, пока в смеси частицы спирта сильнее частиц воды, они при перегонке легко отделяются; чем больше уходит первых, тем значительнее остается в первоначальной смеси последних, которые, получая перевес над незначительным количеством остающихся спиртовых частиц, удерживают их с силой, которую преодолеть дистилляция уже не может. Точно таким образом переходившие в начале перегонки в значительном количестве спиртовые частицы увлекали с собой, в силу большого притяжения, незначительное число частиц воды.
Прилагая эту теорию к составным частям воздухе, теория Бертолле утверждала, что при анализе его вовсе нетрудно отделить большую часть кислорода от азота, но все-таки некоторая часть его останется в связи с ним.
Против такого взгляда вооружились Рихтер и Дальтон, основатели стихиометрии, утверждавшие, что отдельные тела соединяются между собой только в определенных отношениях. Так, 14 частей по весу азота соединяются с 8 частями кислорода, затем с 16, с 24, с 30 и наконец с 40 или, следуя Гей-Люссаку, считая по объему, 2 части по объему азота соединяются с 1, 2, 3, 4, 5 частями кислорода, а не с 1 1/10, 1 2/10 и т. д. Все остальные вещества, в которых элементы встречаются в иных чем указанные отношениях, по этой теории не что иное, как механическая смесь, в которой – составные части совершенно самостоятельны, друг от друга независимы. Исследуя атмосферный воздух и находя, что на 27 частей (по объему) кислорода приходится 73 части азота, выходит, что на одну часть первого приходится 2 19/27 частей последнего. Подобное отношение не соответствует указанному выше закону, и из этого следует заключить, что атмосферный воздух представляет не химическое соединение, а просто смесь, которой химическую связь при анализе расторгнуть невозможно по простой причине – потому, что ее вовсе не существует.
Таково изменение, происшедшее во взглядах химиков на этот важный вопрос во время пребывания Гумбольдта в Америке. Возвратившись в Европу, он нашел, что прежняя теория была вытеснена, и кроме того, новые опыты, в особенности Дэви и Гей-Люсскака, показали, что количество кислорода в воздухе гораздо меньше, чем найденное прежде Гумбольдтом (вместо 27 составляет только 20 до 23% по объему). Пытаясь доказать справедливость найденных им чисел, Гумбольдт решился повторить вместе с Гей-Люссаком опыты при помощи новых, усовершенствованных методов. Ученые наши предпочли метод Вольты прочим. Он состоит в том, что к определенному количеству исследуемого воздуха примешивают определенное количество водорода; пропуская через эту смесь электрическую искру, кислород воздуха, соединяясь с частью водорода, образует воду. Из уменьшенного вследствие этого соединения объема смеси газов легко определить количество употребленного на образование воды кислорода.
Исследователи задали себе следующие четыре вопроса:
1) Поглощается ли совершенно кислород или водород при пропущении через смесь их, в эвдиометре Вольты, искры?
Ответ получается утвердительный, но только до тех пор, пока употребленная смесь газов не много удаляется от нормального состава: 1 часть кислорода, 2 части водорода (по объему). Если же одна из составных частей значительно превосходит меру, указанную этим отношением, то исследователи не могли вызвать ни взрыва при проходе электрической искры через смесь, ни поглощения. Из этого следует, что если мы желаем, чтобы при исследовании один газ исчез совершенно, отношение газов в смеси их не должно превосходить известных пределов, потому что в противном случае, если при исследовании воздуха часть находящегося в нем кислорода не будет поглощена, то ясно, что из части поглощенной никак нельзя заключить о количестве всего кислорода. Следовательно, анализируя воздух, следует прибавлять в него водород без избытка. Объяснение этого странного явления, данное Гумбольдтом, не может иметь здесь места; равно как применение его к уяснению световых метеоров. Он доказал, что объяснять последние сгоранием их в атмосфере водорода совсем несостоятельно.
2) Не менее важным был второй вопрос – изменяется ли или нет продукт сгорания обоих газов? Естественно, что если в одном случае большее количество водорода соединяется с определенным количеством кислорода, а другой раз меньшее, то из количества поглощаемого газа нельзя было бы вывести заключения о количестве кислорода. Оказалось, что отношение это совершенно постоянно; что образующаяся при проходе электрической искры вода заключает всегда – 88,9% (по весу) кислорода, ни более, ни менее!
Притом из опытов Гумбольдта и Гей-Люссака видно, что при этом сгорании кроме воды не образуется никакого постороннего продукта.
3) Ответ на третий вопрос – в каком отношении соединяются оба газа для образования воды – показал, что 100 частей (по объему) кислорода всегда соединяются с 200 частей водорода.
Наконец, 4) какая степень точности возможна при исследовании воздуха по методе Вольты? Приняв в соображение все возможные случайности ошибок, происходящие от калибра инструмента, свойства исследуемых газов и проч., Гумбольдт и Гей-Люссак убедились, что метод Вольты в три раза точнее остальных, так что ошибки при употреблении его не превышают 0,001 всего исследуемого количества воздуха; иными словами: полученные при посредстве этого метода данные могут быть только на 1/10% больше или меньше настоящих.
Заручившись такой верной и надежной методой, оба ученых приступили к применению ее. Они исследовали воздух, добытый ими на Сене, в городе и за городом при холодной, умеренной и теплой температуре, в дождливую и ясную погоду, при различных ветрах. Результаты их многочисленнейших анализов, произведенных всегда в тот же самый день, когда воздух был добыт, показали, что: 1) состав атмосферы вообще не изменяется; 2) количество кислорода ее равняется 21%; 3) воздух не заключает в себе водорода.
Найдя, что состав атмосферы вообще подвержен незначительным изменениям, Гумбольдт полагал, что причину различных результатов, добытых анализом его, следует искать в различии местных условий, при которых он был исследован. Конечно, вулканы, стоячая вода болот, брожение и т. п. могут отчасти изменять химический состав воздуха, поглощением кислорода или выделением вредных для дыхания газов, но на общую массу воздуха они не оказывают особенного влияния. Гумбольдт приписывал болезни, господствующие в некоторых местностях, не чрезмерному уменьшению кислорода, а примеси к атмосфере таких испарений, которые обнаружить не в силах никакой анализ. Находя мнение, по которому причина некоторых болезней лежит исключительно в уменьшении кислорода воздуха, он полагал более справедливым искать ее в совокупности разных условий: температуры, сырости, электричестве…
Гумбольдт и Гей-Люссак не ограничились анализом воздуха, собранного в различных местностях; они исследовали также и воздух, поглощенный разными жидкостями. Так, они анализировали его в речной, дождевой воде, в воде, полученной из снега, льда, растворов разных солей и проч., причем оказалось, что отношение кислорода к азоту в воздухе, таким образом добытом, подвержено значительным колебаниям.
Результаты, полученные этими учеными насчет состава воздуха, подтверждены в главном анализами новейших химиков, занимавшихся этим же предметом – Буссенго, Лесли, Реньо, хотя, конечно, определения последних благодаря новым методам еще несколько точнее, но точность эта не превосходит десятичных цифр, выразивших на несколько тысячных точнее данные, найденные Гумбольдтом и Гей-Люссаком.
VИсследования температуры и климата – Изотермы и изохимены
Не менее важную роль, как воздух, играет в экономии природы теплота. По-этому, естественно, что человек давно обратил внимание на изучение законов ее. Попытки его на этом пути были, однако, долгое время безуспешны. Вместо того, чтобы рядом тщательных и многосторонних наблюдений подготовить для будущих поколений материал, разработав который можно было бы дойти до уяснения законов теплоты, древние и средние века завещали нам массу бесплодных теорий, основанных на неточных, отрывочных, непонятых наблюдениях и потому почти не годных для науки. Конечно, одни наблюдения тоже не ведут к истине. Если бы человек ограничивался только ими, то в результате мы получили бы такую массу фактов, которые удержать была бы не в силах самая счастливая память. Необходимо поэтому по временам подводить сделанные наблюдения, сводя итоги, под определенные частные законы. Пробелы, легко замечаемые между этими законами, указывают нам, что еще остается сделать, на что следует обратить внимание, в какую сторону направить исследование, какие аппараты следует придумать для возможно точного наблюдения.
Первый, создавший теорию теплоты, более или менее удовлетворявшую высказанным выше требованиям, был Галлей. Он учил (в конце XVII в.), что степень исходящей от Солнца теплоты в каждую минуту дня обусловливается положением этого светила над горизонтом, и поэтому теплота уменьшается по мере увеличения градусов широты. Но по мере удаления от экватора и приближения к полюсу мы замечаем постоянно увеличивающуюся разницу в продолжительности дня в различные времена года, пока наконец под полюсами полугодичный день (лето) сменяет полугодичную ночь (зиму). Обстоятельство это, по мнению Галлея, оказывает огромное влияние на теплоту, ибо хотя под высокими широтами Солнце и не достигает в полдень той высоты, на которую оно подымается под тропиками, однако более продолжительный день летом вознаграждает то, что ему недостает в интенсивности. Основываясь на этих соображениях, Галлей выражает отношение теплоты летнего дня под тропиками, у полярного круга и у полюса отношением следующих чисел: 1,834: 2,310: 2,506. Таким образом выходит, что у полюсов теплоты летнего дня больше, чем у тропиков. Так как зимой продолжительность ночи равняется продолжительности дня летом, то под высокими широтами зимний день тем более отстает от теплоты под экватором, чем более место в летнюю пору находилось в благоприятных относительно теплоты условиях.
Из сказанного видно, что теория эта была основана только на положении земли относительно солнца и продолжительности дня. Проверить ее в ту пору не было даже возможности, так как инструмент, при посредстве которого производится подобная проверка, термометр, тогда был еще так несовершенным, что употребить его для точных наблюдений не было возможности. Хотя Дреббель (в 1630 г.) и устроил термометр, но в то время не решен был даже вопрос о температурах, которые должны быть исходными точками при подобных определениях. Каждый отдельный инструмент представлял особенное разделение, так что, хотя по ним можно было определить, поднялась или понизилась ли температура вообще, но сравнить показания разных инструментов не было возможности. Достаточно упомянуть, что еще в 1714 г. Ньютон принимал на своем термометре крайними точками, с одной стороны, температуру тающего льда, а с другой – собственного тела. Промежуток между ними был разделен на 12 градусов. Из этого мы видим уже, что только Ньютон мог изготовлять инструменты, градусы которых были совершенно равны между собой, ибо, хотя температура человеческого тела представляет в различных индивидах весьма незначительные колебания, но все-таки разница существует. Такая единица меры теплоты напоминает происхождение линейных мер: фута, локтя… которые не могли в то время отличаться однообразием, необходимым для каждой меры, если каждый покупатель, продавец или вообще человек, измерявший длину чего-либо, принимал за единицу меры длины свою стопу (фут), свой локоть и т. п. Долгое еще время после Ньютона существовал хаос в разделении термометров, как теперь существует международный хаос в мерах и в монете, с которым пора бы покончить. Только в половине XVIII в. окончательно согласились употреблять три известные термометра – Фаренгейта, Реомюра и Цельсия – легко и удобно переводимые из одного в другой [38]38
Встречающиеся ниже указания температуры сделаны по Цельсию. – Прим. авт. ст.
[Закрыть].
И Мэран [39]39
Жан-Жак де Мэран (Jean-Jacque de Mairan, 1678-1771) – французский геофизик и астроном. Многие годы исследовал влияние Солнца и солнечного света, в т. ч. на биоритмы растений.
[Закрыть] придерживался вначале и исключительно астрономического положения солнца; он обращал особенное внимание на определение maximum и minimum температуры, принимая арифметическое среднее число за среднюю годичную температуру. Вычисление дало ему следующее отношение летней температуры к зимней: 16: 1. Сравнивая, однако, этот результат, полученный вычислением, с наблюдениями и абсолютным нулевым пунктом, найденным Амонтоном, он убедился, что теплота зимняя составляет гораздо более чем 1/16 теплоты летней. Мэран искал причину этого противоречия в теплоте, исходящей из центра земли. К этой-то теплоте, всегда постоянной и играющей главную роль, прибавляется еще солнечная теплота, летом более, зимой – менее. Он сравнивал процесс этот с состоянием вод глубокого озера. Если мы предположим, что данное количество вод его, которое мы примем за постоянно в озере находящееся, зимою увеличивается на известную величину, а летом – эта последняя величина увеличивается еще в 16 раз, то в результате будет колебание уровня озера, но различие отношения глубины его летом к глубине зимой окажется тем незначительнее, чем озеро глубже. Применяя это объяснение к теплоте, Мэран полагал, что отношение ее в различные времена года будет тем меньше, чем глубже абсолютный нулевой пункт ее, т. е. чем больше теплота, получаемая из центра Земли. На этом различии и основано разделение им времен года на действительные и солнечные. Главным следствием его исследований, и в особенности теории Галлея, было предположение, что в каждом полушарии лето во всех широтах имеет одну и ту же температуру, ибо количество ее, которое в высших широтах лежащие места теряют от низкого стояния солнца, наверстывается в них продолжительностью дня.
Вместо определения температур по методу Галлея и Мэрана, оказавшемуся вскоре неудовлетворительным, К. Майер пытался вывести их иным путем, для чего и дал математическую формулу, из которой оказывается, что теплота изменяется соответственно градусам широты, но остается одной и той же в том же самом градусе широты вокруг всего земного шара, следовательно, под всеми градусами долготы, его пересекающими. Разные корректуры оказались при этом неизбежными для того, чтобы действительно получить температуру данного места по формуле Майера, которая через это очень усложнялась. Так как известно, что чем сложнее формула, тем менее верной оказывается она в приложении, то поэтому формула Майера, хотя и верная сама по себе, вскоре вышла из употребления.
Мы знаем теперь, что распределение теплоты на земном шаре есть результат разнообразнейших причин: различного расстояния Земли от Солнца в разные времена года, вращения Земли и наклонения ее оси к эклиптике; кроме того, сила солнечных лучей зависит от цвета, плотности, лучеиспускания предметов (в рассматриваемом нами случае – местностей), поэтому, кроме астрономических и географических различий мест следует при определении их температуры иметь еще в виду и физические. Как ни трудно, приняв в расчет все эти влияния, определить вперед температуру каждого пункта, как астрономы определяют вперед положение любой планеты, но и это удалось, благодаря трудам Фурье и Пуассона. Но математические формулы, выведенные ими для подобного определения, могут служить только для планеты, которая, как например Луна, не имеет ни воды, ни воздуха. Если же мы имеем дело с такой планетой, как наша Земля, на которой эти два фактора играют такую важную роль, то к вышеуказанным затруднениям присоединяются еще новые, гораздо более крупные, до того запутывающие задачу, что о решении ее при посредстве математики не может быть и речи.
Посредством течений воздуха и воды, вызванных неоднообразным действием солнца под разными градусами широты, теплота от экватора направляется к соседним с полюсами местностям; но распределение ее на этом пути зависит от образования ее поверхности. Поэтому-то температура одного и того же градуса широты различна под разными градусами долготы. Точно так же с парами, подымающимися из океана и моря, из них уносится большое количество теплоты; освободившаяся от нее вода притекает опять путем рек в моря, но теплота способствует возвышению температуры материка. Из этого видно, что не только близость океана оказывает громадное влияние на местность, но даже важны в этом отношении формы линий, образуемых очертаниями берегов как граней между материком и водой.
Сказанного достаточно для того, чтобы убедиться в невозможности включить в математическую формулу тысячи случайностей, влияющих на температуру данного места, и в данное время. К формулам этим можно было прибегать до тех только пор, пока наблюдения не показали, какое влияние оказывают на теплоту данного места упомянутые выше обстоятельства. Поэтому Кирван [40]40
Ричард Кирван (Richard Kirwan, 1733-1812) – ирландский химик, метеоролог, геолог, один из последних приверженцев теории существования флогистона (утверждал его идентичность с водородом).
[Закрыть] предложил прежде всего запастись значительным количеством наблюдений и уже из этих наблюдений выводить из сравнения причины явлений или законы их, т.е. приняться за дело в противоположном порядке, чем это делалось до сих пор.
Но каким образом найти среднюю теплоту данного места? Разрешением этого вопроса и задался Гумбольдт в монографии своей Des lignes isothermes et de la distribution de la chaleur sur le globe [1817.1], помещенной в Mémoire de Physique et de Chemie de la Société d’Arcueil [41]41
В 1801 г. на деньги двух самых знаменитых и высоко оплачиваемых ученых Франции и личных друзей Наполеона К. Л. Бертолле и П. С. Лапласа в доме Бертолле в Аркиле было создано научное общество и лаборатория, доступ к которой был открыт молодым ученым. С 1807 г. Общество получило официальный статус и выпустило первый сборник работ. Работа Общества была нерегулярной и продолжалась до 1813 г. Кроме Гумбольдта учредителями Общества были Био, Араго, Пуассон и пр.
[Закрыть], III. Температура изменяется, как известно, даже в течение дня постоянно и потому следовало бы наблюдать ее ежечасно и даже чаще, что, конечно, более чем затруднительно. Прежде полагали, что для определения средней температуры года достаточно вывести половину суммы, полученной из максимума и минимума; но метод этот оказался совершенно неверным. Ему предпочли метод, по которому годичная температура получается из среднего арифметического числа всех суточных температур. Но как получить последние? Так как ежеминутное наблюдение невозможно, ежечасное – возможно только в немногих местах, то приходится ограничиться только немногими наблюдениями. Как их выбрать? В какие часы делать? Вопрос этот необыкновенной важности, так как от него зависит правильность результатов. Следя за ходом температуры в течение ясного дня, мы замечаем, что термометр с восходом солнца начинает подниматься и поднятие его около 9 часов утра самое скорое; затем оно становится медленнее и к 2 часам пополудни прекращается, и вместо его замечаем понижение термометра, сначала слабое только, потом до заката все сильнее и сильнее и наконец с восходом термометр начинает вновь подниматься.
Гумбольдт рассматривает три метода, при посредстве которых можно получить среднюю температуру: 1) наблюдая три раза в сутки – при восходе и закате солнца и в 2 часа пополудни; 2) наблюдая в две эпохи, которые выражают maximum и minimum, т. е. при восходе Солнца и в два часа пополудни; 3) наблюдая только раз в течение 24 часов, и именно в тот час, который к сделанным в различные времена года наблюдениям выражает среднюю температуру дня. Мы и на этот раз не вправе входить в изложение критики этих методов, представленных Гумбольдтом, и принуждены ограничиться только результатом его исследований, именно: среднее арифметическое число, полученное из суточных температур, дает годичную температуру; среднее же число, выведенное из многих годичных температур – дает среднюю температуру места.
Если мы, отправляясь из пункта, находящегося у экватора в уровень с морем, будем приближаться к северному полюсу по одному и тому же меридиану, то температура по мере приближения к нему будет все уменьшаться. Линии, соединяющие точки одной и той же годичной температуры разных меридианов, впервые введенные в науку Гумбольдтом, названы им изотермическими.
Внимание! Это не конец книги.
Если начало книги вам понравилось, то полную версию можно приобрести у нашего партнёра - распространителя легального контента. Поддержите автора!Правообладателям!
Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.Читателям!
Оплатили, но не знаете что делать дальше?