Электронная библиотека » Александр Панчин » » онлайн чтение - страница 6


  • Текст добавлен: 1 декабря 2015, 13:01


Автор книги: Александр Панчин


Жанр: Биология, Наука и Образование


Возрастные ограничения: +12

сообщить о неприемлемом содержимом

Текущая страница: 6 (всего у книги 23 страниц) [доступный отрывок для чтения: 6 страниц]

Шрифт:
- 100% +

Глава 7
Так говорил Сералини. Математическая статистика в биологии, ошибки в исследованиях о вреде ГМО

“Статистика не всегда говорит правду, но может помочь понять результаты” – так ответил124 французский исследователь Жиль-Эрик Сералини на один из ключевых пунктов критики, которая обрушилась на его статью о вреде генетически модифицированной кукурузы линии NK603125. Пятнадцать126–140 писем от независимых исследователей, в том числе от меня, указывали на различные ошибки в этой нашумевшей публикации в научном журнале Food and Chemical Toxicology.

“В этих результатах нет ничего, кроме случайной ошибки, и любой компетентный рецензент немедленно это увидел бы”, – писал один из критиков Сералини профессор Энтони Тревавас, молекулярный биолог из Эдинбургского университета. Поддержка у Сералини со стороны коллег тоже имелась, но ее выразили лишь в одном письме141. Тем временем Россия отреагировала на исследование введением временного запрета на импорт генетически модифицированной (ГМ) кукурузы.

Сералини утверждал, что крысы, употреблявшие ГМ кукурузу NK603, погибали чаще и имели больше опухолей, чем крысы из контрольной группы, которые ели обычную кукурузу. Большинство специалистов, глядя на опубликованные результаты, возражали, что этот вывод не обоснован. В такой ситуации обычному человеку сложно понять, кому доверять: Сералини или тем, кто его критикует. Для этого желательно узнать, в чем, собственно, заключалась критика.

В этой главе представлен обзор аргументов в пользу безопасности использования уже существующих генетически улучшенных организмов в качестве продуктов питания. Это необычный обзор, потому что я опираюсь исключительно на данные, полученные теми, кто писал о возможной опасности ГМО, в том числе и на данные, полученные Сералини.

В значительной части работ, в которых было заявлено негативное действие ГМО на животных, выводы не соответствуют результатам. Это связано с тем, что в них присутствует одна и та же ошибка, которая заключается в некорректном применении аппарата математической статистики. После ее устранения полученные данные перестают свидетельствовать в пользу того, что ГМО опаснее обычных организмов. Следуя завету Сералини, давайте разберемся в том, как статистика помогает понять результаты исследований. Но сначала попробуем понять саму статистику.

В статистике существует понятие, которое называется нулевая гипотеза. Это понятие отражает позицию по умолчанию, утверждающую, что между двумя явлениями нет никакой связи. Она говорит, что орел или решка на монете выпадают равновероятно и независимо от погоды. Что рак легких не связан с курением. Что цвет глаз человека не зависит от его пола. Что число пропавших в течение недели носков не зависит от того, наблюдалось ли на небе НЛО. Что токсичность картошки не зависит от того, генетически модифицирована она или нет, и так далее. В некоторых случаях нулевая гипотеза верна, в других – нет. До появления доказательств обратного нулевая гипотеза считается верной по умолчанию, поэтому научные эксперименты сводятся к тому, что нулевую гипотезу пытаются опровергнуть.

Статистические тесты позволяют оценить, насколько высока вероятность получить некий результат при условии, что нулевая гипотеза верна. Допустим, что мы провели эксперимент, в котором подкинули монетку десять раз и все десять раз выпала решка. В данном случае за нулевую гипотезу можно принять равную вероятность выпадения орла и решки. При таком допущении вероятность выкинуть решку десять раз из десяти равна ½ в десятой степени, то есть менее одной тысячной. Полученная вероятность называется P-значение, или просто P, и это вероятность получить такое же или более существенное отклонение результата эксперимента от ожидаемого. Полученное P сравнивается с пороговым значением, уровнем значимости, обозначаемым α (альфа). Общепринятыми значениями α являются либо 0,05, либо 0,01, либо 0,001. Отметим, что 0,05 – самый мягкий порог, который можно встретить в научной литературе, хотя это лишь некоторая условность.

Если полученное значение P меньше, чем пороговое значение, мы считаем, что нулевая гипотеза отвергнута и можно принять альтернативную гипотезу. В случае с монеткой получилось так, что P < 0,001, а значит, есть основания полагать, что решка выпадает чаще орла. Чем меньше порог α, тем меньше вероятность, что мы получим ложноположительный результат, найдем закономерность там, где ее нет. Чем больше порог α, тем меньше вероятность, что мы получим ложноотрицательный результат, то есть не найдем закономерности там, где она есть. Правильно подобранные пороги позволяют соблюсти баланс между этими двумя типами ошибок.



Статистику полезно знать еще и потому, что она помогает знакомиться с девушками (или молодыми людьми), и я сейчас продемонстрирую как. Загадайте целое число от 1 до 20. Сделайте это, прежде чем читать дальше. Помните, что если вы симпатичная девушка и я угадаю ваше число, то с вас билет в кино. Итак, перед вами умная книга, наподобие дневника Тома Редла из “Гарри Поттера”, и она заранее знает, какое число вы загадаете. Обратитесь к калькулятору и поделите 23101096 на 1358888. Убедитесь, что я угадал правильно.

Секрет фокуса прост. Он работает только в одном случае из двадцати, и, скорее всего, я ваше число не угадал. Девятнадцать читателей из двадцати не будут впечатлены, но, возможно, именно с вами мне повезло, и вы на секунду удивились. Если повторять этот фокус много раз, каждый раз с новой девушкой (или читателем), с кем-нибудь он неизбежно сработает. Вероятность угадать в одном испытании равна 5 %, но вероятность угадать хотя бы раз, имея двадцать попыток, уже превышает 64 %. При ста испытаниях трюк удастся хотя бы раз с вероятностью 99,4 %!

Проблема “множественных сравнений” (или множественных испытаний) возникает в статистике, когда мы проверяем не одну гипотезу, а множество похожих. Для ее иллюстрации используется простая формула Y = (1,00–0,95N)×100 %, где N обозначает число сравнений, а Y – вероятность того, что по случайным причинам хотя бы в одном из них будет обнаружено статистически достоверное отличие при пороге значимости 0,05.

В 2012 году доктор Крейг Беннет получил Шнобелевскую премию за удивительную статью. Он искал у лосося участок мозга, отвечающий за распознавание человеческих эмоций. Для этого он показывал рыбе серию фотографий, на которых были изображены люди в разных социальных ситуациях, с разным эмоциональным оттенком, и анализировал активность мозга рыбы с помощью томографа. Оказалось, что мозг рыбы по-разному реагирует на разные фотографии людей! Этот результат особенно удивителен, если учесть, что лосось в исследовании был дохлым142.

На самом деле Беннет пытался привлечь внимание к важной проблеме. Стандартные приборы, измеряющие активность мозга, имеют погрешности в измерениях, шум. Если измерить активность мозга одновременно в огромном количестве независимых участков, в некоторых из них по случайным причинам может обнаружиться статистически достоверный сигнал, который можно ошибочно интерпретировать как признак мозговой активности (реакцию на изображения). Так Беннет продемонстрировал, что проблема множественных сравнений порой приводит к неожиданным биологическим результатам.

Самый простой способ учесть множественные сравнения – ввести поправку, названную в честь итальянского математика Карло Эмилио Бонферрони143. Поправка гласит, что если экспериментатор проверяет не одну, а сразу n гипотез, ему следует проверять каждую гипотезу не против уровня значимости α, а против уровня значимости α/n. Есть и другие способы учесть множественные сравнения, но этот проще объяснить, а выводы, которые будут сделаны в этой главе, справедливы и при использовании других распространенных поправок.

Предположим, что пять девушек независимо загадали натуральное число от одного до сорока. И я, назвавшись экстрасенсом, угадал число одной из них. Можно ли отвергнуть нулевую гипотезу, что я не умею читать мысли, используя самый мягкий порог статистической значимости, α = 0,05? Без поправки Бонферрони мы получаем, что в случае с одной из девушек случилось событие, вероятность которого 1/40, – я угадал ее число. Эта вероятность меньше, чем α = 0,05, а значит, есть основания полагать, что я умею читать мысли. Но свои экстрасенсорные способности я опробовал на пяти девушках. Следовательно, мы имеем дело с пятью множественными сравнениями. Поэтому порог α = 0,05 мы делим на пять и получаем новый порог α = 0,01, что уже меньше, чем 1/40. Теперь мы приходим к выводу, что даже при самом мягком пороге статистической значимости нельзя исключить гипотезу, что мне просто повезло.

Поправка Бонферрони достаточно консервативна, то есть значительно снижает риск обнаружения ложноположительных результатов, но одновременно увеличивает количество ложноотрицательных. Мы рискуем пропустить какую-то важную закономерность, поэтому использовать ее нужно осторожно. Однако в примерах работ, которые я буду разбирать ниже, эта поправка оправдана по нескольким причинам144.

Во-первых, из современных представлений в области молекулярной генетики не следует никаких рисков, связанных с употреблением ГМО. Поэтому непонятно, как именно ГМО должны влиять на организм животных и каким может быть биологический механизм такого воздействия. Нет никаких четких гипотез о том, какие биологические показатели должны измениться, как сильно и в какую сторону. Скептически настроенные к ГМО исследователи проверяют все подряд, и любые отличия между ГМО и их аналогами признают потенциально опасными. Увеличение толщины кишечника опасно, но уменьшение тоже вредно! Настораживает как снижение, так и увеличение содержания каких-нибудь микроэлементов в ГМО или бактерий в кишечнике организмов на диете с ГМО. Если рассмотреть множество параметров, отличия по некоторым из них обязательно найдутся.

Второй аргумент в пользу поправки заключается в том, что обнаружение любых отклонений у организмов, питающихся ГМ кормом, моментально становится сенсацией, даже если это предварительный и никем еще не воспроизведенный результат. Эти сенсации приводят к серьезным политическим решениям и экономическим последствиям, введению ограничений импорта и даже к попыткам изменения законодательства. Поэтому ложноположительные результаты крайне нежелательны как для развития биотехнологий, так и для формирования объективной научной картины мира.

Рассмотрим еще две истории про ошибки научного метода, показывающие, как маленькие недостатки эксперимента могут приводить к “потрясающим” результатам и насколько важно критически относиться к научным сенсациям. Среди биологов передается из уст в уста анекдотическая история о том, как в одном НИИ открыли телепатию. Исследователи брали крыс и сажали их парами в клетки, давая им возможность познакомиться. Через некоторое время клетки с парами крыс разделяли на две группы: экспериментальную и контрольную (для сравнения). Крыс из каждой пары изолировали друг от друга, чтобы они не могли видеть друг друга, обмениваться звуками и запахами. В экспериментальной группе одну крысу из пары заставляли голодать, а за второй крысой наблюдали, оценивая, сколько она ест в условиях неограниченного доступа к еде. В контрольной группе обеим крысам предоставляли неограниченный доступ к еде, за одной из крыс наблюдали. Оказалось, что напарница голодающей крысы ела больше, чем напарница сытой крысы, как будто чувство голода передавалось между крысами через неизвестный нам канал информации.

Один математик заинтересовался этими опытами и уговорил исследователей, чтобы ему разрешили принять участие в постановке экспериментов. Математик заметил, что хотя ученые из института N заявляют, что выбирают, в какую группу поместить ту или иную крысу “наугад”, это “наугад” сводится к тому, что экспериментатор берет вполне конкретную крысу и на свое усмотрение сажает ее в ту или иную клетку. Математик почувствовал, что здесь может быть какой-то подвох, и попросил, чтобы на каждом этапе эксперимента крысы выбирались по-настоящему честным жребием, на исход которого экспериментаторы повлиять не могли. Жребий определял, каких двух крыс посадят в одну клетку, какая пара крыс попадет в экспериментальную группу, а какая в контрольную, за какой из двух крыс будет вестись наблюдение.

Предложенная математиком процедура называется рандомизация, и эта процедура полностью устранила весь заявленный эффект телепатии у крыс. По-видимому, сами того не подозревая, исследователи помещали в экспериментальную группу крыс, которые больше ели. Учитывая, что ученые ошибку свою признали, эта история говорит о том, что даже порядочный экспериментатор может стать жертвой собственной необъективности или неосторожности.

Еще одна история касается публикации 1988 года в научном журнале Nature. Коллектив под руководством французского иммунолога Жака Бенвениста145 опубликовал статью о том, что очень сильно разбавленное вещество может воздействовать на человеческие клетки, даже если степень разбавления такова, что от разбавляемого вещества не осталось ни одной молекулы. Это исследование имело очень важное социальное значение, ибо подтверждало возможность эффекта от гомеопатии, метода альтернативной медицины, которым пользуются сотни миллионов людей, несмотря на то что научное сообщество считает его псевдонаучным.

Один из основных принципов гомеопатии заключается в том, что активное вещество многократно разбавляется. Берется 1 грамм вещества, растворяется в 99 граммах воды, встряхивается. Так получается 1C раствор с концентраций 1 %. Затем берется 1 грамм 1С раствора, снова растворяется в 99 граммах воды и встряхивается. Так получается 2С раствор с концентрацией вещества равной 0,01 %. Последовательно повторяя эту процедуру 30 раз, можно получить типичное гомеопатическое разбавление 3 °C, которое, согласно всем известным законам физики и химии, не должно содержать молекул исходного вещества сверх тех примесей, которые присутствуют в обычной воде. Однако гомеопатическая вода в опытах Бенвениста оказывала иное воздействие на клетки человека, чем обычная вода. Это означало, что либо неверны наши представления о законах физики и химии, либо в экспериментах Бенвениста допущена ошибка.

Группа скептиков во главе с Джоном Мэддоксом, который тогда был редактором журнала Nature, приехала в лабораторию Бенвениста, чтобы посмотреть, как проводятся эксперименты. Скептики обратили внимание на то, что Бенвенист и его коллеги знают, на какие клетки действуют обычной водой, а на какие гомеопатической, и предположили, что исследователи неосознанно искажают измерения в пользу своей теории. Для исключения такой возможности была предложена процедура “слепого эксперимента”. Пробирки с гомеопатической и обычной водой были пронумерованы, а шифр был спрятан в конверте, который, как повествует история, запечатали и приклеили к потолку в лаборатории.

Когда все измерения воздействия воды на клетки были сделаны, конверт раскрыли и провели анализ данных. Оказалось, что эффект гомеопатической воды пропал146. Ученый может осознанно и неосознанно вносить небольшие искажения в измерения. Он может решать, в какую сторону округлять значения, или переделывать отдельные измерения, которые не вписываются в его представления. Подобные искажения, повторенные много раз, накапливаются из эксперимента в эксперимент и в итоге дают противоречащий здравому смыслу, но статистически достоверный результат.

Бенвенист получил Шнобелевскую премию за “стойкие убеждения, что вода является разумной жидкостью и может помнить события, следы которых давно исчезли”. Вопрос о том, страдает ли вода “склерозом” и помнит ли она, что с ней случилось в канализации, обычно остается без ответа. Ни Бенвенист, ни его последователи не признали ошибки методологии. Позже он получил вторую Шнобелевскую премию за “гомеопатическое открытие того, что вода не только обладает памятью, но и умеет делиться воспоминаниями по телефону и через интернет”. Сегодня методы, основанные на этом заблуждении, используются последователями Бенвениста для откровенного обмана. Несведущим людям предлагают лечиться “излучением лекарств”, которое “записано” на компакт-диски, или даже скачать приложение, позволяющее заряжать воду “лекарственным излучением” с помощью смартфона.

Таким образом, даже в самых серьезных научных изданиях иногда публикуются работы с ошибками (пусть и с последующим опровержением). Зная это, давайте проведем независимый анализ основных публикаций, появившихся на страницах научных журналов и указывающих на риски употребления ГМО в пищу.

Одной из первых научных публикаций, создавших истерию вокруг возможной опасности генной инженерии, была статья 1999 года Арпада Пуштаи и Стенли Эвана147 в журнале Lancet о том, что употребление генетически модифицированного картофеля, в геном которого встроен ген лектина, влияет на размер тощей кишки крыс (тощая кишка – средний отдел тонкой кишки). Эти результаты были интерпретированы как доказательство потенциальной опасности ГМО, хотя повышенная смертность крыс в работе заявлена не была и с ходу не очевидно, почему упомянутые изменения непременно вредны. Лектины – это белки, обладающие способностью специфично связывать углеводы на поверхности клеток и, как следствие, склеивать клетки друг с другом. Известно, что лектины в высоких концентрациях обладают токсичными свойствами148, 149. Употребление таких белков может приводить к нарушению усвоения питательных веществ, аллергическим реакциям и ожирению. Поэтому не ясно, зачем кому-то делать генетически модифицированную картошку с избытком лектина. И действительно, в коммерческих целях никто такие растения не производил.

Не было сомнений, что генетически модифицированное растение с геном лектина получится, мягко говоря, не очень полезным. Никто и не отрицает, что можно с помощью генной инженерии вывести токсичный сорт любого растения. Но Пуштаи проверял не токсичность лектина в картошке. Он хотел показать, что сама процедура создания трансгенного организма может нести в себе угрозу для здоровья и приводить к непредсказуемым последствиям в силу неизвестных молекулярным биологам факторов.

Пуштаи сравнивал крыс, которые ели обычную картошку, генетически модифицированную картошку, производящую лектин, и обычную картошку с белком лектина в качестве пищевой добавки. Логика была такой: если верны представления молекулярных биологов и синтез белка лектина является единственным существенным изменением генетически модифицированной картошки по сравнению с обычной, то она будет такой же, как обычная картошка, к которой добавили чистый лектин. Пуштаи обнаружил статистически достоверное (P = 0,041) отличие в размерах одного из анализированных органов у крыс, которые ели ГМО и обычную картошку с лектином, пусть и на грани самого мягкого порога статистической значимости 0,05.

По аналогии с примером про загаданное число, которое я пытался отгадать, у Пуштаи было как минимум пять подопытных “девушек”. Этих “девушек” звали: желудок, тощая кишка, подвздошная кишка, слепая кишка и прямая кишка. Если сделать поправку на пять множественных сравнений, оказывается, что между группами крыс в работе Пуштаи, которые питались генетически модифицированной картошкой и картошкой с добавлением лектина, различия не выходят за рамки ожидаемого случайного разброса. С поправкой Бонферрони самый мягкий порог статистической значимости теперь не α = 0,05, а α = 0,01, и это меньше, чем полученное значение P, равное 0,041. На самом деле в экспериментах Пуштаи “девушек” было еще больше: не все признаки, которые он исследовал, вошли в статью, хотя это уже не так существенно.

Зато разница между вареной и невареной картошкой в работе Пуштаи осталась значимой даже после учета поправки на множественные сравнения. И действительно, варка обезвреживает лектины, поэтому вареная картошка оказывает на организм крыс иное воздействие, чем сырая. Стоит отметить, что другие множественные сравнения, возникшие в результате того, что изучались отличия между вареной картошкой и сырой, с лектином и без лектина, генетически модифицированной и немодифицированной, были учтены в использованном стандартном статистическом тесте.

Британское королевское общество провело независимую экспертизу работы Пуштаи150 с участием шести независимых специалистов, чьи области знаний покрывали сферы статистики, клинических испытаний, физиологии, вопросов питания, генетики, развития и иммунологии. Эти и другие эксперты отметили151, что эксперименты Пуштаи не были слепыми, то есть экспериментатор мог повлиять на результаты (как в истории с Бенвенистом), и нашли в них ряд других изъянов. Однако достаточно сделать аккуратный статистический анализ, чтобы показать, что, даже несмотря на всевозможные огрехи, данные, полученные Пуштаи, скорее показывают отсутствие значимых отличий между ГМ и не ГМ картошкой.

На почве вызванного данным исследованием скандала Пуштаи был отстранен от должности в институте, где он работал. С одной стороны, мне бы хотелось заступиться за него: ошибки, допущенные в ходе исследования и в интерпретации результатов, не обязательно указывают на его недобросовестность. С другой стороны, причина устранения Пуштаи была не в том, что он получил “неугодные научные результаты” или плохо работал.

Еще до того, как обсуждаемая статья прошла рецензию и была опубликована, Пуштаи выступил на телевидении, где высказал свои подозрения о вреде ГМО. То, что выступление на ТВ предшествовало публикации научной статьи, негативно отразилось на репутации института, в который посыпались звонки от журналистов, государственных деятелей, представителей индустрии и возмущенных ученых. Публичное выступление оказало влияние и на принятие статьи в журнал. Один из рецензентов статьи Пуштаи написал, что работа содержит существенные недостатки, но “чтобы избежать подозрения в заговоре против Пуштаи и дать коллегам возможность увидеть данные собственными глазами”, ее стоит опубликовать152.

Перейдем к следующему исследованию, в котором было заявлено о возможном нежелательном эффекте ГМО. Оно было опубликовано в 2011 году в Journal of Food Sciences153 и тоже получило широкую общественную огласку. В статье утверждалось, что бактерии рода Lactobacillus (молочнокислые бактерии) обнаруживаются в большем количестве в слепой кишке самцов крыс, которых кормили обычным рисом, по сравнению с кишкой самцов крыс, у которых 70 % корма составлял ГМ рис (P < 0,05). На самках крыс эффект не воспроизводился. В этой работе имело место 42 множественных сравнения: независимо рассмотрели два пола крыс (у самок эффекта не обнаружили), семь микробиологических параметров, три разных схемы питания ГМ рисом.

Применив поправку Бонферрони, пересчитав уровень значимости и P, мы приходим к следующему выводу: никаких статистически достоверных отличий между крысами, которых кормили обычным и ГМ рисом, не обнаружено. Мы не можем принять выводы авторов о том, что “ГМ рис оказывает комплексное влияние на микрофлору слепой кишки и это может иметь отношение к здоровью организма”. Но взглянем на это по-другому: авторы перебрали кучу микробиологических параметров и достоверных эффектов, связанных с употреблением ГМ корма, продемонстрировать не смогли.

Авторы еще одной работы154 утверждали, что самки свиней, которых кормили генетически модифицированной кукурузой, имеют более крупные (в среднем на 25 % по массе) матки по сравнению со свиньями, которые ели обычную кукурузу (P = 0,025). Авторы также сравнивали вес почек, сердца, печени, селезенки, легких, желудка и яичников. Это значит, что множественных сравнений было восемь и порог статистической значимости должен быть α = 0,05/8 = 0,00625. То есть наблюдаемые отличия статистически не достоверны.

Авторы также заявляют, что у свиней, которых кормили ГМ кормом, в 2,6 раза чаще встречалось серьезное воспаление желудка (P = 0,004) по сравнению с контрольной группой. Если рассмотреть отдельно самцов и самок, эффект был статистически достоверным в случае обоих полов. У самцов серьезное воспаление случалось в 4 раза чаще (P = 0,041), а у самок в 2,2 раза чаще (P = 0,034). В ходе исследования независимо рассматривались патологии почек, сердца, печени, селезенки, кишечника, яичника, легочная пневмония, перикардит и абнормальные лимфатические узлы. Потребовалось разделение патологий на несколько групп: легкие, умеренные и серьезные воспаления желудка, эрозия и три типа язв. Причем такое разделение было важным для авторов, ведь если объединить случаи умеренного и серьезного воспаления желудка, достоверные отличия между группами свиней исчезают даже при пороге значимости α = 0,05.

В итоге было проведено как минимум 17 попарных сравнений. В лучшем случае исправленное значение α = 0,05/17 = 0,0029, и даже значение P = 0,004, полученное для серьезного воспаления желудка, оказывается статистически недостоверным. Любопытно, что авторы также измеряли 17 биохимических показателей, но никаких существенных отличий между группами свиней не обнаружили (то есть множественных сравнений было еще больше). Мы приходим к выводу, что исследователи не смогли продемонстрировать никаких достоверных отличий между свиньями, которые ели и не ели ГМ корм.

В 2014 году была опубликована статья, авторы которой сравнили содержание питательных веществ и микроэлементов в генетически модифицированной, обычной и “натуральной” (органической) сое155. Согласно их данным, в “натуральной” сое по сравнению с ГМ соей было больше белка (P = 0,003), неорганических соединений (P = 0,005), всех незаменимых аминокислот (P = 0,037) и из них в отдельности лизина (P = 0,002). Кроме того, в “натуральной” сое было больше аргинина (P = 0,04), бария (P = 0,00005) и цинка (P = 0,0002), но меньше пальмитиновой кислоты (P = 0,046), насыщенных жирных кислот (P = 0,001), линолевой кислоты (P = 0,01) и селена (P = 0,0003). Всего в работе приводилось 35 сравнений, которые необходимо учесть. После поправки уровень значимости α становится равным 0,05/35 = 0,00142, и остаются только четыре статистически достоверных отличия.

Во всех случаях достоверных отличий (и в целом) ГМ соя оказалась намного ближе к обычной сое, чем “натуральная”. То есть мы говорим об отличиях между “натуральным” и обычным продуктом, а не об особых качествах ГМ сои. В “натуральной” сое по сравнению с ГМ и обычной соей больше бария. Этот достоверный результат в статье не обсуждается. Можно предположить, что барий не стали обсуждать в связи с некоторыми его сомнительными качествами. В высоких дозах этот элемент считается токсичным156, способным вызывать нарушения сердечного ритма157 и паралич158. Это происходит потому, что барий умеет нарушать работу клеточных каналов159, которые играют важную роль в работе нервных клеток. Впрочем, справедливости ради отметим, что количество бария в такой сое все равно невелико, поэтому едва ли подобные отличия имеют значение для потребителей. Как говорил Парацельс: “Все есть яд, и ничто не лишено ядовитости, одна лишь доза делает яд незаметным”.

В “натуральной” сое больше цинка, который тоже может быть токсичен в высоких концентрациях160, а еще в ней меньше селена, который, согласно некоторым исследованиям, полезен, так как имеет противораковые свойства161. Эти потенциально негативные качества органической сои в статье тоже не обсуждаются. Полезно ли употреблять продукт со сниженным содержанием насыщенных жирных кислот – вопрос, на который пока нет четкого ответа в научной литературе162, 163.

Поправка на множественные сравнения отсутствовала в еще одной работе, на которую часто ссылаются противники ГМО. В 2008 году Мануэла Малатеста164 и ее соавторы опубликовали статью о том, что у мышей, которые на протяжении двух лет (от рождения) ели ГМ сою, отмечены изменения в белковом составе печени по сравнению с контрольной группой. Все мыши, которые ели ГМО, дожили до конца эксперимента. Более того: никаких значительных патологий печени не было обнаружено ни у одной мыши.

Но авторы решили на этом не останавливаться и проанализировали содержание в печени более тысячи различных белков и еще несколько десятков других параметров. Сравнив некоторые проанализированные параметры, они нашли статистические отличия между группами (вплоть до P < 0,001). После поправки на множественные сравнения все эти различия перестают быть достоверными. Но даже если бы нашлись какие-то достоверные отличия между группами крыс – что с того? Допустим, состав пищи немного изменился, и печень, участвующая в обмене веществ, изменила характер своей работы. Сравните мышей, которые ели два сорта сои, и возможно, что без всяких ГМО вы получите куда большую разницу.

Работу Сералини я специально оставил напоследок. В данной работе авторы решили и вовсе пренебречь статистическим анализом. Зачем, если журналисты не будут читать статью дальше названия и аннотации? К чему порой приводит подобное пренебрежение, можно продемонстрировать следующим примером. Представьте, что у вас есть обычная монетка. Вы подкинули ее десять раз и увидели, что монетка выпала решкой два раза из десяти. После этого вы взмолились Тору, скандинавскому богу грома и бури, и попросили его, чтобы решка выпадала чаще. В следующем эксперименте решка выпала семь раз из десяти. И вот вы уже пишете научную статью, в которой заявляете, что молитва Тору в три с половиной раза увеличила шанс выпадения решки! Бог Тор не только существует и отвечает на молитвы, но и управляет монетками!

Никого не должно смущать, что обе серии бросков прекрасно вписываются в рамки предположения, что монетка в обоих случаях была одинаковая и абсолютно безупречная, а различия между сериями случайны. Ирония заключается в том, что логика в работе Сералини абсолютно аналогична! Разбор статьи Сералини будет излишне подробным. Но это, возможно, лучшая в истории науки демонстрация того, как не стоит проводить исследования.

Сералини взял 100 самцов и 100 самок крыс. Каждую сотню крыс случайным образом разбили на 10 групп по 10 крыс. Шесть групп каждого пола получали в своем рационе либо 11, либо 22, либо 33 % ГМ кукурузы, устойчивой к гербициду “Раундап” (Roundup). Им поливали при выращивании кукурузу, предназначенную в пищу трем из этих шести групп. Из оставшихся четырех групп три получали обычную кукурузу и воду с разной концентрацией “Раундапа”. В рацион крыс десятой, контрольной группы входила обычная кукуруза.

Внимание! Это не конец книги.

Если начало книги вам понравилось, то полную версию можно приобрести у нашего партнёра - распространителя легального контента. Поддержите автора!

Страницы книги >> Предыдущая | 1 2 3 4 5 6
  • 4.6 Оценок: 5

Правообладателям!

Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.

Читателям!

Оплатили, но не знаете что делать дальше?


Популярные книги за неделю


Рекомендации