Электронная библиотека » Анатолий Клёсов » » онлайн чтение - страница 11


  • Текст добавлен: 28 ноября 2016, 12:20


Автор книги: Анатолий Клёсов


Жанр: Прочая образовательная литература, Наука и Образование


Возрастные ограничения: +16

сообщить о неприемлемом содержимом

Текущая страница: 11 (всего у книги 47 страниц) [доступный отрывок для чтения: 12 страниц]

Шрифт:
- 100% +

где величина поправочного коэффициента (1+e0.0833)/2 равна 1.0433, и вместо 50 условных поколений получаем 52.165, что соответствует 1304 годам до общего предка, то есть в точности то, что выдал калькулятор. Погрешность при 27 мутациях рассчитывается путем обратной величины квадратного корня из 27, что есть 0.19245, возведением полученной величины в квадрат и прибавлением 0.01 (10 %-й погрешности для константы скорости мутации), получая 0.0470, и после извлечения квадратного корня получаем общую погрешность в ±21.69 %. Окончательно записываем, что датировка общего предка рассмотренной серии из 27 гаплотипов равна 1304±283, в точности то, что рассчитал калькулятор, только в данном случае он рассчитал за долю секунды.

Надо заметить, что калькулятор выдает такую точность, которая не только бессмысленна, но и неправильна, потому что расстояние до общего предка с точностью до одного года не бывает, и погрешность с точностью до одного года не определяется. Поэтому полученную величину следует округлить, например, так: 1300±280 лет до общего предка.

Еще один способ расчета называется логарифмическим[67]67
  Klyosov, A.A. (2009) DNA Genealogy, mutation rates, and some historical evidences written in Y-chromosome. I. Basic principles and the method. J. Genetic Genealogy, 5, 186–216.


[Закрыть]
, в котором мутации даже не считаются. Поскольку в серии из 27 гаплотипов 9 базовых, то получаем [ln(27/9)]/0.02 = 55 → 58 условных поколений, то есть 1450±500 лет до общего предка. Как видно, это в пределах погрешности расчетов совпадает с величиной, полученной и линейным способом, и с помощью калькулятора Килина-Клёсова. Для концептуальных выводов это вполне приемлемо. Концептуальными здесь называются выводы (или результаты), которые ставят задачей расчеты с точностью, которая позволяет сделать принципиальные выводы, например, исторического характера. Как известно, историки и археологи часто оперируют концептуальными положениями, например, что скифы играли роль на исторической арене примерно с 7-го века до начала нашей эры, сарматы – с начала нашей эры до примерно 4-го века нашей эры, кельты – примерно с 4-го века до н. э., хотя есть варианты. Иначе говоря, в этих случаях датируются не конкретные события, а концептуальные. ДНК-генеалогия часто очень полезна в таких случаях. Например, что общий предок этнических русских гаплогруппы R1a и общий предок индийцев высших каст гаплогруппы R1a жил практически в одно и то же время. В пределах погрешности измерений, это был – концептуально – один и тот же общий предок. Никто не ожидает там датировку с точностью до года или около того. Речь – о концепции, а не о точной формальной датировке.


Вопрос 68: Как измеряют константы скоростей мутаций?

Часто приходится слышать, что если скорости мутаций такие малые, что одна мутация происходит порой раз в несколько тысяч лет, то как же их измеряют? Скептики тут же заключают, что эти величины недостоверны, поскольку эксперименты длиной в тысячи лет невозможны. Это только показывает ментальную удаленность скептиков от науки. Аналогия – времена полураспада многих радиоактивных элементов составляют тысячелетия или намного большие времена – например, период полураспада радия-226 составляет 1620 лет, а урана-238 – 4.5 миллиарда лет. Никто из исследователей не сидит и не ждет, пока половина вещества распадется.

Один из подходов при измерении величин констант скоростей мутаций – сопоставление гаплотипов в парах отец-сын. Если изучается группа, например, в 2000 пар отец-сын, то среднее количество мутаций между их гаплотипами определяется по формуле x/2000/k = 1, где х – количество мутаций, k – константа скорости мутаций.

Чтобы понять, сколько мутаций можно ожидать в таких опытах, приведем список диапазонов констант скоростей мутаций[68]68
  68. Клёсов, А.А., Килин, В.В. (2015) Калькулятор Килина-Клёсова для расчета времен до общих предков (TMRCA): новое издание. Вестник Академии ДНК-генеалогии, т. 8, № 3, стр. 321–375.


[Закрыть]
(в числе мутаций за условное поколение, то есть за 25 лет), из полного списка выше.

Ниже приведены самые «медленные» 22 маркера в 67-маркерной панели:


DYS472 0.000008

DYS436 0.000040

DYS425 0.000042

DYS568 0.000050

DYS490 0.000070

DYS426 0.000090

DYS455 0.000100

DYS450 0.000110

DYS492 0.000150

DYS640 0.000150

DYS641 0.000170

DYS594 0.000170

DYS388 0.000220

DYS454 0.000300

DYS590 0.000340

DYS438 0.000350

DYS392 0.000400

DYF395Sib 0.000400

DYF395Sia 0.000400

DYS459a 0.000400

DYS578 0.000430

DYS617 0.000500


Все они, кроме DYS459a, образуют «медленную» 22-маркерную панель для расчетов особенно удаленных по времени общих предков серий гаплотипов. Маркер DYS459a в 22-маркерную панель не включен, поскольку для него характерен так называемый палиндромный, или «мультимаркерный» эффект, при котором при мутациях маркеры меняются синхронно, парами. Правда, этот эффект присущен также маркерам DYF395S, но так уж сложилось, что они вошли в эту панель. Вместо DYS459a в 22-маркерную панель введен DYS531.

Самые медленные маркеры панели от маркеров от 68 до 111 следующие:


DYS632 0.000100

DYS494 0.000100

DYS435 0.000110

DYS593 0.000120

DYS726 0.000170

DYS636 0.000230

DYS638 0.000270

DYS575 0.000300

DYS434 0.000300

DYS462 0.000300

DYS445 0.000500

DYS716 0.000500


Самые «быстрые» маркеры в 111-маркерной панели следующие:


DYS710 0.007300

CDYb 0.007000

DYS449 0.006800

CDYa 0.006600

DYS712 0.006200

DYS458 0.006200

DYS576 0.006000

DYS570 0.004700

DYS714 0.004500

DYS456 0.004320

DYS442 0.004300

DYS481 0.004000


Мы видим, что самые «медленные» маркеры мутируют со средней скоростью от 0.000008 мутаций в поколение (то есть в среднем раз в 125 тысяч поколений, или более чем в 3 миллиона лет) до 0.00050 мутаций в поколение (в среднем раз в 2000 поколений, или примерно раз в 50 тысяч лет). Можно эти числа объяснить по-другому – наиболее «медленные» мутации происходят в среднем раз на 125 тысяч рождений мальчиков (DYS472), или раз на 125 тысяч пар отец-сын, до одного раза на 2000 рождений мальчиков, или один раз на 2000 пар отец-сын. Отсюда уже ясно, что большинство из приведенные выше «медленных» маркеров практически бесполезны на парах отец-сын, потому что подавляющее большинство из них вообще не дадут мутаций даже на 2000 парах, в лучшем случае некоторые дадут одну мутацию, из которых константу скорости не вычислить, погрешность таких расчетов составит плюс-минус 100 % даже при доверительном интервале в 68 % (одна сигма). Поразительно, что популяционные генетики используют такие «скорости мутаций», расчитанные из одной мутации, или даже без единой мутации в парах отец-сын (приведенные, например, в работах[69]69
  Ballantyne, K.N., Goedbloed, M., Fang, R., Schaap, O., Lao, O., Wollstein, A., Choi, Y., van Duijn, K., Vermeulen, M., Brauer, S., Decorte, R., Poetsch, M., von Wurmb-Schwark, N., de Knijff, P., Labuda, D., Vezina, H., Knoblauch, H., Lessig, R., Roewer, L., Ploski, R., Dobosz, T., Henke, L., Henke, J., Furtado, M.R., Kayser, M. (2010) Mutability of Y-chromosomal microsatellites: rates, characteristic, molecular bases, and forensic implications. Am. J. Human Genet. 7, 341–353.


[Закрыть]
, [70]70
  Burgarella, С, Navascues, М. (2011) Mutation rate estimates for 110 Ychromosome STRs combining population and father-son pair data. Eur. J. Hum. Genet., 19, 70–75.


[Закрыть]
), даже не задумываясь, что смысла в этом нет практически никакого. Естественно, получают при этом невоспроизводимые «времена жизни общих предков», и объявляют, что по мутациям в гаплотипах считать нельзя (D. Pontikos[71]71
  Klyosov, A.A. (2011) The recent infamous (and fa1led) attempt to discredit the mutation rate constants. An overview of Busby et al. (2011) article in Proc. Of the Royal Soc. (B) and Dienekes Ponticos “essay” in his Anthropology Blog. Proc. Of the Russian Academy of DNA Genealogy, vol. 4. No. 9, 18311892.


[Закрыть]
; Busby et al[72]72
  Busby, G.B.J., Brisighelli, F., Sanchez-Diz, P., Ramos-Luis, E., Martinez-Cadenas, C., Thomas, M.G., Bradley, D.G., Gusmao, L., Winney, B., Bodmer, W., Vennemann, M., Coia, V., Scarnicci, F., Tofanelli, S., Vona, G., Ploski, R.,
  Vecchiotti, C., Zemunik, T., Rudan, I., Karachanak, S., Toncheva, D., Anagnostou, P., Ferri, G., Rapone, C., Hervig, T., Moen, T., Wilson, J.F., Capelli, C. (2011) The peopling of Europe and the cautionary tale of Y chromosome lineage R-M269. Proc. Royal Soc. B, published online, doi:10.1098/ rspb.2011.1044.


[Закрыть]
).

Самые «быстрые» маркеры мутируют в среднем от частот (1/0.0073) один раз в 137 условных поколений, то есть примерно раз в 3400 лет, или один раз на 137 рождений мальчиков, до примерно (1/0.004) один раз в 250 условных поколений. Давайте посмотрим, как это выглядит на практическом примере. Воспользуемся тем же набором из 3466 гаплотипов гаплогруппы R1b-L21. В маркере DYS472, самом «медленном», аллели образуют следующий набор:

7 – 1 (то есть аллель 7 встречается в 3466 маркерах DYS472 всего один раз)

8 – 3461 раз

9 – 4 раза


Таким образом, мы наблюдаем всего пять мутаций на 3466 маркеров DYS472 за 152 условных поколений (расчеты см. выше), прошедших со времени жизни общего предка этих гаплотипов. Это дает константу скорости мутации, равную примерно 5/3466/152 = 0.95 × 10-5 мутаций на условное поколение. Если давать более строгую формулировку, то при пяти мутациях надо написать (0.95±0.43) × 10-5 мутаций на условное поколение, или, что более правильно, (1.0±0.4) × 10-5 мутаций на условное поколение. Погрешности здесь рассчитываются по обычным правилам статистики, как квадрат обратной величины квадратного корня из числа мутаций. Здесь мы пренебрегли поправкой на возвратные мутации, потому что она в данном случае практически ничего не меняет, поправка составит менее одной сотой доли процента.

Но этот расчет проведен только на одной серии гаплотипов. В серии из 976 гаплотипов гаплогруппы R1a в маркере DYS472 прошла всего одна мутация, что при 154 условных поколениях до общего предка дает константу скорости мутации 1/976/154 = 0.67 × 10-5 на условное поколение. В целом, при подобном рассмотрении серий гаплотипов из 24 разных субкладов средняя величина для константы скорости мутации для DYS472 оказалась равной 0.8 × 10-5 мутаций на условное поколение.

Заметим, что это – самая «медленная скорость мутации из всех 111 маркеров. Для остальных задача решается еще проще, там мутаций больше.

Приведем еще несколько примеров «медленных» маркеров, расчеты по которым самые сложные. По парам отец-сын они вообще не определяются. Например, маркер DYS455. В серии из 3466 аллелей этого маркера наблюдаем следующее распределение:

9 – 6 (то есть аллель 9 встречается в 3466 маркерах DYS455 всего 6 раз)

10 – 28

11 – 3409

12 – 23


Считая, что все мутации одношаговые, получаем 63 мутации на 3466 аллелей DYS455 за те же 152 условных поколения, прошедших со времени жизни общего предка этих гаплотипов. Это дает константу скорости мутации, равную 63/3466/152 = 0.00012±0.00002 мутаций на маркер DYS455 за условное поколение. Поправка на возвратные мутации здесь составляет менее одного процента, поэтому вводить ее бессмысленно. В таблице выше дана константа скорости 0.00010, усредненная из многих расчетов по разным гаплогруппам.

Маркер DYS594:

7 – 1

8 – 2

9 – 4

10 – 3401

11 – 58


В сумме это дает 69 мутации на 3466 аллелей DYS594 за 152 условных поколения до общего предка. Это дает константу скорости мутации, равную 69/3466/152 = 0.00013±0.00002 мутаций на маркер DYS594 за условное поколение. Поправка здесь тоже составляет менее одного процента, поэтому вводить ее не будем. В таблице выше дана константа скорости 0.00017, усредненная из многих расчетов по разным гаплогруппам.

Маркер DYS490:

11 – 4

12 – 3437

13 – 18

14 – 7


В сумме это дает 36 одношаговых мутаций на 3466 аллелей DYS490 за 152 условных поколения до общего предка. Это дает константу скорости мутации, равную 36/3466/152 = 0.00007±0.00001 мутаций на маркер DYS594 за условное поколение. Поправка здесь тоже составляет менее одного процента, поэтому вводить ее не будем. В таблице выше дана константа скорости 0.00007, усредненная из многих расчетов по разным гаплогруппам, то есть точно такая же, как рассчитанная выше.

Маркер DYS492:

11 – 44

12 – 3398

13 – 22

14 – 2


В сумме это дает 70 одношаговых мутаций на 3466 аллелей DYS492 за 152 условных поколения до общего предка. Это дает константу скорости мутации, равную 70/3466/152 = 0.00013±0.00002 мутаций на маркер DYS492 за условное поколение. Поправка здесь тоже составляет менее одного процента. В таблице выше дана константа скорости 0.00015, усредненная из многих расчетов по разным гаплогруппам, то есть в пределах погрешности такая же, как рассчитанная выше.

А теперь приведем несколько примеров того, к чему приводят «быстрые» константы скоростей мутаций. Рассмотрим самую «быструю» – DYS 710, которая входит в 111-маркерную панель. Этот маркер не изучался в экспериментах на примерно 1700 парах отец-сын[73]73
  Ballantyne, K.N., Goedbloed, M., Fang, R., Schaap, O., Lao, O., Wollstein, A., Choi, Y., van Duijn, K., Vermeulen, M., Brauer, S., Decorte, R., Poetsch, M., von Wurmb-Schwark, N., de Knijff, P., Labuda, D., Vezina, H., Knoblauch, H., Lessig, R., Roewer, L., Ploski, R., Dobosz, T., Henke, L., Henke, J., Furtado, M.R., Kayser, M. (2010) Mutability of Y-chromosomal microsatellites: rates, characteristic, molecular bases, and forensic implications. Am. J. Human Genet. 7, 341–353.


[Закрыть]
, как и многие другие маркеры. Точнее, там вообще не изучались 24 маркера, в 17 маркеров мутаций не было, в 15 маркерах прошла всего одна мутация, то есть 56 маркеров из 111 оказались непригодными для количественного определения скоростей мутаций. А поскольку еще в 11 маркерах прошли всего две мутации, то почти две трети всех маркеров оказались непригодными для определения констант скоростей мутаций.

Даже при одной сигма (доверительный интервал плюс-минус 68 %) погрешность в определении скоростей мутаций (точнее, констант скоростей мутаций) составляет ±100 % при одной мутации, и ±71 % при двух мутациях. А попгенетики их используют, в том числе и те маркеры, в которых мутаций вообще не было, при этом умудряясь рассчитать «скорости мутаций» для тех маркеров! В результате, разумеется, опять мусор в академических публикациях. Пример такой работы – исследование 2013 года[74]74
  Wei, W., Ayub, Q., Xue, Y., Tyler-Smith, C. (2013) A comparison of Y-chromosomal lineage dating using either resequencing or Y-SNP plus Y-STR genotyping. Forensic Science International: Genetics. 7, 568–572.


[Закрыть]
, в авторах которого Chris Tyler-Smith, один из ведущих популяционных генетиков мира, и журнал один из ведущих. Я немедленно написал критическую статью в тот же журнал, и началась типичная для попгенетиков ситуация. Полгода ответа от журнала вообще не было. Я написал напоминание. После этого пришла одна рецензия, совершенно уклончивая, суть которой состояла в том, что несправедливо критиковать исследование, в котором используются мутации, определенные по парам отец-сын, поскольку многие их применяют. Поэтому моя статья быть принята не может. Я написал ответ, выразив возмущение сроками рецензии – более полугода, а также тем, что рецензент всего один, и само замечание неквалифицированное.

Через месяц пришла еще одна рецензия, в которой опять предлагалось снять критику за использование «скоростей мутаций» по парам отец-сын, снять таблицу, в которой показано, что значительная часть маркеров, используемых в работе Tyler-Smith, основывается всего на нескольких мутациях в парах отец сын. Так, по разным цитируемым авторами данным, в маркере DYS643 мутаций вообще не было, в DYS448, и DYS549 прошло всего по одной мутации (в 1213 и 555 парах отец-сын, соответственно), маркерах DYS533 и DYS 438 по две мутации (в 555 и 4565 парах отец-сын, соответственно), и это уже шесть маркеров из 21, используемых в работе, более четверти. Помимо того, в работе использовались печально известные «популяционные скорости Животовского», которые вообще завышали датировки в три раза. Я ответил, что ничего снимать не буду. После этого получил письмо уже от главного редактора с приложением еще одной рецензии. Суть ее была в том, что несправедливо критиковать именно эту статью, и особенно несправедливо по отношению к Tyler-Smith, поскольку то, о чем я пишу, характерно по отношению почти ко всем статьям популяционных генетиков, и почему начинать именно с Tyler-Smith? Поэтому мне предлагалось вообще снять всю критику данной статьи, и написать общую статью по скоростям мутаций в гаплотипах. Я отказался, написав, что сначала пусть они публикуют эту критическую статью, а потом обсудим более общую статью. После этого в течение года редактор мне регулярно напоминал, что они ждут общую статью, но о критической статье не упоминал. Но мне статьи не очень нужны, у меня их более пятисот, и более двадцати книг, поэтому я и не отвечал. Такое отношение к авторам мне не подходит. И после этого попгенетики еще мне высказывают претензии, что я не публикуюсь в журналах по популяционной генетике. Нет уж, меня ангажированные издания не устраивают.

Возвращаемся к «быстрым» скоростям мутаций. В маркере DYS710 в рассмотренном выше списке из 3466 гаплотипов (и, соответственно, аллелях данного маркера) наблюдается следующая картина распределений:

29 – 1 (то есть аллель 29 встречается в 3466 маркерах DYS710 всего один раз)

30 – 21 раз

31 – 49 раз

32 – 93

33 – 427

34 – 808

35 – 1058

36 – 759

37 – 182

38 – 50

39 – 17

40 – 1 раз


Видно, что картина мутаций значительно более «размазанная» по сравнению с медленными константами скоростей. Считая, что все мутации одношаговые, получаем 3594 мутации на 3466 аллелей DYS710 за те же 152 условных поколения, прошедших со времени жизни общего предка этих гаплотипов. Мы видим, как высокие скорости мутаций «размазывают» распределение мутированных аллелей в широком диапазоне. Если при минимальной скорости мутаций в DYS472 сохранились неизменными 3461 предковые аллели в гаплотипах 3466 потомков (константа скорости мутации 0.000008 на условное поколение), и в DYS617 сохранились неизменными 2921 предковые аллели в гаплотипах 3466 потомков (константа скорости мутации на в 63 раза выше, 0.0005 на условное поколение), то в случае самого «быстрого» маркера сохранились всего 1058 предковые (базовые) аллели, и число мутаций равно 3594 вместо 5 в DYS472, то есть в 700 с лишним раз больше. Константа скорости мутации была бы равна 3594/3466/152 (без учета поправки на возвратные мутации), то есть была бы равна примерно 0.0068 мутаций на условное поколение. Но из-за высокой скорости мутаций настолько много, что отношение числа мутированных аллелей к общему числу аллелей превышает единицу (3594/3466 = 1.037), и поправки на возвратные мутации «захлебываются», дают заниженные показатели, и в целом перестают работать. Формальный расчет по формуле, приведенной выше, показывает, что число возвратных мутаций здесь практически равно числу «прямых» мутаций, и полученную величину 0.0055 нужно удвоить. В действительности усредненная контанта скорости мутации этого маркера по разным гаплогруппам равна 0.0073 на условное поколение (25 лет), и она приведена в таблице выше.


Еще пример относительно «быстрого маркера» – это DYS534. В том же списке из 3466 гаплотипов (и, соответственно, аллелях данного маркера) наблюдается следующая картина распределений:

12 – 3 раза

13 – 48

14 – 524

15 – 1574

16 – 1043

17 – 229

18 – 43

19 – 2


Считая, как обычно, что все мутации одношаговые, получаем 2267 мутаций на 3466 аллелей DYS534 за те же 152 условных поколений, прошедших со времени жизни общего предка этих гаплотипов. Мы видим, что по сравнению с самым «быстрым» маркером DYS710 (в котором сохранились всего 1058 предковых (базовых) аллелей, и число мутаций равно было 3594, в случае DYS534 сохранилось 1574 предковых аллелей, и общее число мутаций равно 2267. Давайте посмотрим, что получится в этом случае. Константа скорости мутации, получаемая из экспериментальных данных, равна 2267/3466/152 (без учета поправки на возвратные мутации), то есть равна примерно 0.00430 мутаций на условное поколение. Моделирование дает среднюю константу скорости 0.00315 мутаций на условное поколение по разным гаплогруппам.

Таким образом можно проводить расчет констант скоростей мутаций, используя большие серии гаплотипов. Но работа на этом не заканчивается, потому что серии гаплотипов могут быть искаженными, включать примеси из других серий, с другим общим предком, включать другие субклады, с другим распределением аллелей по частотам, и так далее. Поэтому получаемые значения констант скоростей мутаций необходимо калибровать по известным документальным генеалогиям, опять желательно по нескольким. Как это делается, мы увидим в следующем разделе.


Вопрос 69: Насколько константы скоростей мутаций, определенные в разных регионах мира, надежны для проведений расчетов в ДНК-генеалогии? Что такое «калибровка» констант скоростей мутаций?


Приведу некоторую аналогию – а насколько надежны расчетные скорости (на самом деле – константы скоростей) радиоактивного распада соответствующих веществ? Влияют ли на них регионы планеты, где проводятся измерения? Любой образованный человек ответит – конечно, нет, не влияют. Скорость распада радиоактивных материалов определяется исключительно «внутренними» свойствами вещества, а не внешними воздействиями. Это – фундаментальные показатели. Вот так же должен отвечать каждый образованный человек на соответствующий вопрос о константах скоростей мутаций в гаплотипах. Это – фундаментальные показатели. Никакие регионы, питание, физические упражнения, национальность, гражданство или партийная принадлежность на них не влияют. Естественно, речь здесь идет о нормальных условиях, а не, скажем, в условиях солнечного ядра, или при смертельных уровнях радиации.

Итак, мутации в гаплотипах потомков расходятся от предкового гаплотипа как круги по воде, число мутаций легко рассчитывается, и они подчиняются довольно простым количественным закономерностям. Для кругов на воде, расходящихся от места, куда был брошен камень, легко рассчитать, когда был брошен камень, если знать скорость распространения волны и место нахождения круговой волны в данный момент времени. Чем больше прошло времени – тем дальше круги ушли, тем больше они разошлись. Так и в гаплотипах – чем больше время, прошедшее от общего предка, тем больше мутаций накопилось в гаплотипах его потомков. Число этих мутаций связано с временем, прошедшим от общего предка, с числом гаплотипов в серии, и с константой скорости мутации в гаплотипах, и выражается простой формулой: n/N = kt, где n – число мутаций в серии из N гаплотипов, k – константа скорости мутации (в числе мутаций на гаплотип за условное поколение, равное 25 лет), t – число условных поколений, с табличной поправкой на возвратные мутации[75]75
  Klyosov, A.A. (2009) DNA Genealogy, mutation rates, and some historical evidences written in Y-chromosome. I. Basic principles and the method. J. Genetic Genealogy, 5, 186–216; Klyosov, A.A. (2012) Ancient history of the Arbins, bearers of haplogroup R1b, from Central Asia to Europe, 16,000 to 1500 years before present. Advances in Anthropology, 2, No. 2, 87-105.


[Закрыть]
. На сотнях и тысячах примеров показано, что эта формула работает при любом числе гаплотипов и мутаций в них, и при любом времени, прошедшем от общего предка рассматриваемых гаплотипов. Однако при очень больших временах, более 10–20 тысяч лет, и особенно более 100 тысяч лет, нужно использовать гаплотипы с «медленными» маркерами, то есть с малыми константами скоростей мутаций, и тем самым снижать число мутаций и число возвратных мутаций. По аналогии, вряд ли целесообразно изучать скорости радиоактивного распада элементов со временами полураспада в тысячелетия, используя секундомер. Или пытаться изучать круги на воде за километры от места, куда был брошен камень, для этого нужно значительно более мощное воздействие. Как всегда, нужен конкретный анализ в конкретной ситуации, единых подходов на все случае жизни не бывает. Варианты конкретного анализа в конкретных ситуациях и рассматривает ДНК-генеалогия. Некоторые ситуации и расчеты мы рассмотрим ниже.

Теперь вопрос – насколько надежны величины констант скоростей мутации в соответствующих маркерах Y-хромосомы? Они надежны настолько, насколько надежно их определяют, калибруют, проверяют исследователи. Когда это делают популяционные генетики – совершенно ненадежны, они это показали последними двадцатью годами их так называемых «исследований». Они до сих пор так и не знают, какие значения эти константы имеют. Они до сих пор, в академических статьях 2015 года, продолжают использовать «скорости Животовского»[76]76
  Karmin, M….Järve, M….Tishkoff, S…. Pocheshkhova, E., Sabitov, Z., Yepiskoposyan, L…. Behar, D., Balanovska, E., Derenko, M., Malyarchuk, B., Hammer, M., Balanovsky, O., Tyler-Smith, C., Underhill, P.A., Willerslev, E., Kivisild, T. (2015) Genome Research, doi/10.1101/gr.186684.114.


[Закрыть]
. Причем «на полном серьезе» обсуждают, что на временах до 5 тысяч лет эти «скорости» сильно завышают датировки, и вот на временах 40–60 тысяч лет подходят в самый раз. Они так и не поняли, что 23-маркерные гаплотипы на временах 40–60 тысяч лет вообще не применимы, там больше половины столь «быстрых констант скоростей», что они вообще не работают, потому что мечутся как белка в колесе. Это все равно, что секундомером измерять астрономические явления продолжительностью в тысячи и миллионы лет. И попгенетики этого так еще и не поняли!

Иногда принцип датировки «разбега» мутаций в гаплотипах с течением времени называют «принципом молекулярных часов». Смысл в этом есть, но примитивный. Дело не в том, что часы, а в том, чтобы правильно ходили. Любая реакция в химических или биологических системах, описываемая константой скорости первого порядка, есть «обычные молекулярные часы», поскольку связана с хронологией процесса на молекулярном уровне. Динамика любого такого процесса связана с временем согласно формуле с = с0е-kt, где c0 – исходное состояние системы (например, начальное количество или концентрация изучаемого вещества; количество гаплотипов Y-хромосомы в изучаемой выборке, и т. д.), с – состояние системы в определенный момент времени t (где t – время прошедшее с начала реакции, t-to), или количество базовых, то есть исходных гаплотипов в изучаемой выборке в настоящее время, спустя время t, прошедшее со времени жизни общего предка изучаемой серии гаплотипов), k – константа скорости реакции (мутаций, в данном случае). Эту же формулу можно переписать в виде ln(co/c) = kt, и она становится выражением логарифмического метода анализа выборок гаплотипов в ДНК-генеалогии. Берем, скажем, сто или тысячу гаплотипов, или любое другое их число, делим на число базовых (то есть одинаковых, идентичных друг другу гаплотипов, суть предковых гаплотипов, которые не успели мутировать за время t, прошедшее со времени жизни общего предка), берем натуральный логарифм (ln), и получаем произведение kt, то есть константу скорости мутации, помноженную на число лет, прошедшее со времени жизни общего предка, или на число условных поколений, опять же прошедших после общего предка – в зависимости от того, выражали константу скорости в годах, или в поколениях.

Логарифмический метод будет обсуждаться в следующем разделе, а пока обратим внимание, что результаты расчетов в ДНК-генеалогии обычно получаются в виде произведения kt. Это относится и к логарифмическому методу (см. выше), и к так называемому линейному методу, в котором считают число мутаций в серии гаплотипов, происходящих от одного общего предка, и делят их на число гаплотипов и на константу скорости мутаций в гаплотипе.

Отсюда уже видно, что неважно, сколько лет положить на условное поколение – 20, 25, 30, 35 или любое другое число лет, поскольку константа скорости мутации тут же подстроится, они завязаны друг на друга, произведение-то одно. В ДНК-генеалогии, как отмечалось выше, берется 25 лет на условное поколение, и, соответственно, константы скорости мутации приобретают определенные значения, получаемые по калибровке (см. ниже). Например -

для 12-маркерных гаплотипов константа равна 0.02 мутаций на гаплотип на условное поколение,

для 25-маркерных 0.046 мутаций на гаплотип на условное поколение,

для 37-маркерных – 0.09,

для 67-маркерных – 0.12,

для 111-маркерных – 0.198 мутаций на гаплотип на условное поколение.


Если это пересчитать в расчете не на гаплотип, а на маркер, то получим соответствующие константы скорости 0.00167, 0.00184, 0.00243, 0.00179, 0.00178 мутаций на маркер на условное поколение. Уже видно, что константы скорости разные для разных гаплотипов, и различаются, например, для 37-маркерных и 12-маркерных гаплотипов в 1.46 раз, то есть на 46 %. А если сравнить с 6-маркерными гаплотипами (константа скорости мутации на гаплотип равна 0.0074, на маркер 0.00123), то диапазон различий в константах в зависимости от длины маркера расходится на уже на 1.98, или на 98 %. Вывод – никак нельзя принимать константы скорости мутации на маркер за постоянные величины, одинаковые для всех гаплотипов, как делают в своих расчетах популяционные генетики. 98 % ошибки в расчетах только за это допущение – цена такого неумного (или неквалифицированного, или некомпетентного) предположения. Иначе говоря, иметь часы – дело нехитрое, но надо, чтобы они были отрегулированы. Это означает, что к ним должны прилагаться корректные константы скоростей мутаций, а корректные величины получаются корректной калибровкой.

Подходим к вопросу о калибровке констант скоростей мутаций.

Данные по калибровке были опубликованы в 2011 году в журнале Advances in Anthropology[77]77
  Rozhanskii, I.L., Klyosov, A.A. (2011) Mutation rate constants in DNA genealogy (Y chromosome). Advances in Anthropology, 1, No. 2, 26–34.


[Закрыть]
, и недавно изложены в популярном виде на Переформате (http://pereformat.ru/2014/11/dna-calibration/). Суть в том, что были взяты генеалогические данные для 13 семей, удовлетворяющие сформулированным жестким критериям. Эти 13 семей (или «Проектов») были отобраны из сотен других, которые были менее многочисленны или датировки которых были менее достоверны, или гаплотипы были короткими, то есть низкого разрешения.

В указанной статье[78]78
  Там же


[Закрыть]
приведены многочисленные графики для гаплотипов разной протяженности, и каждый график иллюстрировал надежность калибровки, доверительные интервалы и прочее. Статья – редкая по глубине обоснований и достоверности полученных данных, результаты калибровок выверены на 3160 гаплотипах из 55 гаплогрупп и субкладов, из них 2489 гаплотипов были 67-маркерными.

Не будем приводить все калибровочные графики, дадим только калибровочную диаграмму для 37– и 67-маркерных гаплотипов. На рис. 12 на горизонтальной оси – число лет до общего предка каждой из документированных ДНК-генеалогических «семей», на вертикальной оси – среднее число мутаций на маркер (поскольку гаплотипы разные – 37– и 67-маркерные) в гаплотипах, принадлежащих этим семьям.


Рис. 12. Калибровочные взаимоотношения между временем, прошедшим от общих предков генеалогических серий гаплотипов в каждой группе («генеалогической семье»), и числом мутаций, накопившхся с того времени, в расчете на маркер в гаплотипах в 37– и 67-маркерном формате. Данные и принцип подхода опубликованы в журнале Advances in Anthropology (2011, Rozhanskii & Klyosov) и приведены в дополненном виде И.Л. Рожанским на Переформате (http://pereformat.ru/2014/11/dna-calibration/).


Видно, что есть четкая линейная зависимость между «возрастом» ДНК-линии и числом мутаций на маркер. Так и должно быть, поскольку мутации в гаплотипах (и маркерах) происходят случайным образом и описываются кинетикой первого порядка. Угол наклона корреляционной прямой для 37-маркерных гаплотипов выше, чем у 67-маркерных, поскольку мутации в 37 маркерах (где большая доля «быстрых» по мутациям маркеров) в совокупности происходят чаще, чем в 67-маркерных (где, напротив, маркеры с 38 до 67-го по порядку содержат высокую долю «медленных» маркеров). Отсюда и получились те константы скоростей мутаций, приведенные выше в данной статье: для 37-маркерных гаплотипов 0.00243 мутаций на маркер (0.09 мутаций на гаплотип) за условное поколение, для 67-маркерных гаплотипов 0.00179 мутаций на маркер (0.12 мутаций на гаплотип) за условное поколение. Для 67-маркерных гаплотипов точность калибровки больше, и соответствует погрешности в определении константы скорости мутаций ±2.5 %[79]79
  http://pereformat.ru/2014/11/dna-calibration/


[Закрыть]
. Рассмотрение тех нескольких тысяч гаплотипов, упомянутых выше, из 55 гаплогрупп и субкладов позволило заключить, что использованная калибровка и метод расчета дают точность в определении времени жизни предка с точностью ±10 % или меньше в интервале от 500 до 6000 лет назад.


Вопрос 70: Могло ли быть так, что мутации в ДНК в одном регионе планеты возникали с большей частотой, чем в другой (скажем, в местах, где радиоактивность была выше или по каким-то климатическим причинам и т. п.)?

Нет, не могло, если речь идет об обратимых мутациях в гаплотипах.

Часто слово «мутации» люди понимают ограниченно, как поломка чего-то в живых организмах под влиянием внешних воздействий, обычно радиации. Но в гаплотипах – это не поломка. Это процесс филигранной перестройки, перемещения блоков нуклеотидов в ДНК. Выше в этой книге был уже приведен пример строения маркера DYS393, в котором четверка нуклеотидов AGAT, то есть аденин-гуанин-аденин-тимин, повторяется определенное количество раз. Например, 13 раз, как у большинства носителей разных гаплогрупп:



и эти повторы обрамляются уже неупорядоченными последовательностями нуклеотидов в ДНК, как показано выше. И вот «мутация» приводит к тому, что вместо 13 раз эта четверка стала повторяться у потомков 12 или 14 раз, в результате однократной ошибки копирующей ДНК-полимеразной системы. Ну как радиация это сможет сделать? В любом случае, этого никто не показал, поэтому и вопроса как такового нет. Мы же не спрашиваем, могут ли на скорость мутации повлиять инопланетяне? Спросим, когда к такому вопросу появятся основания. Пока их нет.


Страницы книги >> Предыдущая | 1 2 3 4 5 6 7 8 9 10 11 12 | Следующая
  • 4.4 Оценок: 11

Правообладателям!

Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.

Читателям!

Оплатили, но не знаете что делать дальше?


Популярные книги за неделю


Рекомендации