Электронная библиотека » Анатолий Клёсов » » онлайн чтение - страница 10


  • Текст добавлен: 28 ноября 2016, 12:20


Автор книги: Анатолий Клёсов


Жанр: Прочая образовательная литература, Наука и Образование


Возрастные ограничения: +16

сообщить о неприемлемом содержимом

Текущая страница: 10 (всего у книги 47 страниц) [доступный отрывок для чтения: 12 страниц]

Шрифт:
- 100% +

13 – 12 (то есть аллель 13 встречается в 269 гаплотипах 12 раз)

14 – 248

15 – 8

16 – 1


Всего среди 269 маркеров DYS393 в данной серии суммарно произошло 22 одношаговых мутаций (12 «вниз» и 10 «вверх»), и зная, что константа скорости мутации в маркере DYS393 равна 0.00059 (это было определено по множеству серий гаплотипов разных гаплогрупп), мы можем примерно расчитать, когда жил общий предок рассмотренной серии гаплотипов группы N101 (строго говоря, серии маркеров DYS393):

22/269 = 139 условных поколений назад, то есть примерно 139х25 = 3475±740 лет назад (при стандартном расчете погрешности). Действительно, расчеты по гаплотипам разной протяженности дали время жизни общего предка данной выборки из 269 гаплотипов 3233±326 лет назад (111-маркерные гаплотипы), 3287±333 лет назад (67-маркерные гаплотипы), 346±353 лет назад (37-маркерные гаплотипы), 4127±424 лет назад (25-маркерные гаплотипы). Здесь мы расчеты умышленно не округляем, чтобы не вносить произвол при сопоставлении серии результатов. Мы видим, что расчеты даже по одному маркеру дали вполне приемлемую величину времени до общего предка данной серии гаплотипов. Возможно, это потому, что серия мутаций в данном маркере вполне симметричная.

Если мы посмотрим на DYS390 c его средней величиной числа мутаций на маркер в серии из 3466 гаплотипов субклада R1b-L21, равной 0.4031 (после введения поправки на возвратные мутации), то получим 0.4031/0.0022 = 183 условных поколений, или примерно 4580 лет со времени жизни общего предка субклада R1b-L21. Заметим, что по данным компании YFull (http://www.yfull.com/tree/R1b/) субклад L21 образовался 4500±300 лет назад. Правда, расчет по всем 111 маркерам для 3466 гаплотипов субклада L21 показал, что общий предок современных носителей этого субклада жил 3810±381 лет назад. Это приходится на границу диапазона погрешности расчетов, но в принципе результаты расчетов в их совокупности и в совокупности с данными других независимых расчетов показывают, что общий предок современных носителей субклада R1b-L21 жил действительно на несколько сотен лет позже времени образования самого субклада; потомство от более ранних предков не выжило.

Пример того, что во многих случаях несимметричность в распределении мутаций в маркерах выражается в том, что на повышение проходит меньше мутаций, чем на понижение (то есть обратно тому, что наблюдается в маркере DYS390 в серии гаплотипов субклада R1b-L21), является серия из 4769 гаплотипов гаплогруппы R1a. Там число аллелей в маркере DYS390 выглядит следующим образом:


22 – 5

23 – 66

24 – 755

25 – 3544

26 – 383

27 – 16


Считая, что все мутации одношаговые, находим, что в 4769 маркерах DYS390 прошло 1317 мутаций, получаем, что среднее число мутаций на маркер равно 0.276. Это число не является корректным, потому что мы знаем, что среди тех 4769 гаплотипов было множество, относящихся к разным субкладам, каждый из которых имеет разную историю и своих общих предков. Поэтому любые расчеты с этими числами будут являться «поверхностными», очень приблизительными. Задача ДНК-генеалогии – проводить «рассечения» серий гаплотипов на ветви, семейства, группы, и при соответствующей поставленной задаче проводить их отдельные и независимые рассмотрения.

Подобные расчеты по всем 111 маркерам (или тому числу маркеров, которое было выбрано для рассматриваемых гаплотипов) после усреднения дает «возраст» общего предка рассматриваемой выборки гаплотипов, при условии, что общий предок был один, согласно соответствующим критериям ДНК-генеалогии.

Не нужно думать, что все 111 маркеров дадут одну и ту же величину «возраста» до общего предка, например, как 4580 лет в случае маркера DYS390 в серии гаплотипов субклада R1b-L21. Как раз в данном конкретном случае датировка маркера оказалась несколько завышенной из-за несимметричности распределения мутаций. Но по одному маркеру никогда возраст до общего предка не считают. В данном случае для 3466 гаплотипов в 111 маркерном формате для статистических расчетов суммарно имеются 384728 аллелей, причем расчет с применением калькулятора Килина-Клёсова (см. ниже) ведется и по каждому из маркеров, «по вертикали», и по всем мутациям по всем гаплотипам, «по горизонтали», как по «квадратичному» методу, в котором поправки на возвратные мутации уже учтены, так и «линейным методом», с введением поправок на возвратные мутации, а также и по разным длинам гаплотипов. В итоге калькулятор выдает результат по каждому варианту расчета, так что можно сравнивать и смотреть, нет ли систематических отклонений. В данном случае, по 3466 гаплотипам, получилось (лет до общего предка субклада R1b-L21):


3810±381 по 111-маркерным гаплотипам, линейный метод

4197±274 по 111-маркерным гаплотипам, квадратичный метод

3841±384 по 67-маркерным гаплотипам, линейный метод

3576±358 по 37-маркерным гаплотипам, линейный метод

3571±358 по 25-маркерным гаплотипам, линейный метод

3679±369 по 17-маркерным гаплотипам, линейный метод

3499±352 по 12-маркерным гаплотипам, линейный метод

4161±421 по 6-маркерным гаплотипам, линейный метод


Как видим, расчеты дали вполне удовлетворительное совпадение в пределах погрешности измерений, даже для коротких 12– и 6-маркерных гаплотипов.

Человек сторонний, не очень знакомый со статистикой, скажет – как же так, расчеты по одному маркеру, DYS390, дали примерно 4580 лет со времени жизни общего предка субклада R1b-L21, а расчеты по всем 111-маркерным гаплотипам, с общим числом аллелей 384728, дали 3810±381 или 4197±274 лет, по линейному и квадратичному методам, то есть заметно ниже. Но в этом статистика и заключается, что мутации неупорядоченные, по отдельности различаются, но все они группируются вокруг некого «центра», «ядра», и при усреднении математический аппарат дает среднюю величину и величину погрешности расчетов, или среднее квадратичное отклонение при определенных доверительных интервалах. В данном случае DYS390 – это всего один маркер, а их сто одиннадцать. Но даже в 6-маркерных гаплотипах, куда DYS390 входит, усреднение по всем шести дает датировку 4161±421 лет, то есть датировка по одному DYS390 входит в диапазон погрешностей. А датировка по 6-маркерному гаплотипу входит в диапазон погрешностей для серии 111-маркерных гаплотипов.


Вопрос 63: Как проводились расчеты констант индивидуальных скоростей мутаций для всех 111 маркеров?

Это – результат большой работы, которая проводилась с 24 сериями 111-маркерных гаплотипов практически всех гаплогрупп, для которых в базах данных эти гаплотипы были числом хотя бы в несколько десятков. Для большинства гаплогрупп расчетные серии содержали сотни гаплотипов – помимо упомянутых ранее 3466 гаплотипов субклада R1b-L21, были 859 и 976 111-маркерных гаплотипов гаплогруппы R1a (разные серии), 829 гаплотипов гаплогруппы R1b-Uio6, 968 гаплотипов гаплогруппы I1, 661 гаплотипов гаплогруппы J, 1417 гаплотипов гаплогруппы J2, и так далее, общим числом П850 гаплотипов в 111-маркерном формате. При этом проверялась сходимость расчетов гаплотипов разных форматов и расчетов разными методами. Результаты этой работы опубликованы в Вестнике Академии ДНК-генеалогии в 2015 году[59]59
  Клёсов, А.А., Килин, В.В. (2015) Калькулятор Килина-Клёсова для расчета времен до общих предков (TMRCA): новое издание. Вестник Академии ДНК-генеалогии, т. 8, № 3, стр. 321–375.


[Закрыть]
.

Расчеты констант скоростей мутаций в маркерах производятся на основании их распределений в больших сериях гаплотипов. Чем меньше константа скорости мутации данного маркера, тем, естественно, меньше мутаций за определенное время, в качестве которого обычно рассматривается время, прошедшее от общего предка. Если взять, например, серию из 3466 гаплотипов субклада R1b-L21, к которой мы здесь неоднократно обращались именно потому, что она одна из наиболее репрезентативных по численности гаплотипов, то маркере DYS472 там всего пять мутаций:

7 – 1 (то есть аллель 7 встречается в 3466 маркерах DYS472 всего один раз)

8 – 3461 раз

9 – 4 раз


В маркере DYS393 в той же серии уже 232 мутации:

11 – 2

12 – 81

13 – 3237

14 – 145

15 – 1


В маркере DYS390 – 1165 мутаций:

21 – 3

22 – 22

23 – 228

24 – 2364

25 – 815

26 – 33

27 – 1


Поскольку время от общего предка во всех трех случаях одно и то же, то даже не зная его, уже можно заключить, что константы скорости мутаций должны отличаться друг от друга в пропорции 5: 232: 1165 (числа – количества мутаций от базового маркера для трех маркеров), или, пропорционально, 1: 46: 233 Это – тогда, когда нет осложняющих факторов, которые, впрочем, есть всегда. Среди этих факторов – примесь посторонних гаплотипов, почти неизбежная при массовых тестированиях, перекошенная серия гаплотипов, когда одних родственников (даже отдаленных) в серии больше, чем других, когда в серии присутствуют представители нижестоящих субкладов, причем одних субкладов больше, чем других, и так далее. Вывод такой, что одной серией гаплотипов при расчетах констант скоростей мутаций ограничиваться нельзя, надо проводить рассмотрение многих серий гаплотипов из разных гаплогрупп, выяснять по возможности причины различий, и усреднять полученные константы скоростей мутаций по разным сериям. В некоторых сериях отклонения буквально гипертрофированные – например, в той же серии R1b-L21 оказалось несколько сотен гаплотипов дочернего субклада R1b-M222, у которого характерная величина аллели DYS392=14 вместо обычной DYS392=13. Если этого не знать или не заметить, то число мутаций в медленном маркере DYS392 окажется завышенным на сотни мутаций, и формально рассчитанная «константа скорости» окажется несуразно высокой.

При сопоставлении расчетных констант по большой серии гаплогрупп такие искажения должны быть заметны, проанализированы, и если причина выяснена и действительно показано, что это искажения, то эти выпадающие величины должны быть приняты во внимание. Таким образом видно, что это кропотливая и большая работа. Дилетанты или прочие любители обычно выхватывают одну серию гаплотипов, делят одно на другое, без всяких перекрестных проверок и размышлений, и вуаля, ответ готов. Он часто такой – «расчеты по мутациям смысла не имеют». Пример такой дилетантской (в данном отношении) статьи Busby et al (2011)[60]60
  Busby, Brisighelli, F., Sanchez-Diz, P., Ramos-Luis, E., Martinez-Cadenas, C., Thomas, M.G., Bradley, D.G., Gusmao, L., Winney, B., Bodmer, W., Vennemann, M., Coia, V., Scarnicci, F., Tofanelli, S., Vona, G., Ploski, R., Vecchiotti, C., Zemunik, T., Rudan, I., Karachanak, S., Toncheva, D., Anagnostou, P., Ferri, G., Rapone, C., Hervig, T., Moen, T., Wilson, J.F., Capelli, C. (2011) The peopling of Europe and the cautionary tale of Y chromosome lineage R-M269. Proc. Royal Soc. B, published online, doi:10.1098/rspb.2011.1044.


[Закрыть]
, сюда же относятся неквалифицированные рассуждения Dienekes Pontikos[61]61
  Klyosov, A.A. (2011) The recent infamous (and fa1led) attempt to discredit the mutation rate constants. An overview of Busby et al. (2011) article in Proc. Of the Royal Soc. (B) and Dienekes Ponticos “essay” in his Anthropology Blog. Proc. Of the Russian Academy of DNA Genealogy, vol. 4. No. 9, 18311892.


[Закрыть]
, и прочих. Они основывались именно на выхватывании отдельных величин, которые оказались искаженными, и отсюда делались «глобальные» негативные выводы. По аналогии, можно бросить монету три раза, и на основании полученного результата объявить теорию вероятности «псевдонаукой».

Проще с протяженными гаплотипами, в первую очередь 67– и 111-маркерными, в которых искажения в индивидуальных маркерах, которые (искажения) также имеют статистический характер, уравновешиваются, компенсируются на множестве маркеров, и в итоге дают взаимно согласованные данные. Примеры (показаны датировки протяженных серий 111-маркерных гаплотипов, первая колонка – 67-маркерные гаплотипы, вторая – 111-маркерные), датировки без округления:




Часто спрашивают, а сохраняются ли константы скоростей мутаций в других гаплогруппах и субкладах? Ответ – естественно, сохраняются, так как откуда, например, маркер DYS393 «знает», какая там снип-мутация имеется на другом конце Y-хромосомы, и которая определяет носителя Y-хромосомы в определенный субклад? Маркер есть маркер, это обычно три– или тетра-нуклеотид, повторяющийся определенное количество раз в Y-хромосоме. Раз в несколько тысяч лет он удлиняется или укорачивается на одно (обычно) звено, и что ему до удаленной снип-мутации? Но люди интересуются, обычно не задумываясь о таких деталях, им представляется, что гаплогруппа – это что-то большое и материальное, вляющее на скорости мутации во всей Y-хромосоме каким-то чудодейственным образом.

Еще пример – субклад R1b-M222, в котором 818 аллелей маркера DYS393 распределяются следующим образом:

12 – 5

13 – 791

14 – 22


Число мутаций (от базового значения маркера) равно 27, что дает 27/818/0.00059 = 56 → 57 условных поколений, или 1425±310 лет до общего предка. По данным расчета по снипам субклад R1b-M222 образовался 4300 лет назад (http://www.yfull. com/tree/R1b/), но популяция прошла бутылочное горлышко, и общий предок современных носителей R1b-M222 жил на три тысячи лет позже. Такое бывало довольно часто.

Еще один непростой пример – гаплогруппа J2. Пример непростой, потому что гаплогруппа древняя, и состоит из многих обрывков ДНК-генеалогических линий, которые усложняют расчеты. Посмотрим, насколько однородный там набор из 587 аллелей маркера DYS393, которые распределяются следующим образом:

9 – 1

10 – 0

11 – 5

12 – 510

13 – 65

14 – 5

15 – 1


Всего – 86 одношаговых мутаций. Мы видим опять несимметричное распределение аллелей, идущих «на понижение» и «на повышение». Но если это пока отложить на последующее рассмотрение, то 86 мутаций для 587 аллелей – это при равном «возрасте» общего предка соответствует 508 мутациям для 3466 аллелям (в субкладе R1b-L21), а там – только 232 мутации, то есть в 2.19 раз меньше. В идеальном случае (без осложняющих факторов) это соответствует датировке общего предка для выборки J2 примерно 3810x2.19 = 8300 лет. Определение датировки по 417 гаплотипам (другая выборка) гаплогруппы J2 дало 8993±903 и 9914±993 лет до общего предка (по 67– и 111-маркерным гаплотипам). Разница заметная (8 % и 19 %, соответственно), но район датировок тот же, тем более с учетом, что мы сравниваем датировку по одному маркеру с датировками по 67 и 111 маркерам.

Еще одна илюстрация, как примеси сторонних субкладов искажают датировки. В субкладе R1b-L21 3466 аллелей DYS392 распределяются следующим образом:

11 – 8

12 – 22

13 – 2715

14 – 675

15 – 30

16 – 16


Здесь перекос в распределении (по маркеру DYS392=14) вызван тем, что подавляющая часть аллелей «14» относится к нижестоящему субкладу R1b-M222, в котором данная аллель является предковой, и закрепилась в последующих поколениях. В итоге из 821 мутаций 675 относится к отдельному субкладу, со своим общим предком. Для правильного расчета надо инородные аллели снимать, например, путем построения дерева гаплотипов, в котором субклад М222 уйдет в отдельную ветвь, и соответствующие гаплотипы из счета надо также снимать. При этом снятыми окажутся 655 аллелей «14», 24 аллели «15» и все 16 аллелей «16», и распределение окажется вполне симметричным:

11 – 8

12 – 22

13 – 2715

14 – 19

15 – 5


Вопрос 64: Как связаны между собой индивидуальные константы скорости отдельных маркеров, и суммарная (кумулятивная) константа скорости мутации по всему гаплотипу?

Выше мы рассматривали константы скоростей мутаций в отдельных маркерах, как 0.00059 мутаций на условное поколение в маркере DYS393, или 0.00220 мутаций на условное поколение в маркере DYS390. И здесь вступает в силу важное правило химической кинетики: константы скоростей в параллельных реакциях (в данном случае – мутациях) суммируются, если регистрируется расходование исходного вещества или образование суммарного продукта реакции, и изучается скорость этого суммарного процесса. Простой пример – если из бассейна вода вытекает по нескольким трубам разной толщины, то можно изучать скорость вытекания воды по каждой трубе отдельно, но если интересует общая потеря воды, то суммируется потеря воды по всем трубам. Это практически полная аналогия с расходованием предкового гаплотипа и с накоплением гаплотипов потомков. Этот процесс можно изучать по каждому маркеру в отдельности, а можно – по всему гаплотипу, то есть по сумме маркеров.

Рассмотрим простой случай – 12-маркерный гаплотип, состоящий из маркеров DYS 393, 390, 19, 391, 385a, 385b, 426, 388, 439, 389-1, 392, 389-2. Пример – гаплотип гаплогруппы I2a, а именно ее ветви L147.2, к которой относятся почти все восточноевропейские носители этой гаплогруппы, общий предок которых жил примерно 2300 лет назад:


13 24 16 11 14 15 11 13 13 13 11 31


Константы скоростей индивидуальных маркеров следующие:

DYS393 0.00059

DYS390 0.00220

DYS19 0.00179

DYS391 0.00220

DYS385a 0.00280

DYS385a 0.00360

DYS426 0.00009

DYS388 0.00022

DYS439 0.00300

DYS389-1 0.00080

DYS392 0.00040

DYS389-2 0.00231


Но поскольку мутации во всех этих маркерах происходят независимо и неупорядоченно, и мы, как правило, заинтересованы в скорости мутации всего гаплотипа, а не его отдельных маркеров (многочисленные примеры будут даны ниже), то суммарная константа скорости мутаций во всем гаплотипе равна сумме индивидуальных констант скоростей, которая равна 0.0200 мутаций на условное поколение (25 лет).

Так же рассчитываются суммарные константы скорости мутаций в гаплотипах, которые приведены ниже.

Надо сказать, что здесь даются упрощенные примеры, потому что по двум гаплотипам расчеты обычно не ведут, ведут по десяткам, сотням и тысячам гаплотипов, если таковые есть в наличии, рассчитывают математические погрешности в определяемых числах, и т. д. В таких случаях погрешности расчетов приближаются к плюс-минус 10 % от определяемой величины, поскольку именно такой определена погрешность вычисления константы скорости мутации. Здесь только иллюстрируется принцип расчета.

Ясно, что у протяженных 111-маркерных гаплотипов разрешение лучше (400-маркерные гаплотипы пока крайняя редкость). Но их определять дороже, чем более короткие, поэтому в академических исследованиях, при постоянной нехватке денежных средств, приходится работать с более короткими гаплотипами. Протяженные гаплотипы определяют в коммерческих компаниях, обычно персонально, каждый для себя, и передают, как правило, в общественные базы данных. Сейчас в общественных базах данных – сотни тысяч гаплотипов, и базы прирастают многими гаплотипами ежедневно[62]62
  http://r1a.org/irakaz-v03.xls, http://r1a.org/, / Интернет-сайт «R1a»; http://www.ysearch.org/, http://www.smgf.org/pages/ydatabase.jspx / Интернет-сайт «A Free Public Service from Family Tree DNA». http://www.familytreedna.com/public/R1 aY-Haplogroup/default.aspx?section=yresults, http:// www.familytreedna.com/public/R1a/default.aspx?section=yresults, / Интернет-сайт «Family Tree DNA»; Klyosov A. A., Rozhanskii I. L. Re-Examining the «Out of Africa» Theory and the Origin of Europeoids (Caucasoids) in Light of DNA Genealogy (2012). Advances in Anthropology, 2, No.2, 80–86 http://dx.doi. org/10.4236/aa.2012.22009 (список баз данных дан в конце статьи)


[Закрыть]
.


Вопрос 65: Какие значения имеют все 111 маркеров, применяемые в ДНК-генеалогии?

Таблица приведена ниже. Числа 0.02, 0.046 и 0.09 справа – значения констант скоростей мутаций для 12-, 25-, и 37-маркерных гаплотипов, выраженных в мутациях на гаплотип на условное поколение (в 25 лет). Для 67-маркерных гаплотипов, которые заканчиваются маркером DYS565 константа скорости равна 0.12 мутаций на гаплотип на условное поколение. Самое последнее число, 0.198 – константа скорости мутаций на 111-маркерный гаплотип на условное поколение. Эти величины приведены и обоснованы в статье[63]63
  Клёсов, А.А., Килин, В.В. (2015) Калькулятор Килина-Клёсова для расчета времен до общих предков (TMRCA): новое издание. Вестник Академии ДНК-генеалогии, т. 8, № 3, стр. 321–375.


[Закрыть]
Клёсова и Килина (2015). Обоснование велось по восьми направлениям:

1) Сопоставление датировок, полученных с помощью линейного метода (ЛМ) по 67– и 111-маркерным гаплотипам. Это – наиболее достоверные форматы гаплотипов.

2) Сопоставление датировок, полученных с помощью ЛМ по п.1, и 37-, 25-, 17-, 12 и 6 – маркерным гаплотипам. При этом надо принимать во внимание, что чем меньше число маркеров, тем выше разброс. Поэтому разброс – это нормально, но систематическое (или постоянное) завышение или занижение результатов по сравнению с 67/111 маркерными расчетами – это ненормально. В каждом случае причины соответствующих отклонений анализировались.

3) ЛМ по п.1 и 22-маркерным (медленным) гаплотипам.

4) ЛМ по п.1 в применении к документальным генеалогиям, и тем, для чего известны расчеты другими достоверными методами (например, по снипам). Правда, по снипам надо принимать во внимание, что там нет «бутылочных горлышек популяции», поэтому результаты расчетов по снипам будут или равны результатам расчетов по ЛМ, или давать завышенные результаты. Если есть и то, и другое, то это нормально.

5) ЛМ по 67– и 111-маркерным гаплотипам, и ККК (квадратичный по индивидуальным константам) по ним же.

6) ЛМ по 22-маркерным гаплотипам, и ККК по ним же.

7) «Медленные» 22-маркерные гаплотипы в сопоставлении с известными древними датировками.

8) Сопоставление расчетов по 111– и 67-маркерным гаплотипам с данными документальной генеалогии.


Рис. 9. Значения индивидуальных констант скоростей мутаций для 111 маркеров


Вопрос 66: Почему датировки по мутациям в гаплотипах и по снипам часто не совпадают?

Строго говоря, это разные датировки. Расчеты по мутациям в гаплотипах наших современников дают временное расстояние до общего предка выборки. Если выборка малая, нерепрезентативная, то она может дать заниженное или завышенное расстояние до общего предка. С увеличением размера выборки, или числа выборок по изучаемой территории (вплоть до всего континента или всей планеты) датировка постепенно стабилизируется, приходя к значению, которое можно принять за наиболее особно-ванное. По аналогии, если бросать монету всего немного раз, то усредненное значение «вероятности» выпадения орла или решки может быть завышенным или заниженным по сравнению с известной вероятностью 0.5, но при увеличении числа бросков это усредненное значение стабилизируется, приближаясь к 0.5.

Важно, что время жизни общего предка выборки современников из определенной и выбранной гаплогруппы вовсе не обязательно покажет датировку образования данной гаплогруппы. Популяция данной гаплогруппы могла пройти «бутылочное горлышко», при котором могли выжить только некоторые, и потомство могло выжить и дожить до наших дней только от одного человека, пережившего бутылочное горлышко. Тогда, разумеется, датировка общего предка будет более недавней, чем датировка образования рассматриваемой гаплогруппы.

В отличие от этого, датировка по снипам не ограничена вымираниями древних популяций, если остался хотя бы один мужчина, прямое потомство от которого дожило до наших дней. Тогда цепочка снипов проходит в его Y-хромосоме до общего предка с шимпанзе и древнее. В этом причина, почему «датировка общего предка выборки» или «датировка общего предка региона», даже обширного, часто не совпадают друг с другом.

Пример – субклад V13 гаплогруппы E1b. Датировка образования субклада по снипам (компания YFull) – примерно 7600 лет назад, с учетом погрешности, приведенной YFull – 7600±1300 лет назад. С этим согласуется археологическая датировка ископаемого субклада E1b-V13, обнаруженный на севере Испании – примерно 7000 лет назад. Для вычисления датировки общего предка выборки современных гаплотипов собрали 193 гаплотипа в 67-маркерном формате по всей Европе, и их дерево гаплотипов оказалось почти идеально симметричным:


Рис. 10. Дерево 193 гаплотипов в 67-маркерном формате субклада E1b-V13


Все 193 гаплотипа содержат 2857 мутаций, что дает 2857/193/0.12 = 123 → 141 условных поколений до общего предка, то есть общий предок всей выборки жил 3525±360 лет назад[64]64
  Discussions. The mutation rate constants in DNA genealogy and related issues. Вестник Российской Академии ДНК-генеалогии (2011), том 4, № 11,2108–2195.


[Закрыть]
[65]65
  Клёсов, А.А., Пензев, К.А. (2015) Арийские народы на просторах Евразии. М., Книжный мир, стр. 196–199.


[Закрыть]
. Мы столь подробно на этом останавливаемся, чтобы показать разрыв во времени между датировкой ископаемого гаплотипа группы E1b-V13, и датировкой общего предка современных носителей той же группы. Разрыв – почти четыре тысячи лет. На самом деле, разрыв, скорее всего, начался примерно 4500 лет назад, в ходе заселения континентальной Европы эрбинами, носителями гаплогруппы R1b, и продолжался тысячу лет. Это было время выживания ДНК-генеалогической линии E1b-V13, пока выживание не состоялось окончательно, то есть критический размер популяции был преодолен.


Теперь проверим, как ископаемый гаплотип соотносится с современными гаплотипами субкладаVl3. Ископаемый имеет вид


13 24 13 10 16 19 11 13 11 31 16 14 20 10 22

(ископаемый E1b-V13, Испания)


Предковый гаплотип, к которому сходится дерево, показанное выше, в 67-маркерном формате имеет вид


13 24 13 10 16 18 11 12 12 13 11 30–15 9 9 11 11 26 14 20 32 14 16

17 17 – 9 11 19 21 17 12 17 20 31 34 11 10–10 8 15 15 8 11 10 8 12 10

0 23 24 18 11 12 12 17 7 12 22 18 12 13 12 14 11 11 11 11

(предковый гаплотип E1b-V13, 3525 лет назад)


В маркерах, показанных для ископаемого гаплотипа, он редуцируется до следующего:


13 24 13 10 16 18 12 13 11 30 15 14 20 10 22

(предковый E1b-V13, 3525 лет назад)


Четыре мутации между гаплотипами (отмечены) разводят их на 2625 лет, и помещают их общего предка на (2625+3525+7000V2 = 6575±700 лет назад, что и соответствует датировке ископаемого гаплотипа в пределах погрешности расчетов. Таким образом, выжил, пройдя бутылочное горлышко популяции, прямой потомок «испанского» гаплотипа, и он принял эстафету рода, образовавшего сейчас дерево гаплотипов, показанное выше.

Напротив, для множества субкладов датировка для их образования по снипам и мутациям в гаплотипах, практически совпадают. Приведем всего несколько примеров – для субкладов I2a-S17250, l2a-Y4460 и I2a-Z17855, основных для носителей гаплогруппы I2a Восточной Европы, и снипы, и мутации в гаплотипах дали датировку 2300 лет назад. Для субклада R1a-Z280, который имеют половина этнических русских (наряду с субкладом R1a-M458), датировка по снипам и мутациям в гаплотипах дала 4900 лет назад, для субклада R1b-L23, основного субклада древнеямной культуры на территории современной России, потом переместившегося на Кавказ и в Месопотамию, датировка по снипам и мутациям в гаплотипах дала 6400±900 и 6000±600 лет, соответственно, и так далее.


Вопрос 67: В примере выше вы приводили значения констант скоростей мутаций и для отдельных маркеров, как DYS393 и DYS390, так и для всего гаплотипа, от 6– до 111-маркерного, и даже до 409-маркерного. Как же все-таки нужно считать, по отдельным маркерам или по целым гаплотипам?

Это – хороший вопрос, он часто служит предметом путаницы. Считать можно и по отдельным маркерам, и по целым гаплотипам, и это определяется целесообразностью в каждом конкретном случае, удобством, экономией времени.

Приведем пример – серию из 27 гаплотипов в 12-маркерном формате. Это – реальная серия гаплотипов из одного из проектов (киргизского) FTDNA.


13 24 16 10 11 14 12 12 10 13 11 18

13 24 16 11 11 14 12 12 10 13 11 18

13 24 16 11 11 14 12 12 10 14 11 17

13 24 16 11 11 14 12 12 10 14 11 18

13 25 16 10 11 14 12 12 10 14 11 18

13 25 16 10 11 14 12 12 10 14 11 18

13 25 16 10 11 14 12 12 10 14 11 19

13 25 16 10 11 14 12 12 10 14 11 19

13 25 16 11 11 14 12 12 10 13 11 18

13 25 16 11 11 14 12 12 10 13 11 18

13 25 16 11 11 14 12 12 10 13 11 18

13 25 16 11 11 14 12 12 10 13 11 18

13 25 16 11 11 14 12 12 10 14 11 17

13 25 16 11 11 14 12 12 10 14 11 18

13 25 16 11 11 14 12 12 10 14 11 18

13 25 16 11 11 14 12 12 10 14 11 18

13 25 16 11 11 14 12 12 10 14 11 18

13 25 16 11 11 14 12 12 10 14 11 18

13 25 16 11 11 14 12 12 10 14 11 18

13 25 16 11 11 14 12 12 10 14 11 18

13 25 16 11 11 14 12 12 10 14 11 18

13 25 16 11 11 14 12 12 10 14 11 18

13 25 16 11 11 14 12 12 10 14 11 19

13 25 16 11 11 14 12 12 10 14 11 19

13 25 16 11 11 14 12 12 10 15 11 17

13 25 17 11 11 14 12 12 10 14 11 18

13 26 16 11 11 11 12 12 10 14 11 17


Девять из них идентичны друг другу, это – базовые, или предковые гаплотипы. Они не успели мутировать за время, прошедшее от их общего предка. На все 27 гаплотипов приходится 27 мутаций (отмечены жирным шрифтом). Иначе говоря, за время, прошедшее от их общего предка, девять 12-маркерных гаплотипов полностью сохранились, 18 гаплотипов приобрели мутации. Популяционный генетик рассчитал бы «коэффициент разнообразия» гаплотипов, который никому и никогда не нужен, и на этом бы свою работу закончил соответствующей публикацией, а рецензент в журнале, тоже, естественно, попгенетик, статью бы без вопросов пропустил в печать. То, что это фактически мусор, ему бы и в голову не пришло, там «наука» такая. На самом деле эта серия гаплотипов позволяет расчитать, когда жил общий предок этих гаплотипов, и далее, прослеживая подобные гаплотипы по территориям, и каждый раз рассчитывая времена жизни общих предков, можно понять, в какую сторону направлялись древние миграции, и сопоставляя полученные данные с археологическими и лингвистическими показателями, можно получать более содержательные картины прошлого.


Рис. 11. Расчет времени до общего предка для 27 гаплотипов в 12-маркерном формате из Киргизского проекта FTDNA. Поскольку гаплотипы 12-маркерные, то же расстояние до общего предка (TMRCA), 1304±283 лет, повторено в колонке для 225-, 37-, 67– и 111-маркерных гаплотипов. Колонка для 6-маркерных гаплотипов показывает 1425±453 лет до общего предка, что является тем же самым в пределах погрешности расчетов. Остальными колонками следует пренебречь.


Так вот, рассчитать время жизни общего предка можно разными способами. Можно – используя все 12 индивидуальных констант (k) скоростей мутаций, и считать по каждому маркеру, раздельно. Их величины приведены выше, в ответах на вопрос 65. Тогда результатом расчета будет набор из 12 «времен жизни до общего предка», который следует усреднить Это – очень непродуктивный метод расчета, и так вручную никто не считает (тем более всего для 27 гаплотипов, с крайне бедной статистикой). Но это – основа для машинных (компьютерных) расчетов, особенно для сотен и тысяч гаплотипов, и итоговое усреднение проводится по всему полю данных. Именно так работает калькулятор Килина-Клёсова[66]66
  Клёсов, А.А., Килин, В.В. (2015) Калькулятор Килина-Клёсова для расчета времен до общих предков (TMRCA): новое издание. Вестник Академии ДНК-генеалогии, т. 8, № 3, стр. 321–375.


[Закрыть]
, в который заложены значения констант скоростей для 111 маркеров, и расчет проводится по массиву данных до 10 тысяч гаплотипов практически в любом формате. Время расчета даже для 10 тысяч 111-маркерных гаплотипов занимает всего несколько секунд. В данном случае у шести маркеров из 12 мутаций нет, так что для них формальное «время до общего предка» равно нулю, но оно усредняется с результатами по шести оставшимся маркерам, и суммарно оно оказывается равно 1304±283 лет до общего предка (без округлений). Скриншот калькулятора с экрана компьютера приведен на рис 11.

Мы видим и сами гаплотипы, которые вводятся в соответствующие ячейки в формате Excel – или вручную, или копируются целиком из соответствующего файла, и число мутаций по каждому маркеру (третья строка снизу на сером фоне), сумма которых равна в данном случае 27. В формате Excel сумму их не обязательно подсчитывать вручную, можно просто все высветить курсором и прочитать сумму на экране. Программа также показывает базовые (предковые) значения аллелей (шестая строка снизу на сером фоне), и много другой важной информации. Датировка времени жизни общего предка читается в колонке LM12, что означает «линейный метод (расчета) по 12-маркерным гаплотипам». В колонках для 25-, 37-, 67– и 111-маркерных гаплотипов появляется то же самое число лет, что и для 12-маркерных гаплотипов, и странно было бы ожидать другого. В других колонках числа не являются правильными, потому что для них просчитывается только часть маркеров (колонки для 17-маркерных и 22-маркерных гаплотипов, и обозначенные ККК, то есть квадратичный расчет для 111– и 22-маркерных гаплотипов). Для проверки работы калькулятора можно разделить число мутаций на число гаплотипов и на константу скорости мутации для 12-маркерных гаплотипов, 27/27/0.02 = 50 условных поколений без введения поправки на возвратные мутации, которая равна 1.0433. Эта поправка рассчитывается, как показано в ответе на вопрос 61. В данном случае средняя величина числа мутаций на маркер равна 27/27/12 = 0.0833, и формула для расчета поправки приобретает вид


Страницы книги >> Предыдущая | 1 2 3 4 5 6 7 8 9 10 11 12 | Следующая
  • 4.4 Оценок: 11

Правообладателям!

Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.

Читателям!

Оплатили, но не знаете что делать дальше?


Популярные книги за неделю


Рекомендации