Текст книги "Парадоксы науки"
Автор книги: Анатолий Сухотин
Жанр: Прочая образовательная литература, Наука и Образование
сообщить о неприемлемом содержимом
Текущая страница: 2 (всего у книги 17 страниц)
«ПРОСТИ МЕНЯ, НЬЮТОН!»
Вместе с тем, разрешая противоречия и продвигаясь благодаря этому вперед, познание отыскивает новые парадоксы, ибо самое простое и понятное всегда то, что найдено вчера, а самое сложное и неясное то, что будет обнаружено завтра. Ведь и изучается все ради того лишь, чтобы, завоевав один рубеж, пойти дальше, чтобы вновь встретить неизведанное и потребовать его уточнений. Наука словно бы задалась целью опровергнуть афоризм: «Если что и непонятно во вселенной, так это то, что она вообще поддается пониманию». Действительно, человек каждодневно убеждается, что явления и процессы, казалось бы, сложные, необъяснимые, рано или поздно удается объяснить.
Однако, превратив непонятное в понятное, мы тут же устремляемся в новые поиски. Поэтому то, что в настоящую минуту является парадоксом, со временем уже перестает волновать умы, принимается как норма. Вместе с тем на смену старым встают другие противоречия, другие парадоксы.
В механике и теории тяготения, созданных гением И. Ньютона, поначалу видели нечто «туманное» и даже «темное». Но позднее рке сами критики были осуждены как люди «темные» и отставшие от науки. Положения ньютоновских теорий стали классическими, вошли в учебники и пе вызывали недоумения. Споры шли теперь не об их истинности, а о природе их достоверности.
И тем не менее всему своя пора. Назрели новые события. Наука пе стоит на месте. И вообще, как заметил английский математик и логик на рубеже последних столетни А. Уаптхед, наихудшим воздаянием гению было бы некритическое принятие тех истин, которыми мы ему обязаны.
На помощь механике И. Ньютона пришла объяснить природу непонятная теория относительности. Великое творение А. Эйнштейна – одно из парадоксальных явлений научной мысли. Немногие ученые приняли появление этой теории охотно. Примечателен, например, такой факт. В 1923 году один канадский экономист спросил английского физика Э. Резерфорда, что он думает о теории относительности. «А, чепуха, – ответил он. – Для нашей работы это не нужно». И такое прозвучало в пору, когда теория опюсительности уже не была в днконппу и Э. Резерфорд был не новичок в науке, а всемирно известный естесгвопспьматель. Вскоре за научные заслуги он получит от британского правительства титул лорда Нельсона.
Поэтому можно понять А. Эйнштейна, который, утвердившись в правоте своих идей и сознавая, что их принятие рушит классические представления, воскликнул: «Прости меня, Ньютон! Ты нашел тот единственный путь, который в свое время был возможен для человека наивысшею полета мысли и наибольшей творческой силы».
Все началось с установления факта постоянства скорости света. Эксперимент американского физика из Чикаго А. Майкельсона в конце XIX века показал, что свет может двигаться всегда только с одной и той же скоростью – 300000 километров в секунду.
Этот результат грозил чрезвычайными последствиями.
Дело в том, что скорость света является наивысшей.
Природа словно наложила запрет. Никакой сигнал, по крайней мере из тех, что известны, не может распространяться быстрее света. Далее, скорость света постоянна относительно любой инерииальной, то есть движущейся равномерно и прямолинейно, системы отсчета. Это значит, что с какой бы высокой скоростью ни двигалось тело, излучающее свет, по направлению своего движения, скорость светового сигнала будет неизменной – 300000 километров в секунду.
Это и порождало странности.
Проведем такой мысленный эксперимент. Допустим, мы имеем ракету, развивающую скорость, близкую к световой, к примеру, 299 000 километров в секунду. Оборудуем ее установкой, способной излучать свет, и приборами, учитывающими время и пройденные расстояния.
А теперь направим ракету в сторону некой космической цели. Когда ее скорость достигнет предельной, ракета пошлет в направлении той же цели световой сигнал. И вот что мы обнаружим.
По отношению к земному наблюдателю световой сигнал обгонит ракету и будет двигаться впереди нее со скоростью 300000 километров в секунду. И это естественно. Но с такой же скоростью свет будет убегать вперед и по отношению к ракете, хотя она – в системе земного наблюдения – почти не отстает от него. А это уже «противоестественно». Тем не менее от такого вывода никуда не уйти, ибо световому сигналу безразлично, оставил ли он за собой Землю или летящую с громадной скоростью ракету. Его скорость по отношению и к Земле и к ракете одинакова.
Через 1 секунду после того, как свет был выпущен, он пройдет 300 000 километров. Заметим это место.
Вслед за световым сигналом в той же точке пространства появится ракета. По нашим земным расчетам, луч успел за эту земную секунду обогнать ракету всего лишь на 1000 земных километров. А вот по расчетам приборов на ракете, он сумел убежать от нее за 1 секунду уже на 300000 километров.
Эти показания также не укладываются в привычные представления. Остается предположить лишь одно: на нашей ракете приборы отсчитывают другие секунды и другие километры, нежели те, с которыми / оперируем мы на Земле.
Объясняя эти странности, теория относительности преподнесла целый ряд совершенно парадоксальных решений: новое понимание проблемы одновременности, эффекты сокращения длин и замедления времени, особенно дающие о себе знать при скоростях, приближающихся к скорости света, и другие. Более всего вызывал недоумение вывод о замедлении времени.
Проведем еще один мысленный эксперимент. Снова отправим в космическое плавание ракету. На противоположных точках ее боковых стенок помещены источник и приемник светового сигнала, есть и приборы, регистрирующие движение света, и даже экспериментаторы, отмечающие показания приборов.
Когда ракета-корабль наберет высокую скорость, ее экипаж посылает с одного борта на другой световой сигнал. С точки зрения наблюдателя, находящегося внутри ракеты, свет пройдет расстояние, равное ширине помещения, то есть длине перпендикуляра, опущенного с одного борта на противоположный. Однако внешний наблюдатель, от которого ракета удаляется, скажем, наблюдатель на Земле, получит иные результаты. Поскольку корабль движется, то согласно показаниям земного наблюдения тот же световой сигнал пройдет отрезок, равный уже длине гипотенузы треугольника.
Одна сторона этого треугольника – путь, который прошел наш корабль (за время, пока свет достиг приемника), а другая – ширина корабля.
Но что же происходит? Получается, что световой сигнал, движущийся от одного борта ракеты к другому, пробегает разное расстояние (то большее, то меньшее), хотя движется относительно этих наблюдателей с одной и той же скоростью. Это типичный парадокс: из принятых положений вытекают противоположные, друг друга исключающие следствия.
Спасение от парадокса и несла теория относительности. Однако несла ценой признания также парадоксального допущения: в движущихся системах время замедляется. Поэтому свет и успевает за это «растянувшееся» в движущемся корабле время пробежать нужное расстояние. Притом чем выше скорость, тем сильнее замедление. Конечно, расстояние также в этих условиях претерпевает изменения, испытывая сокращения, но от этих процессов мы сейчас отвлекаемся.
Итак, время относительно. Его течение зависит от условий наблюдения. Этим А. Эйнштейн и опроверг укоренившуюся аксиому об абсоттотиости времени.
Более зримо необычность новой теории представлял «парадокс близнецов». Если один из братьев-близнецов отправится в длительное космическое путешествие, то он вернется., в свое будущее.
Поскольку время на корабле – в силу большой скорости – будет протекать замедленно, ю и наш космонав! станет изменяться медленнее, чем если бы он продолжал жить в земных условиях Между тем другой брат, оставшийся на Земле, за это время (время путешествия) состарится ровно на столько, сколько ему определено земным обитанием. Стало быть, когда братья встретятся, разница в их возрасте окажется тем значительнее, чем дольше и чем с большей скоростью продолжалось путешествие.
Теория относительности вызвала колоссальные сдвиги в умах. Как отмечал известный английский математик Г. Хардн, если бы не было А. Эйнштейна, физическая картина мира была бы иной.
Но вот едва успели не то чтобы привыкнуть, а скорее смириться с положениями теории относительности, как на глазах рождается новая парадоксальная идея.
Собственно, а почему не может быть скоростей больших, чем скорость света? Опираясь на это предположение, допускают существование частиц, могущих быть носителями таких сверхсветовых сигналов. Их назвали тахионами.
Тахионы наделяются способностью двигаться с какой угодно большой скоростью, но она не может быть меньше скорости света. Больше – пожалуйста, но меньше… Здесь положен запрет, только он проходит с другой стороны светового барьера Как на дуэли, барьер переходить нельзя. Верно, и «дуэлянты» тут неравноправны. Если для движения тел, рассматриваемых в теории относительности, скорость света является наивысшей, то для тахионов она, напротив, самая низкая.
Как меняются представления! Когда-то мысль о том, что скорость света – предел возможных передвижений, казалась парадоксом. А ныне парадоксальными объявляются уже попытки зарегистрировать сверхсветовые скорости.
ПАРАДОКСЫ, ГДЕ ИХ НЕ ДОЛЖНО БЫТЬ
Фактически наука и движется от парадокса к парадоксу. Это вехи, которыми обозначены ее взлеты. Но и падения тоже, поскольку выявление парадокса воспринимается вначале как наступление катастрофы, как развал искусно построенного здания.
Обратимся в связи с этим к самой строгой науке – математике. Казалось, здесь-то не должно возникать ничего похожего. Не случайно говорят: вероятно, величайший парадокс состоит в том, что в математике имеются парадоксы. Они не только есть, но и представляются наиболее впечатляющими, а вместе с тем особенно сложными и трудными для понимания.
За свою историю математика испытала три сильнейших потрясения, три кризиса, которые касались ее основ. И все три сопровождались обнаружением парадоксов. Одновременно с этим их преодоление достигалось ценой введения необычных понятий, утверждением невероятных идей. Одним словом, парадоксы разрешались благодаря тому лишь, что они порождали новые, также парадоксальные теории.
Первый кризис разразился еще в древности и был вызван открытием факта несоизмеримости величин. Что это означает?
Две однородные величины, выражающие длины или площади, являются соизмеримыми, если они обладают так называемой общей мерой. То есть если имеется такая однородная с ними величина, которая укладывается в каждой из них целое число раз. Полагали, что все длины и площади созмеримы. Вообще над этим как-то не задумывались. И вот обнаружили странное…
Оказывается, диагональ квадрата и его сторона не имеют общей меры, и их отношения нельзя выразить с помощью известных к тому времени рациональных, то есть целых или дробных чисел. Это и вызвало кризис античной математики. Парадокс состоял в том, что по отдельности каждая из несоизмеримых величин – и диагональ и сторона квадрата – может быть измерена и количественно точно определена. Однако выразить их длины через отношения друг к другу посредством имевшихся тогда чисел не удавалось.
Поясним это с помощью такой операции. Возьмем сторону квадрата и станем откладывать ее на диагонали. Мы обнаружим, что сторона не укладывается на ней целое число раз. Обязательно будет остаток. Но ведь можно попытаться уложить остаток, если он уместится целое число раз, общая мера найдена. Увы! И остаток не умещается в целое число действий. Снова получается остаток, который ведет себя точно так же, как его более крупные предшественники, и т. д.
Это не поддающееся измерению отношение диагонали и стороны квадрата было представлено выражением V2 (корень квадратный). Оно имеет следующее происхождение.
Если квадрат разрезать по диагонали, получим два прямоугольных равнобедренных треугольника, где линия бывшей диагонали будет гипотенузой, а стороны квадрата – катетами. Согласно знаменитой теореме Пифагора квадрат гипотенузы равен сумме квадратов катетов, точнее, площадь квадрата, построенного на гипотенузе, равна сумме площадей квадратов, построенных на катетах. Отсюда и величина отношения гипотенузы к катету (или диагонали к стороне квадрата), равная V2 (корень квадратный).
Позднее нашли, что также несоизмеримы отношения длины окружности к диаметру (оно выражается числом я), площади круга и квадрата, построенного на радиусе, и другие величины.
Кризис был преодолен введением новых чисел, которые не являются ни целыми, ни дробными. Они могут быть представлены в виде бесконечных непериодических дробей. К примеру, корень из 2 равен 1,41.., п = 3,14… и т. д. Людям, знавшим только рациональные числа, вновь введенные казались несуразными, противоестественными. Это отразилось и в их названии: «иррациональные», что значит «бессмысленные», лежащие по ту сторону разумного.
Дело в том, что если целые числа и дроби имели ясное физическое толкование, то для иррациональных чисел ею не находилось. Был только один способ придать им реальный смысл: сопоставить с ними длины определенных отрезков. Греки так и поступили. Они отказались от понимания иррациональных чисел в качестве именно чисел, а истолковали их как длины, то есть перевели на язык геометрии.
Здесь важно подчеркнуть, что введение новых чисел оказало сильнейшее влияние на последующее развитие математики.
Очередная катастрофа произошла несколько веков спустя и особенно терзала математику в XVII-XVIII столетиях. В этот раз дело касалось истолкования бесконечно малых величин. Мы видели, что бесконечность участвовала и в первом кризисе. Там она отразилась в способе представления иррациональных чисел. Она будет участвовать и в третьем кризисе. И вообще, полагают некоторые, если резюмировать сущность математики в немногих словах, то можно сказать, что она – наука о бесконечном. Так, крупнейший немецкий ученый XX века Д. Гильберт, имея в виду математику, писал:
«Ни одна проблема не волновала гак глубоко человеческую душу, как проблема бесконечного, ни одна идея не оказала сголь сильного и плодотворного влияния на разум, как идея бесконечного». Но вместе с тем, заключает он, «ни одно понятие не нуждается так в выяснении, как понятие бесконечного». Однако вернемся к кризисам.
Бесконечно малые – это переменные величины, стремящиеся к тлю, точнее, как было показано позже, стремящиеся к пределу, равному нулю. Кризис возник в силу расплывчатою понимания бесконечно малого.
В одних случаях оно приравнивалось к нулю и при вычислениях отбрасывалось, в других же – принималось как значение, отличное от нуля, о чем говорит и само название. Причина столь противоречивого подхода к бесконечно матым объясняется гем, что их рассматривали в качестве постоянных величин. В силу этого бесконечное понималось как нечто завершенное, имеющееся налицо, данное всеми своими элементами.
Выход из кризиса был найден созданием теории пределов, окончательно построенной в начале XIX века известным французским математиком О. Коши. Это парадоксальное состояние (полагать бесконечно малые нулями и в то же время неравными нулю) О. Коши разрешает введением качественно новых, неслыханных ранее величин. Он берет их из области возможного, а не действительного. Бесконечно малые – это величины, которые существуют лишь как постоянно изменяющиеся, стремящиеся к пределу, но никогда его не достигающие. То есть они всегда остаются в возможности, в потенции, так что не реализуется ни одна из указанных альтернатив. Величины не застывают в каких-либо одних конкретных значениях. Они постоянно изменяются, приближаясь к нулю, но и не превращаясь в нуль.
Интересные величины!
Последний кризис (последний по времени, но, надо полагать, не по счету) имел место на рубеже XIX-XX веков и был столь мощным, что затронул не только саму математику, но и логику, поскольку эти науки тесно связаны и язык, поскольку дело касалось способов точного выражения содержания наших мыслен.
К концу XIX века в качестве фундамента всего здания классической математики прочно утвердилась теория множеств, развитая выдающимся немецким ученым Г.Кантором. Понятие «множество» или «класс», «совокупность» – простейшее в математике. Оно не определяется, а поясняется примерами. Можно говорить о множестве всех книг, составляющих данную библиотеку, множестве всех точек данной прямой и т. д Далее вводится понятие «принадлежать», то есть «быть элементом множества». Так, книги, точки являются элементами соответствующих множеств. Для определения множества необходимо указать свойство, которым обладают все его элементы.
С появлением теории множеств казалось, что математика обретает ясность и законченность. Теперь ее грандиозное здание напоминало несокрушимую крепость. Оно было прочно заложено и обосновано во всех своих частях. Недаром же крупнейший французский математик того времени А. Пуанкаре в послании очередному математическому конгрессу торжественно заявлял, что отныне все может быть выражено с помощью «целых чисел и конечных и бесконечных систем целых чисел, связанных сетью равенств и неравенств».
Увы. скоро, очень скоро обнаружились сначала частные, а позднее фундаментальные изъяны. Но здесь в разговор вмешивается логика.
Дело в том, что основные понятия теории множеств допускали логическое описание. Доказательство возможности существования математических объектов также получало логическое оправдание. Мы не будем вникать в детали. Отметим лишь следующее. Многие исследователи, учитывая только что сказанное, задались целью свести математику к логике, то есть выразить исходные математические понятия и операции логически. Казалось даже, что эта программа – ее назвали программой логицизма – близка к завершению. Немецкий логик и математик Г. Фреге уже заканчивал и частью издал трехтомный труд «Обоснования арифметики», венчающий усилия логицистов, как вдруг разразилась «арифметическая катастрофа».
В 1902 году молодой английский логик Б. Рассел обратил внимание Г. Фреге на противоречивость его исходных позиций. Г. Фреге использовал такие понятия, что это вело к парадоксу. Попробуем в нем разобраться.
Мы уже говорили, что множество (класс) есть совокупность объектов, которые и составляют элементы данного множества. Поскольку само множество тоже объект, как и его элементы, то вставал вопрос, является ли множество элементом самого себя, то есть принадлежит ли оно к числу элементов собственного класса?
В этом пункте начиналось интересное.
Есть два вида классов. Одни содержат себя в качестве собственного элемента. Например, класс списков, Его элементами являются конкретные списки. Скажем, список книг какой-либо библиотеки, список студентов некоторой группы и т. д. Но и сам класс оказывается в числе своих элементов, потому что список списков есть также список. Аналогично и каталог каталогов есть каталог.
Однако подобных классов очень немного. Обычно же классы не содержат себя в качестве собственного элемента. Возьмем, например, множество «человек».
Его составляют конкретные люди: Петров, Сидоров, Аристотель. Любой человек, молодой или в возрасте, мужчина или женщина, студент или профессор – каждый из них является элементом множества «человек».
Само же это множество элементом собственного класса стать не может, ибо нет человека вообще, человека как такового. Это не более чем абстракция, понятие, которое отвлечено от всех конкретных признаков и существует только в идеальном виде как мысленная конструкция.
А теперь образуем класс из всех вот таких классов, которые не включают себя в качестве своего элемента: «человек», «дерево», «планета» и т. п. Образовали. Попытаемся также определить, будет ли он, этот новый класс, входить элементом в свое же множество или не будет? Здесь и возникал парадокс. Если мы включим его в свой класс, то его надо выключить, потому что сюда, по условию, входят только те множества, которые не являются собственными элементами. Но если выключим, тогда надо включить, поскольку он будет удовлетворять условию: он же в этом случае не является элементом своего множества.
Таков смысл парадокса, названного именем Б. Рассела. Имеется его популярное изложение – «парадокс парикмахера». Он приписывается также Б. Расселу.
В некой деревне, где жил единственный парикмахермужчина, был издан указ: «Парикмахер имеет право брить тех и только тех жителей деревни, которые не бреются сами». Спрашивается, может ли парикмахер брить сам себя? Как будто не может, поскольку это запрещено указом. И вместе с тем, если он не бреет себя, значит, попадает в число тех жителей, которые не бреются сами, а таких людей парикмахер имеет право брить.
Но логический парадокс, выявленный Б. Расселом, был свидетельством противоречий в содержании математической теории. Согласно одной из теорем Г. Кантора не существует самого мощного множества, то есть множества, обладающего наибольшим кардинальным (количественным) числом. Не существует потому, что для любого сколь угодно мощного множества можно указать еще более мощное.
Это с одной стороны. А с другой, интуитивно очевидно, что множество всех множеств должно быть самым мощным, ведь оно представляет совокупность всех множеств, какие только могут существовать, вообще включает все мыслимые множества.
Выступление Б. Рассела имело широкий резонанс.
Конечно, парадоксы были отмечены и до него. О математическом парадоксе знал, в частности, и Г. Кантор.
Знал, но надеялся устранить. Однако Б. Рассел обнажил самую суть противоречий, показав, что здесь не обойтись «текущим ремонтом» и нужны фундаментальные перемены. Парадоксы посыпались как из рога изобилия. Вспомнили и о тех, что были выявлены еще древними (в частности, «парадокс лжеца»), изобретали новые: "никогда не говори «никогда», «каждое правило имеет исключение», «всякое обобщение неверно». Это популярные. Шли поиски и с серьезными намерениями.
В логике, лингвистике, математике – повсюду находили не замечаемые ранее противоречия
Всколыхнув математику, парадоксы оказали плодотворное влияние на ее развитие. Возникло новое обоснование этой древней науки. Оно опиралось "же не на логические, а на интуитивные начала и породило новое направление в математике – конструктивную ветвь.
Она принесла свежие нетрадиционные методы построения математических объектов и соответственно – нетрадиционные пути развития математической теории.
Одновременно получили импульс и классические разделы: был уточнен язык, введены более строгие понятия, шлифовались доказательства. Как писал Б. Рассел, благодаря выявлению и преодолению парадоксов, математика стала более логической. Впрочем, обогатилась и логика, которая стала более математическом.
Таким образом, прослеживая историю vu, латики, мы можем вслед за известным американский ученым Ф. Дэйвисом, сказать, что во все времена, в любой точке своей эволюции стоило математике оказаться в кризисном положении, как ее спасала какая-нибудь новая идея. Она придавала математике строгость, восстанавливая авторитет непогрешимой науки. Поэтому не стоит бояться парадоксов, ибо самые трепетные из них «могут расцвести прекрасными теориями».
Правообладателям!
Это произведение, предположительно, находится в статусе 'public domain'. Если это не так и размещение материала нарушает чьи-либо права, то сообщите нам об этом.