Электронная библиотека » Александр Солодков » » онлайн чтение - страница 18


  • Текст добавлен: 24 октября 2017, 23:20


Автор книги: Александр Солодков


Жанр: Прочая образовательная литература, Наука и Образование


сообщить о неприемлемом содержимом

Текущая страница: 18 (всего у книги 54 страниц) [доступный отрывок для чтения: 18 страниц]

Шрифт:
- 100% +
15.2.2. Функции надпочечников

Надпочечники располагаются над почками и состоят из двух различающихся по своим функциям частей – коры надпочечников (близкой по происхождению к половым железам) и мозгового вещества (формирующегося из симпатических клеток).

В коре вырабатывается группа гормонов, называемых кортикоидами, или кортикостероидами. Кортикоиды являются жизненно необходимыми для организма гормонами, их отсутствие приводит к смерти.

Кора надпочечников состоит из следующих трех слоев:

• клубочковая (наружная) зона, секретирующая гормоны минералкортикоиды (в основном – альдостерон);

• пучковая (средняя) зона, секретирующая глюкокортикоиды (преимущественно кортизол или гидрокортизол);

• сетчатая (внутренняя) зона, секретирующая небольшое количество половых гормонов (андрогенов и эстрогенов).

Минералкортикоиды у человека представлены основным гормоном – альдостероном, который имеет существенное значение в регуляции минерального обмена в организме. Он способствует поддержанию на постоянном уровне натрия и калия в крови, лимфе и межтканевой жидкости, увеличивая при необходимости обратное всасывание натрия в почках и выход калия в мочу. Сохранение натрия в плазме крови приводит к задержке воды в организме и повышению артериального давления. От правильного соотношения натрия и калия в жидких средах зависят процессы возникновения и проведения возбуждения в нервной и мышечной тканях, т. е. все процессы восприятия, переработки информации и управления поведением организма. Нарушение секреции альдостерона может привести к гибели организма. Образование альдостерона регулируется не только содержанием Na и К в крови, но и с помощью ренина, выделяемого эндокринной тканью почек при ухудшении в них кровотока.

Глюкокортикоиды главным образом обеспечивают синтез глюкозы (глюконеогенез), образование запасов гликогена в печени и мышцах, увеличение концентрации глюкозы в крови (мобилизация из печени). При этом они выполняют особую роль в белковом обмене. Они угнетают синтез белков в печени и мышцах (создают отрицательный азотистый баланс), увеличивают выход свободных аминокислот, их переаминирование и стимулируют образование из них ферментов, необходимых для новообразования глюкозы. Вызывая при этом мобилизацию жиров из жировой ткани, глюкокортикоиды создают необходимые жировые и углеводные энергоресурсы для активной деятельности организма. Повышению работоспособности помогает также увеличение этими гормонами восприимчивости тканей к адреналину и норадреналину, повышение иммунитета и снижение аллергических реакций, улучшение процессов переработки информации в сенсорных системах и ЦНС. Все указанные эффекты глюкокортикоидов (кортизола) обеспечивают повышение устойчивости организма к действию неблагоприятных факторов среды, стрессовым ситуациям, в связи с чем их называют адаптивными гормонами.

Избыточное содержание кортизола в организме приводит к ожирению, гипергликемии, распаду белков, отекам, повышению артериального давления. При недостаточности кортизола развивается бронзовая (или аддисонова) болезнь, которая сопровождается бронзовой окраской кожи, ослаблением деятельности сердечной и скелетных мышц, повышенной утомляемостью, снижением устойчивости к инфекционным заболеваниям.

Половые гормоны надпочечников – это преимущественно андрогены (мужские половые гормоны) и эстрогены (женские половые гормоны), которые наиболее активны на ранних этапах онтогенеза (до полового созревания) и в пожилом возрасте (после снижения активности половых желез). Они ускоряют половое созревание мальчиков, формируют половое поведение у женщин. Андрогены вызывают анаболические эффекты, повышая синтез белков в коже, мышечной и костной ткани, способствуют развитию вторичных половых признаков по мужскому типу (характерное оволосение у мальчиков и избыточное оволосение – вирилизация – у девушек).

Мозговой слой надпочечников содержит аналоги симпатических клеток (хромаффинные клетки), которые секретируют адреналин и норадреналин, называемые катехоламинами. Они синтезируются из аминокислоты тирозина в результате цепочки поэтапных преобразований из предшественников (тирозин—ДОФА—дофамин—норадреналин—адреналин). В мозговом слое синтезируется в 6 раз больше гормона адреналина, чем норадреналина. Однако в плазме крови норадреналина оказывается в 4 раза больше за счет дополнительного его поступления из окончаний симпатических нервов. Эти гормоны различаются по способности связывать разные адренорецепторы клеток-мишеней: норадреналин имеет сродство к альфа-адренорецепторам всех сосудов, а адреналин к альфа-рецепторам сосудов большинства органов и к бета-адренорецепторам сосудов сердца, мышц и мозга, что определяет некоторые различия их влияний.

Адреналин и норадреналин играют важную роль в адаптации организма к чрезвычайным напряжениям – стрессам, т. е. они являются адаптивными гормонами.

Адреналин вызывает целый ряд эффектов, обеспечивающих деятельное состояние организма:

• учащение и усиление сердечных сокращений, облегчение дыхания путем расслабления бронхиальных мышц, что обеспечивает увеличение доставки кислорода тканям;

• рабочее перераспределение крови – путем сужения сосудов кожи и органов брюшной полости и расширения сосудов мозга, сердечной и скелетных мышц;

• мобилизация энергоресурсов организма за счет увеличения выхода в кровь глюкозы из печеночных депо и жирных кислот из жировой ткани;

• усиление в тканях окислительных реакций и повышение теплопродукции;

• стимуляция анаэробного расщепления глюкозы в мышцах, т. е. повышение анаэробных возможностей организма;

• повышение возбудимости сенсорных систем и ЦНС.

Норадреналин вызывает сходные эффекты, но сильнее действует на кровеносные сосуды, вызывая повышение артериального давления, и менее активен в отношении метаболических реакций.

Активация выброса адреналина и норадреналина в кровь обеспечивается симпатической нервной системой, вместе с которой эти гормоны функционально составляют единую симпато-адреналовую систему, обеспечивающую приспособительные реакции организма к любым изменениям внешней среды.

15.2.3. Функции щитовидной (тиреоидной) железы

В щитовидной железе имеются две группы клеток, образующих два основных вида гормонов. Одна группа клеток вырабатывает трийодтиронин и тироксин, а другая – кальцитонин. Первые клетки захватывают из крови соединения йода, преобразуют их в атомарный йод и в комплексе с остатками аминокислоты тирозина синтезируют гормоны трийодтиронин 3) и тетрайодтиронин, или тироксин 4), которые поступают в кровь и лимфу. Эти гормоны, активизируя генетический аппарат клеточного ядра и митохондрии клеток, стимулируют все виды обмена веществ и энергетический обмен организма. Они усиливают поглощение кислорода, увеличивают основной обмен в организме и повышают температуру тела, влияют на белковый, жировой и углеводный обмен, обеспечивают рост и развитие организма, усиливают эффективность симпатических воздействий на частоту сердечных сокращений, артериальное давление и потоотделение, повышают возбудимость ЦНС.

В крови тироксин существует в связанной с белками неактивной форме. Лишь около 0,1 % его количества находится в свободной, активной форме, которая и вызывает функциональные эффекты. Более выраженным физиологическим действием обладает трийодтиронин, но его содержание в крови значительно ниже.

Гормон кальцитонин (или тирокальцитонин) вместе с гормонами околощитовидных желез участвует в регуляции содержания кальция в организме. Он вызывает снижение концентрации кальция в крови и поглощение его костной тканью, что способствует образованию и росту костей. В регуляции секреции кальцитонина участвуют гормоны желудочно-кишечного тракта, в частности гастрин.

При недостаточном поступлении в организм йода возникает резкое снижение активности щитовидной железы – гипотиреоз. В детском возрасте это приводит к развитию кретинизма – задержке роста, полового, физического и умственного развития, нарушениям пропорций тела. Дефицит гормонов щитовидной железы у взрослых вызывает слизистый отек тканей – микседему. Он возникает в результате нарушения белкового обмена, повышающего онкотическое давление тканевой жидкости и соответственно вызывающего задержку воды в тканях. При этом, несмотря на разрастание железы (зоб), секреция гормонов снижена. Для компенсации недостатка йода в пище и воде, имеющегося в некоторых регионах земли и вызывающего так называемый эндемический зоб, в рацион населения включают йодированную соль и морепродукты. Гипотиреоз может также возникать при генетических аномалиях, в результате аутоиммунного разрушения щитовидной железы и при нарушениях секреции тиреотропного гормона гипофиза.

В случае гипертиреоза (избыточного образования гормонов щитовидной железы) возникают токсические явления, вызывающие Базедову болезнь. Происходит разрастание щитовидной железы (зоб), повышается основной обмен, наблюдаются потеря веса, пучеглазие, повышение раздражительности, тахикардия.

15.2.4. Функции околощитовидных желез

У человека имеются четыре околощитовидные железы, прилегающие к задней поверхности щитовидной железы. Их продукт – паратирин, или паратгормон – участвует в регуляции содержания кальция в организме. Он повышает концентрацию кальция в крови, усиливая его всасывание в кишечнике и выход из костей. Выработка паратгормона усиливается при недостаточном содержании кальция в крови и в результате симпатических влияний, а подавление секреции – при избытке кальция. Нарушение нормальной секреции приводит в случае гиперфункции околощитовидных желез к потере костной тканью кальция и фосфора (деминерализация костей) и деформации костей, а также к появлению камней в почках, падению возбудимости нервной и мышечной тканей, ухудшению процессов внимания и памяти. В случае недостаточной функции околощитовидных желез возникают резкое повышение возбудимости нервных центров, патологические судороги и смерть в результате тетанического сокращения дыхательных мышц.

15.2.5. Функции вилочковой железы и эпифиза

Вилочковая железа (син.: тимус, зобная железа) имеет основное значение для обеспечения в организме иммунитета (образование и специализация Т-лимфоцитов), а также выполняет эндокринные функции. Секрет этой железы – гормон тимозин – способствует иммунологической специализации Т-лимфоцитов. Кроме того, он обеспечивает процессы проведения возбуждения в синапсах, стимулирует гормональные реакции, облегчая связывание гормонов, активирует метаболические реакции в организме.

Функции эпифиза (син.: верхнего мозгового придатка, шишковидной железы) связаны со степенью освещенности организма и соответственно имеют четкую суточную периодичность. Это своеобразные «биологические часы» организма. Гормон эпифиза мелатонин вырабатывается и секретируется в кровь и цереброспинальную жидкость под влиянием импульсов от сетчатки глаза. На свету выработка его снижается, а в темноте – повышается. Мелатонин угнетает функции гипофиза, снижая, с одной стороны, выработку облегчающих его функции гипоталамических либеринов, а с другой – непосредственно угнетая активность аденогипофиза, в первую очередь подавляя образование гонадотропинов. Под действием мелатонина задерживается преждевременное развитие половых желез, формируется цикличность половых функций, определяется длительность овариально-менструального цикла женского организма.

15.2.6. Эндокринные функции поджелудочной железы

Поджелудочная железа функционирует как железа внешней секреции, выделяя пищеварительный сок через специальные протоки в двенадцатиперстную кишку, и как железа внутренней секреции, секретируя непосредственно в кровь гормоны инсулин и глюкагон. Около 1 % массы этой железы составляют особые скопления клеток – островки Лангерганса, среди которых имеются в преобладающем количестве бета-клетки, вырабатывающие гормон инсулин, и в меньшем числе альфа-клетки, выделяющие гормон глюкагон.

Глюкагон вызывает расщепление гликогена в печени и выход в кровь глюкозы, а также стимулирует расщепление жиров в печени и жировой ткани.

Инсулин – это полипептид, обладающий широким действием на различные процессы в организме – регулирует все виды обмена веществ и энергообмен. Действуя путем повышения проницаемости клеточных мембран мышечных и жировых клеток, он способствует переходу глюкозы внутрь мышечных волокон, увеличивая мышечные запасы синтезируемого в них гликогена, а в клетках жировой ткани способствует превращению глюкозы в жир. Проницаемость клеточных мембран под влиянием инсулина повышается также и для аминокислот, в результате чего стимулируется синтез информационной РНК и внутриклеточный синтез белка. В печени инсулин вызывает синтез гликогена, аминокислот и белков в печеночных клетках. Все указанные процессы обусловливают анаболический эффект инсулина.

Продукция гормонов поджелудочной железы регулируется содержанием глюкозы в крови, собственными особыми клетками в островках Лангерганса, ионами Са2+ и влияниями вегетативной нервной системы. В случае снижения концентрации глюкозы в крови (гипогликемии) до 2,5 мМоль/л или 40–50 мг% в первую очередь резко нарушается деятельность мозга, лишенного источников энергии, наступают судороги, потеря сознания и даже смерть. Гипогликемия может возникать при избытке инсулина в организме, при повышенном расходе глюкозы во время мышечной работы.

Дефицит инсулина вызывает тяжелое заболевание – сахарный диабет (мочеизнурение), характеризующийся гипергликемией. В организме при этом нарушается утилизация в клетках глюкозы, резко повышается концентрация глюкозы в крови и в моче, что сопровождается значительными потерями воды с мочой (до 12–15 л в сутки), соответственно сильной жаждой и большим потреблением воды. Возникает мышечная слабость, падение веса. Потерю углеводных источников энергии организм компенсирует распадом жиров и белков. В результате их неполной переработки в крови накапливаются ядовитые вещества, кетоновые тела и возникает сдвиг рН крови в кислую сторону (ацидоз). Это приводит к диабетической коме с потерей сознания и угрозой смерти.

15.2.7. Функции половых желез

К половым железам (гонадам) относят семенники в мужском организме и яичники в женском организме. Эти железы выполняют двоякую функцию: формируют половые клетки и выделяют в кровь половые гормоны. Как в мужском, так и в женском организме вырабатываются и мужские половые гормоны (андрогены), и женские половые гормоны (эстрогены), которые отличаются по их количеству. Их выработка и активность регулируются гонадотропными гормонами гипофиза. По химической структуре они являются стероидами (производными холестерина), продуцируются из общего предшественника. Эстрогены образуются путем преобразования из тестостерона.

Мужской половой гормон тестостерон вырабатывается специальными клетками в области извитых канальцев семенников. Другая часть клеток обеспечивает созревание сперматозоидов и вместе с тем продуцирует эстрогены. Гормон тестостерон начинает действовать еще в стадии внутриутробного развития, формируя организм по мужскому типу. Он обеспечивает развитие первичных и вторичных половых признаков мужского организма, регулирует процессы сперматогенеза, протекание половых актов, формирует характерное половое поведение, особенности строения и состава тела, психические особенности. Тестостерон обладает сильным анаболическим действием – он стимулирует синтез белков, способствуя гипертрофии мышечной ткани.

Выработка женских половых гормонов (эстрогенов) осуществляется в яичниках клетками фолликулов. Основным гормоном этих клеток является эстрадиол. В яичниках также вырабатываются мужские половые гормоны – андрогены. Эстрогены регулируют процессы формирования женского организма, развитие первичных и вторичных половых признаков женского организма, рост матки и молочных желез, становление цикличности половых функций, протекание родового акта. Эстрогены обладают анаболическим действием в организме, но в меньшей степени, чем андрогены. Кроме гормонов эстрогенов, в женском организме вырабатывается гормон прогестерон. Этой функцией обладают клетки желтого тела, которое после овуляции становится особой железой внутренней секреции. Секреция эстрогенов и прогестерона находится под контролем полового центра гипоталамуса и гонадотропного гормона гипофиза, которые формируют периодичность овариально-менструального цикла (ОМЦ) длительностью, в среднем, около 28 дней на протяжении всего детородного периода жизни женщины (примерно с 12–15 лет до 45–55 лет).

Овариально-менструальный цикл состоит из пяти фаз:

– менструальная (примерно 1–3 день) – отторжение неоплодотворенной яйцеклетки с частью маточного эпителия и кровотечением (менструацией);

– постменструальная (4–12 день) – созревание очередного фолликула с яйцеклеткой и усиленное выделение эстрогенов;

– овуляторная (13–14 день) – разрыв фолликула и выход яйцеклетки в маточные трубы;

– постовуляторная (15–25 день) – образование из лопнувшего фолликула желтого тела и продуцирование гормона прогестерона, необходимого для внедрения оплодотворенной яйцеклетки в стенку матки и нормального протекания беременности;

– предменструальная (26–28 день) – разрушение желтого тела (при отсутствии оплодотворения), снижение секреции эстрогенов и прогестерона, ухудшение самочувствия и работоспособности.

15.3. Изменения эндокринных функций при различных состояниях

При чрезвычайных физических и психических раздражениях (перегревание, переохлаждение, боль, страх, тяжелые психические переживания, непомерная физическая нагрузка и др.) у человека возникает состояние напряжения – стресс. При этом в организме развертываются как специфические реакции защиты от действующего фактора, так и неспецифические приспособительные реакции. Комплекс защитных неспецифических реакций организма на неблагоприятные влияния среды был назван канадским ученым Г. Селье (1960) общим адаптационным синдромом. Это стандартные реакции, которые возникают при любых раздражителях, связаны с эндокринными изменениями и протекают в следующие три стадии.

• Стадия тревоги проявляется дискоординацией различных функций организма, подавлением функций щитовидной и половых желез, в результате чего нарушаются анаболические процессы синтеза белков и РНК; отмечается снижение иммунных свойств организма – уменьшаются активность вилочковой железы и количество лимфоцитов в крови; возможно появление язв желудка и 12-перстной кишки; организмом включаются срочные защитные реакции быстрого рефлекторного выброса в кровь гормона надпочечников адреналина, что позволяет резко повысить деятельность сердечной и дыхательной систем, начать мобилизацию углеводных и жировых источников энергии; характерен также излишне высокий уровень энерготрат при низкой умственной и физической работоспособности.

• Стадия резистентности, т. е. повышенной устойчивости организма, характеризуется возрастанием секреции гормонов коркового слоя надпочечников – кортикоидов, что способствует нормализации белкового обмена (активации синтеза белков в тканях); повышается содержание в крови углеводных источников энергии; возникает преобладание концентрации в крови норадреналина над адреналином – это обеспечивает оптимизацию вегетативных изменений и экономизацию энерготрат; повышается тканевая устойчивость к действию на организм неблагоприятных факторов среды; возрастает работоспособность.

• Стадия истощения возникает при чрезмерно сильных и длительных раздражениях; функциональные резервы организма исчерпываются; происходит истощение гормональных и энергетических ресурсов (содержание катехоламинов в надпочечниках снижается до 10–15 % от исходного уровня); уменьшается максимальное и пульсовое артериальное давление крови; падает сопротивляемость организма повреждающим воздействиям; невозможность дальнейшей борьбы с вредными влияниями может приводить к смертельному исходу.

Стрессовые реакции – это нормальные приспособительные реакции организма к действию сильных неблагоприятных раздражителей – стрессоров. Действие стрессоров воспринимается различными рецепторами тела и через кору больших полушарий передается на гипоталамус, где включаются нервные и нейрогуморальные механизмы адаптации. При этом происходит вовлечение двух основных систем активации всех метаболических и функциональных процессов в организме.

• Осуществляется активация так называемой симпато-адреналовой системы. По симпатическим волокнам к мозговому слою надпочечников поступают рефлекторные влияния, вызывающие срочный выброс в кровь адаптивного гормона адреналина.

• Действие адреналина на ядра гипоталамуса стимулирует активность гипоталамо-гипофизарно-надпочечниковой системы. Образуемые в гипоталамусе облегчающие вещества – либерины – с током крови передаются в переднюю долю гипофиза и уже через 2–2,5 мин усиливают секрецию кортикотропина (АКТГ), который, в свою очередь, уже через 10 мин вызывает увеличенный выброс гормонов коркового слоя надпочечников – глюкокортикоидов и альдостерона. Вместе с повышенной секрецией соматотропного гормона и норадреналина эти гормональные изменения обусловливают мобилизацию энергетических ресурсов организма, активацию обменных процессов и повышение тканевой сопротивляемости.

Выполнение кратковременной и малоинтенсивной мышечной работы (как показали исследования работающего человека или экспериментальных животных) не вызывают заметных изменений содержания гормонов в плазме крови и в моче. Значительные мышечные нагрузки (превышающие 50–70 % от максимального потребления кислорода) вызывают состояние напряжения в организме и повышенную секрецию соматотропного гормона, кортикотропина, вазопрессина, глюкокортикоидов, альдостерона, адреналина, норадреналина и паратгормона. Реакции эндокринной системы меняются в зависимости от особенностей спортивных упражнений. В каждом отдельном случае создается сложная специфическая система гормональных взаимоотношений с какими-либо ведущими гормонами. Их регулирующее влияние на метаболические и энергетические процессы осуществляется вместе с другими биологически активными веществами (эндорфины, простагландины) и зависит от состояния связывающих гормоны рецепторов клеток-мишеней.

С увеличением тяжести работы, повышением ее мощности и напряженности (особенно в соревнованиях) происходит повышение секреции адреналина, норадреналина и кортикоидов. Однако гормональные реакции у нетренированных лиц и квалифицированных спортсменов заметно различаются. У людей, не подготовленных к физическим нагрузкам, происходит быстрый и очень большой выброс в кровь этих гормонов (запасы которых невелики), и вскоре наступает их истощение, ограничивающее работоспособность. У тренированных спортсменов функциональные резервы надпочечников существенно увеличены. Секреция катехоламинов не является чрезмерной, она более равномерна и намного более длительна.

Активация симпато-адреналовой системы увеличивается еще в предстартовом состоянии, особенно у более слабых, тревожных и неуверенных в своих силах спортсменов, выступления которых в соревнованиях оказываются неуспешными. У них в большей мере нарастает секреция адреналина – «гормона тревоги». У высококвалифицированных и уверенных в себе спортсменов с большим стажем активация симпато-адреналовой системы оптимизируется и наблюдается преобладание норадреналина – «гормона гомеостаза». Под его влиянием развертываются функции дыхательной и сердечно-сосудистой систем, усиливается доставка кислорода тканям и стимулируются окислительные процессы, повышаются аэробные возможности организма.

Увеличение выработки адреналина и норадреналина у спортсменов в условиях напряженной соревновательной деятельности сопряжено с состоянием эмоционального стресса. При этом секреция адреналина и норадреналина может быть увеличена в 5–6 раз по сравнению с исходным фоном в дни отдыха от нагрузок. Описаны отдельные случаи нарастания выделения адреналина в 25 раз, а норадреналина в 17 раз от исходного уровня при марафонском беге и лыжных гонках на 50 км.

Активизация гипоталамо-гипофизарно-надпочечниковой системы зависит от вида спорта, состояния тренированности и квалификации спортсмена. В циклических видах спорта подавление активности этой системы в предстартовом состоянии и во время соревнований коррелирует с низкой работоспособностью. Наиболее успешно выступают спортсмены, в организме которых секреция кортикоидов увеличивается в 2–4 раза по сравнению с исходным фоном. Особенное увеличение выхода кортикоидов и кортикотропина отмечается при выполнении физических нагрузок большого объема и интенсивности.

У спортсменов скоростно-силовых видов спорта (например, у десятиборцев в легкой атлетике) активность гипоталамо-гипофизарно-надпочечниковой системы в предстартовом состоянии снижена (эффект экономизации расхода гормонов), но во время соревнований увеличена в 5–8 раз.

В возрастном плане отмечена повышенная фоновая и рабочая секреция кортикоидов и соматотропного гормона у спортсменов-подростков, особенно у акселератов. У взрослых спортсменов их секреция увеличивается с ростом спортивного мастерства, что тесно коррелирует с успешностью выступлений на соревнованиях. При этом отмечено, что в результате адаптации к систематическим физическим нагрузкам одно и то же количество гормонов быстрее совершает свой кругооборот в организме квалифицированных спортсменов, чем у людей, не занимающихся физическими упражнениями и не адаптированных к таким нагрузкам. Гормоны быстрее образуются и секретируются железами, успешнее проникают в клетки-мишени и стимулируют обменные процессы, быстрее проходят метаболические превращения в печени, а продукты их распада срочно выводятся почками. Таким образом, при одних и тех же стандартных нагрузках у опытных спортсменов секреция кортикоидов протекает наиболее экономно, но при выполнении предельных нагрузок их выделение значительно превышает уровень у нетренированных лиц.

Глюкокортикоиды усиливают приспособительные реакции в организме, стимулируя глюконеогенез и восполняя затраты энергоресурсов в организме. Увеличение секреции альдостерона при мышечной работе позволяет компенсировать потери натрия с потом и вывести накопившиеся излишки калия.

Активность щитовидной железы и половых желез у большей части спортсменов (за исключением наиболее подготовленных) изменяется незначительно. Усиление продукции инсулина и тиреоидных гормонов особенно велико после окончания работы для пополнения затрат энергоресурсов в организме. Адекватные физические нагрузки являются важным стимулятором развития и функционирования половых желез. Однако большие нагрузки, особенно у юных спортсменов, подавляют их гормональную активность. В организме женщин-спортсменок большие объемы физических нагрузок могут нарушать протекание овариально-менструального цикла. В организме мужчин андрогены стимулируют нарастание мышечной массы и силы скелетных мышц. Размеры вилочковой железы у тренирующихся спортсменов уменьшаются, но активность ее не снижается.

Развитие утомления сопровождается снижением выработки гормонов, а состояния переутомления и перетренированности – расстройством эндокринных функций. Вместе с тем оказалось, что высококвалифицированные спортсмены обладают особенно развитыми возможностями произвольной саморегуляции функций в работающем органе. При волевом преодолении утомления у них отмечено возобновление роста секреции адаптивных гормонов и новая активация метаболических процессов в организме. Следует также иметь в виду, что предельные нагрузки не только уменьшают выделение гормонов, но и нарушают процесс их связывания рецепторами клеток-мишеней (например, нарушается связывание глюкокортикоидов в миокарде и гормон теряет активирующее действие на работу сердечной мышцы).

Активность эндокринных желез находится также под контролем деятельности эпифиза и подчиняется суточным колебаниям. Перестройка суточных биоритмов гормональной активности у человека при дальних перелетах, пересечении многих временных поясов занимает около двух недель.

Внимание! Это не конец книги.

Если начало книги вам понравилось, то полную версию можно приобрести у нашего партнёра - распространителя легального контента. Поддержите автора!

Страницы книги >> Предыдущая | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
  • 3 Оценок: 1

Правообладателям!

Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.

Читателям!

Оплатили, но не знаете что делать дальше?


Популярные книги за неделю


Рекомендации