Электронная библиотека » Амит Кетвала » » онлайн чтение - страница 4


  • Текст добавлен: 12 сентября 2017, 22:40


Автор книги: Амит Кетвала


Жанр: Биология, Наука и Образование


Возрастные ограничения: +16

сообщить о неприемлемом содержимом

Текущая страница: 4 (всего у книги 27 страниц) [доступный отрывок для чтения: 9 страниц]

Шрифт:
- 100% +
«Окончательный выбор решения – за тобой»

«Когда в штрафную летит навес, у тебя в голове за долю секунды проносится множество вариантов, что можно сделать с мячом. Допустим, есть пять-шесть вариантов действий». Так Уэйн Руни описывал процесс принятия решений в интервью журналу ESPN (см. предисловие). «Окончательный выбор решения – за тобой, – сказал он там же. – Ну, а дальше уже дело техники».

Чтобы сделать окончательный выбор, мозгу сначала необходимо принять в расчет данные из множества различных источников, выработать потенциальные варианты решения, а также взвесить все риски и выгоды каждого из них. Чтобы узнать, как ему это удается, мы обратились за помощью к Нильсу Коллингу, с которым я учился в университете. Доктор Коллинг по-прежнему работает во внушительного вида бетонном здании, где расположен отдел экспериментальной психологии Оксфордского университета, занимаясь исследованием процессов принятия решений и оценки рисков.

«Очень интересный вопрос, особенно применительно к людям с высокой степенью развитости практических навыков – таким как спортсмены, – отвечает он. – Коротко говоря, мозг, в зависимости от конкретной ситуации, принимает решения, используя ряд различных систем. Каждая система, связанная с принятием решений, и соответствующая ей нейронная сеть имеют свои особенности, достоинства и недостатки. Причем они постоянно друг с другом конкурируют, что и определяет поведение человека».

Таких систем как минимум три, и очень вероятно, что у атлетов во время занятий их видом спорта происходит очень плавный переход между этими системами.

К первой группе относятся решения, предполагающие длительное размышление и тщательное взвешивание различных факторов. Мы все порой принимаем подобные решения на работе и в личной жизни. В качестве примера возьмем футбольного тренера, который изучает трансферный рынок, выбирая между ярким крайним нападающим и надежным центральным полузащитником. Или наставника, который должен дать совет теннисисту, когда тот никак не может справиться с мощным бэкхендом соперника. Оценкой различных вариантов по ряду критериев ведает область в нижней части лобной доли, известная как вентромедиальная префронтальная кора головного мозга. «Скажем, при покупке дома мы учитываем его цену, местоположение и множество прочих факторов. В итоге получаем простой индекс желательности или ценность в денежном эквиваленте для каждого дома и, сопоставляя их, делаем выбор, – объясняет Коллинг. – За этот процесс как раз и отвечает вентромедиальная префронтальная кора. Люди, у которых данная область повреждена, порой принимают нелогичные решения».

Вторая группа включает решения, принимаемые автоматически. Сюда относятся такие действия, как прием паса в футболе, что, как мы теперь знаем, контролируется более древней, подкорковой областью мозга, в частности базальными ганглиями. Как замечает доктор Коллинг, «многие такие действия даже не рассматриваются как решения».

Однако в спорте наибольший интерес представляют решения, занимающие промежуточное положение между процессами, доведенными до автоматизма, с одной стороны, и требующими длительной умственной работы – с другой. Причем они меняются в зависимости от игровой ситуации. «Такие решения не обязательно основаны на конкретных параметрах в рамках определенных сценариев или вариантов действий. Скорее, они апеллируют к не вполне ясному общему ощущению ситуации, в которой мы находимся, – поясняет Коллинг. – Например, решая, следует ли предпринять то или иное действие, мы можем представить себе его возможную альтернативу либо руководствоваться собственным ощущением простого наличия других возможностей, даже если мы не имеем в виду что-то конкретное. Соответственно, мы тут же начинаем искать более удачные варианты, если позволяет ситуация, а не мучаемся, выбирая между неудачными решениями».

Поэтому, скажем, пилот «Формулы-1» предпочтет не торопиться с обгоном другого болида на конкретном повороте, рассчитывая на то, что далее по ходу гонки ему представится более подходящая возможность. Коллинг с коллегами из Оксфордского университета нашли область лобной коры, ответственную за подобные решения, а также за привлечение информации из контекста.[36]36
  Kolling N., Wittmann M. & Rushworth M. (2014). Multiple Neural Mechanisms of Decision Making and Their Competition under Changing Risk Pressure // Neuron 81(5). 1190–1202. http://dx.doi. org/10.1016/j.neuron.2014.01.033.


[Закрыть]
«К примеру, благодаря этой области мы решаемся на рискованные шаги, только когда нас толкает к этому ситуация, – продолжает он. – Возьмем футболиста, чья команда на последних минутах матча проигрывает в счете. В этой ситуации он будет оценивать риски и последствия совсем не так, как в начале игры».

В отсутствие прессинга процесс принятия решений весьма демократичен. Вернемся к знаменитому голу, забитому Уэйном Руни «ножницами». Мозг игрока формирует план действий, например, «принять мяч на грудь» или «ударить головой с лета». В этом процессе задействованы сразу несколько участков, расположенных в лобной и теменной доле мозга.[37]37
  Yarrow K., Brown P. & Krakauer J. (2009). Inside the brain of an elite athlete: the neural processes that support high achievement in sports // Nature Reviews Neuroscience 10(8). 585–596. http://dx.doi.org/10.1038/ nrn2672.


[Закрыть]
Различные варианты действий представлены в виде определенных схем импульсной активности нейронов по аналогии с картинкой, складывающейся из отдельных кусочков, которые поднимают над головой болельщики на стадионе.

Электрические импульсы, исходящие из разных участков мозга, можно уподобить избирателям, голосующим за тот или иной вариант действий. Источником этих сигналов, в частности, служат: дорсальный поток, где происходит обработка информации о положении объектов; нейроны места и решетки, отвечающие за информацию о местонахождении объектов и окружающем пространстве; нейроны, связанные с мышцами и суставами. Сигналы делятся на возбуждающие и тормозные. Таким образом, как избиратели голосуют на референдуме, отмечая в бюллетене «да» или «нет», так же и нейроны способны влиять на то, активизируются ли другие нейроны, связанные с ними. В этом и состоит процесс принятия в расчет информации из всевозможных источников перед тем, как сделать выбор.

Данные сигналы, поступающие из различных зон мозга и тела, склоняют чашу весов за или против соответствующего плана действий. Когда уровень электрической активности (так называемая переменная решения) нейронов, представляющих ту или иную альтернативу, достигает определенного порогового значения, мозг приступает к выполнению соответствующего действия. Решение считается принятым.

Но на этом работа мозга не заканчивается. После того как выбор сделан, а тело уже приступило к выполнению действия, мозг продолжает корректировать свои сигналы телу в ответ на поступающие от него импульсы. Например, мозг формулирует задачу: «ударить головой с лета» – после чего строит прогноз относительно того, какой отклик он должен получить от глаз и других частей тела в процессе решения поставленной задачи.

Если информация от органов чувств не соответствует прогнозу, мозг может пересмотреть план действий, чтобы минимизировать вероятность ошибки. «Мозг не просто отдает четкие приказы, – объясняет научный обозреватель Карл Циммер в статье в научно-популярном журнале Discover, – он еще непрерывно уточняет санкционированную им программу действий, направленных на решение задачи. Спортсмены действуют эффективнее, чем все остальные, поскольку их мозг способен находить более эффективные решения».[38]38
  Zimmer C. (2010). The Brain: Why Athletes Are Geniuses // Discover. Источник: http://discovermagazine.com/2010/apr/16-the-brain-athletes-are-geniuses.


[Закрыть]

Короткий путь

После контакта с бейсбольной битой мяч летит по траектории, на которую влияет множество факторов: это и сила удара, и угол наклона биты, и скорость вращения, и уровень влажности воздуха, и направление ветра.

У опытного игрока, которому нужно поймать мяч, изначально уже есть преимущество. Он знает, куда нужно смотреть, и поэтому, в отличие от менее искушенного спортсмена, заранее готов к тому, как именно будет исполнена подача. Его движения доведены до автоматизма, следовательно, и сам процесс ловли мяча не представляет для него особых сложностей, если, конечно, он не будет слишком много задумываться о нем.

Однако мозгу еще нужно просчитать, в каком месте мяч должен коснуться земли, что, по идее, предполагает расчет траектории и скорости его движения. Дело в том, что от малейших изменений в скорости полета зависит очень многое, а единственным средством получения информации являются глаза спортсмена.

Игрок не может измерить скорость ветра и применить нужную физическую формулу. Если дать ему задачку на расчет траектории полета мяча, он вряд ли ее решит. Но, как ни странно, ему хватит какой-то доли секунды, чтобы побежать за мячом в правильном направлении.

Разгадка в том, что мозг умеет ловко пользоваться короткими путями к верному ответу. Этот метод также можно назвать методом использования готовых схем или эвристических правил. Его суть состоит в неосознанном применении определенных стратегий обработки информации, которые, как и метод фрагментации или группировки, позволяет снизить нагрузку на когнитивный аппарат. Нобелевский лауреат Даниэл Канеман в книге «Думай медленно… решай быстро» (Thinking Fast and Slow) так описывает эвристическое правило: «простейшая процедура, помогающая находить адекватные, хотя зачастую неидеальные, ответы на трудные вопросы».[39]39
  Канеман также отмечает, что слова «эвристика» и «эврика» этимологически однокоренные.


[Закрыть]
Иначе говоря, это грубый, приблизительный расчет, основанный на практике.

В специальном исследовании методики, которую применяют опытные крикетисты в ловле мяча, Питер Маклауд из Оксфордского университета и его коллега Золтан Пал Дьенеш из Университета Сассекса взяли пушку, выстреливающую мячи под углом вверх с разной силой, чтобы они падали на разном расстоянии впереди или позади игрока. Затем они измерили скорость и направление пробежки каждого спортсмена и обнаружили, что все старались сделать так, чтобы угол, под которым они смотрят на мяч в течение всего времени его полета, оставался одинаковым.[40]40
  McLeod P. & Dienes Z. (1996). Do fielders know where to go to catch the ball or only how to get there? // Journal of Experimental Psychology: Human Perception and Performance 22(3). 531–543. http://dx.doi.org/10.1037//0096–1523.22.3.531.


[Закрыть]



Мозг крикетиста не занимается расчетом траектории движения мяча, скорости ветра и вообще чем бы то ни было, что перегружает кратковременную память. Игрок просто смотрит на мяч и подстраивает собственную скорость так, чтобы взгляд был направлен на мяч под одним и тем же углом. Тем самым он гарантированно поймает мяч как раз тогда, когда тот прилетит в наиболее удобную для этого точку. Как мы уже знаем, в зрительном отделе коры головного мозга имеются нейроны, отвечающие за оптический поток, то есть воспринимающие приближение или отдаление объекта как изменение проекции его размеров на сетчатку глаза. Вполне вероятно, что у опытных ловцов хорошо развиты те области мозга, которые ответственны за учет угла зрения при наблюдении за движущимся объектом.

Подобные короткие пути к правильному решению называют «быстрыми и экономными эвристиками» за то, что они позволяют сберечь время и избежать сложных вычислений. Стратегия, основанная на использовании постоянного угла зрения, также находит применение в таких видах спорта, как регби или американский футбол, где бывает необходимо остановить бегущего соперника. Для этого спортсмены делают то же, что лев, охотящийся на антилопу: они бегут туда, где вот-вот окажется цель. Они настолько к этому привыкли, что способны проделывать это с завязанными глазами. К такому выводу пришел Деннис Шаффер из Университета Огайо, проведя эксперимент, во время которого игроки в американский футбол с повязкой на глазах должны были поймать мяч, в который было вмонтировано устройство, подающее звуковой сигнал.[41]41
  Shaffer D., Dolgov I., Mcmanama E., Swank C., Maynor A., Kelly K. & Neuhoff J. (2013). Blind(fold)ed by science: A constant target-heading angle is used in visual and nonvisual pursui // Psychonomic Bulletin & Review 20(5). 923–934. http://dx.doi.org/10.3758/s13423–013–0412–5.


[Закрыть]

Такая стратегия не всегда себя оправдывает, в чем смогли убедиться игроки регбийной команды Harlequins в финале английской Премьер-лиги в 2013 г. Крайний нападающий их соперников Leicester Tigers Том Крофт при росте под два метра имел около 110 килограммов веса, однако для человека с такой комплекцией бегал он довольно резво. На записи игры видно, как защитник мчится наперерез, пытаясь перехватить Крофта, но не учитывает его феноменального разгона и падает на газон в тот самый момент, когда нападающий заносит мяч в зачетную зону, реализуя попытку.

Эвристическими правилами также пользуются спортсмены, решая, кому отдать пас. С точки зрения экономии умственных усилий проще всего действовать первым пришедшим в голову образом. По некоторым данным, так в 60–90 % случаев поступают игроки в баскетболе, австралийском футболе и гандболе.

Это объясняется тем, в какой последовательности в голове появляются различные варианты действий и как эта последовательность меняется в зависимости от прошлого опыта. «Действия, которые ранее совершались регулярно в аналогичных ситуациях, имеют больший приоритет, – поясняет Маркус Рааб, руководивший исследованием в области эвристики в спорте. – Мозг как бы уверен, что именно первый пришедший на ум ответ является наилучшим». Есть также данные о том, что опытным спортсменам на ум приходит меньше вариантов, чем начинающим. По сути, они способны сделать правильный выбор настолько быстро, что им просто не нужно генерировать множество вариантов.

Одна из наиболее известных теорий, объясняющих умение профессионалов быстро принимать верные решения, фактически также сводится к описанию короткого пути. Речь идет об использовании знакомых схем или считывании внешних сигналов. Этому вопросу посвящено большое количество работ. Даниэл Канеман относил такой способ мышления к Системе 1, которой, в свою очередь, противопоставлена Система 2, отвечающая за более вдумчивый мыслительный процесс. Тот же подход рассматривается в книге Малкольма Гладуэлла «Озарение. Сила мгновенных решений» (Blink: The Power of Thinking Without Thinking). При этом оба автора во многом опираются на книгу Гэри Клейна «Источники силы» (Sources of Power), где данный феномен называется моделью принятия решений, основанной на эффекте узнавания.

Вот цитата из книги: «Эксперты видят то, чего не видят остальные, и зачастую эксперты не понимают, что другие не в состоянии заметить того, что кажется им очевидным». Клейн приводит пример пожарных, которые интуитивно понимают, в какой момент горящее здание готово обрушиться. Тот же принцип применяется и в спорте.

«Эксперты, судя по всему, более тонко улавливают нужную информацию», – утверждает Нильс Коллинг. Мы действительно убедились в этом, анализируя их способности к вероятностному прогнозированию и определению источников полезной информации. Вспомним, как Криштиану Роналду точно угадывает направление движения защитника по одному движению его бедра.

Эффект узнавания срабатывает, когда спортсмен выполняет определенное действие или принимает определенное решение как реакцию на конкретный стимул. В бейсболе это будет, например, особый замах (или же отсутствие замаха) при виде вращения мяча или движения руки питчера, сигнализирующих о броске по дуге или о подаче с боковым отклонением мяча. В футболе – быстрое перемещение к ближней стойке ворот, как только крайний нападающий опускает голову, готовясь подать навес в штрафную.

Спортсмен ищет соответствие текущей ситуации среди тех, в которых он уже находился прежде, будь то во время игры или на тренировке. После этого он принимает решение, полагаясь на свой прошлый опыт. Отсюда смыслом тренировочного процесса является расширение диапазона ситуаций, в которых спортсмены должны действовать по схеме реакции на различные стимулы. В идеале нужно стремиться к тому, чтобы уметь принимать правильные решения во всех возможных ситуациях и тем самым добавить прогнозируемости в непредсказуемый мир спорта.[42]42
  «Цель активной тренировки состоит в том, чтобы максимально расширить элемент предсказуемости в спорте, что позволит спортсмену легче контролировать ситуацию» – Джоан Викерс «Восприятие, познание, принятие решений» (Perception, Cognition, and Decision Training).


[Закрыть]

Решения, принимаемые опытными спортсменами интуитивно, как правило, являются верными. Один из экспериментов с участием профессиональных шахматистов показал, что предельное сокращение времени на обдумывание ходов практически не сказалось на качестве их игры, поскольку в большинстве случаев первое же пришедшее им в голову решение было наиболее рациональным.

Постепенно, по мере накопления опыта, подобные экспресс-схемы закрепляются, благодаря чему и в более сложных ситуациях решения также приходят интуитивно или инстинктивно. Спортсменам кажется, что они просто угадывают, но их решения, как правило, оказываются верными. С каждым отданным пасом или принятой подачей их движения становятся все быстрее и точнее, а в их мозге происходят физические изменения. Эта способность мозга к адаптации называется нейропластичностью, и в следующей главе мы увидим, что именно она позволяет понять, в чем же состоит уникальность мозга спортсмена.

Глава 3
Изменения в мозге. Роджер Федерер

Сердце Билли Моргана бешено колотится. Апрель 2015 г. Склоны Итальянских Альп близ коммуны Ливиньо. Билли 26 лет, он сноубордист, и сейчас ему предстоит решающая попытка. На кону звание чемпиона мира, цена ошибки огромна.

– Мы готовились к этому полгода, – рассказывает Билли во время интервью спустя некоторое время. – Я очень переживал, не спал из-за этого. Я не думал, что когда-нибудь этот день настанет и я действительно окажусь там и выполню свою попытку.

Морган родился в Саутгемптоне, у него синие глаза, средней длины русые волосы, разделенные посередине пробором, он заводит их назад, открывая уши. Напоминает музыканта из группы Nirvana. Это один из сильнейших сноубордистов в мире, на зимней Олимпиаде 2014 г. в Сочи он занял десятое место в дисциплине слоупстайл, где судьи оценивают ловкость спортсменов при выполнении самых невообразимых трюков в воздухе.

Спортсмен исполнил обратный четверной корк с оборотом вокруг собственной оси на 1800 градусов – захватывающую серию кульбитов, включая четверное сальто. «Это был уникальный трюк, – объясняет Морган. – Никто до этого не делал сразу четыре оборота, так что я снова поднял общую планку. Вообще не так много на свете видов спорта, где делают четыре сальто в одном прыжке».

Чтобы выполнить удачное приземление после таких вращений, требуются одновременно физическая сила, идеальная координация движений, изрядное мужество и умение контролировать свое тело. Сила – это мышцы, которые Морган тренировал годами. Координация и все остальное – это его мозг, в котором, так же как и в мышцах, за годы занятий спортом произошли определенные изменения.

«Самое главное – тренировать автопилот, – считает Морган. – Если он не сработает, все может кончиться плохо. Автопилот подсказывает, когда пора разгруппироваться – раскрыться перед приземлением. Раскроешься на долю секунды раньше – и считай, свалился. Это чувство приходит, только когда проделаешь прыжок тысячу раз. Когда смотришь, как впервые делают двойной корк, у одного сразу видно, что он умеет вращаться в воздухе, а другой просто делает упражнение, и выглядит это, как будто мешок вверх подбросили. Форма тела не меняется, потому что с ним никогда не было такого раньше, и тогда лучше ему пока вообще не браться. Нужно сначала развить чувство контроля над собственным телом в воздухе».

Морган составил свою программу из небольших кусочков, отдельно тренировал отрыв и приземление, а затем связал все вместе. Вторя британскому раллийному гонщику Элфину Эвансу, Морган признается, что, выполняя сложный прыжок, он не думает абсолютно ни о чем. «Я прихожу к выводу, – говорит он, – что у человеческого тела есть некий предел информации, за которым память просто выключается. Ты настолько сконцентрирован, что после приземления уже не можешь вспомнить, как все происходило».

Андерс Эриксон посвятил свою жизнь изучению того, как достигаются высоты вроде тех, что достиг в своем деле Морган. Эриксон вырос в Швеции и начал карьеру ученого в то время, когда его соотечественники демонстрировали выдающиеся успехи в спорте: Ингемар Стенмарк был королем слалома, Бьорн Борг один за другим брал чемпионские титулы на Уимблдоне и «Роллан Гаррос». Эриксон же, поняв, что ему никогда не стать гроссмейстером, сосредоточился на том, откуда берется профессиональный навык в таких областях, как спорт или музыка, и его работы со временем легли в основу современного понимания этого вопроса.

Благодаря его исследованиям,[43]43
  Речь идет об оригинальном исследовании, которое пробудило интерес к правилу 10 000 часов и породило дискуссии вокруг него. Сам Эриксон утверждает, что в книге Гладуэлла результаты его исследования истолкованы неверно: Ericsson K., Krampe R. & Tesch-Romer C. (1993). The role of deliberate practice in the acquisition of expert performance // Psychological Review 100(3). 363–406. http://dx.doi.org/10.1037/0033–295x.100.3.363. Gladwell M. Outliers.


[Закрыть]
мы сегодня знаем о правиле 10 000 часов, согласно которому, если планомерно практиковаться в течение десяти тысяч часов, можно добиться профессионального уровня в чем угодно: в иностранном языке, игре на музыкальном инструменте, в любом виде спорта. Это может быть и что-то менее конкретное, например программирование. Главное в том, что единственным отличием профессионала от любителя является практика. Сам Эриксон полагает, что его работу истолковали неверно, но факт остается фактом: в исследовании, из которого было выведено знаменитое правило, была опрошена группа скрипачей. Их спрашивали о том, с какого возраста они начали заниматься скрипкой, по сколько часов в день занимались и сколько часов в день, по их мнению, они посвятили тому, чтобы выйти на свой нынешний уровень. Из ответов тех, кто имеет все шансы стать солистами мировой величины, было получено среднее значение 10 000 часов.

Это прекрасный стимул, особенно для тех, кто ненавидел уроки физкультуры в школе или кое-как подбирал аккорды к любимой песне на акустической гитаре. Ведь это означает, что добиться уровня своего кумира абсолютно реально, нужно лишь приложить достаточно усилий. Именно поэтому бывший фотограф Дэн Маклафлин в возрасте 31 года бросил свою профессию и всерьез замахнулся на выступление на профессиональном гольф-турнире в октябре 2016 г. К этому сроку он запланировал завершить свою программу подготовки, рассчитанную как раз на 10 000 часов.

Данное правило также знаменует собой кардинальную смену парадигмы в нейробиологии, что стало особенно заметно за последние лет сорок. Речь о развенчании представления о том, что талант – вещь врожденная. В начале XIX в., когда наука о мозге только формировалась, была популярна концепция, известная как френология.

Согласно ей, наши мысли и эмоции локализованы в различных участках мозга, причем психологические особенности конкретного человека можно точно определить путем детального обмера черепа в соответствующих местах. Многие сегодня берут в качестве предмета интерьера керамический череп с размеченными на нем областями, загадочно подписанными «интуиция» или «предвидение».

С точки зрения современной науки мозг представляет собой подвижную, гибкую и адаптирующуюся систему, формируемую как природой, так и обучением. Разумеется, успешные спортсмены отчасти обязаны своими достижениями генетике: нельзя выйти в финал стометровки на Олимпиаде, не имея нужного типа быстро сокращающихся мышечных волокон, сколько часов в день ни тренируйся.[44]44
  Это тем не менее не означает, что можно гарантированно стать хорошим спринтером и что гены здесь совершенно ни при чем. В книге Даниэла Койла «Код таланта» (The Talent Code) отмечается, что у большинства лучших спринтеров планеты есть старшие братья или сестры, из чего следует, что наличие рядом того, кто бегает чуть быстрее, служит прекрасным стимулом к развитию.


[Закрыть]
В главе 1 мы уже установили связь между качеством игры бэттера в бейсболе и его врожденной остротой зрения, что определяет его способность замечать вращение мяча на начальном этапе подачи.

Конечно, различные комментаторы и болельщики часто говорят о врожденном таланте, одаренности отдельных спортсменов, тем не менее ученые склонны считать мастерство следствием не природного дара, а практики. Или же, как утверждает Гладуэлл в «Гениях и аутсайдерах», по крайней мере, возможности практиковаться более 10 000 часов, а это зачастую зависит от условий и определенного везения.

Примером может служить биография гольфиста Рори Макилроя, который шестилетним мальчиком посылал мячи ударом клюшки прямиком в стиральную машину, став героем репортажа на ирландском телевидении, или знаменитых сестер Уильямс. Когда Серена и Винус были еще маленькими, их отец Ричард завел досье на 78 страницах, где подробно расписал свой план по воспитанию из них лидеров мирового женского тенниса.

Ни один спортсмен не рождается с умением рассчитывать траекторию мяча после отскока или принимать выверенные решения за долю секунды. Все это навыки, на формирование которых уходят тысячи часов тренировок. Такие тренировки, как, впрочем, и все, что мы делаем, заставляют наш мозг изменяться. Когда Билли Морган спускается по склону на сноуборде или приземляется после прыжка, он оставляет следы не только на снегу, но и в собственной голове.

В этом суть нейропластичности. Наш разум – такой же податливый материал, как пластилин. Потому наш мозг является гибкой системой, способной к научению на основе полученного опыта, а также к адаптации и восстановлению после травм. Любые наши действия, равно как и все, что действует на нас, вызывает в мозге небольшие изменения. Со временем эти изменения накапливаются, заставляя нас в аналогичной ситуации в будущем действовать уже несколько иначе. Если бы кто-то прокатился по склону за Морганом, для него это был бы уже не совсем тот же самый склон, потому что на снегу оставались бы следы от сноуборда Моргана.

«Наш мозг можно сравнить с заснеженным склоном, – объясняет пионер в области исследований нейропластичности Альваро Паскуаль-Леоне на страницах бестселлера Нормана Дойджа «Пластичность мозга» (The Brain That Changes Itself).[45]45
  Альваро Паскуаль-Леоне. Doidge N. The Brain that Changes Itself.


[Закрыть]
– Физические характеристики: уклон, тип горной породы, плотность снега – это данность, как наши гены. Съезжая с него на санках, мы можем ими управлять, и след, который мы оставим, будет зависеть, во-первых, от нашего навыка управления санями, а во-вторых, от характеристик самого склона. Мы вряд ли сможем точно сказать, где именно закончится наш спуск, поскольку на это влияет очень много факторов. Однако можно с уверенностью утверждать, что во второй раз мы, скорее всего, окажемся где-то поблизости от того места, где пролегал наш путь в первый раз. Это не будет полным повторением первого маршрута, но мы точно пройдем вблизи него. А если мы будем так кататься весь день, то к вечеру увидим, что по одним дорожкам мы проехали много раз, а по другим – всего ничего».

Тем, кто давно вырос, но по-прежнему мечтает стать успешным спортсменом, не меняя основной профессии, как Дэн Маклафлин, будет приятно узнать, что благодаря прогрессу в изучении феномена нейропластичности можно обойти правило 10 000 часов. В свете новых знаний о том, каким образом мозг лидеров мирового спорта сумел измениться за счет тренировок, обычный любитель сможет кардинально развить свои навыки, а ученые вместе с перспективными компаниями смогут разработать новые средства тренировки мозга, расширив границы человеческих возможностей. Но вначале следует разобраться в том, как годы упорной работы изменяют образ мышления. Мы поговорим об этом на примере длинных рук Роджера Федерера, замечательной дружбы Энди Коула и Дуайта Йорка, а также пугающих перспектив нейродопинга. Но начинается эта история, как, впрочем, и многие другие, на заднем сиденье лондонского такси.


Страницы книги >> Предыдущая | 1 2 3 4 5 6 7 8 9 | Следующая
  • 0 Оценок: 0

Правообладателям!

Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.

Читателям!

Оплатили, но не знаете что делать дальше?


Популярные книги за неделю


Рекомендации