Электронная библиотека » Андрей Мурачёв » » онлайн чтение - страница 2


  • Текст добавлен: 13 октября 2020, 21:00


Автор книги: Андрей Мурачёв


Жанр: Книги для детей: прочее, Детские книги


Возрастные ограничения: +6

сообщить о неприемлемом содержимом

Текущая страница: 2 (всего у книги 17 страниц) [доступный отрывок для чтения: 5 страниц]

Шрифт:
- 100% +

Астрономы разделили все звезды главной последовательности на семь классов – O, B, A, F, G, K и M – в зависимости от особенностей их цвета[5]5
  На самом деле классификаций звезд больше, а приведенную в тексте можно легко запомнить по мнемоническому правилу «Один Бритый Англичанин Финики Жевал, Как Морковь».


[Закрыть]
. Так, классу О соответствуют звезды голубого цвета, они самые горячие, с температурой 30 000–60 000 К и массой от 16 масс Солнца, а к классу M – холодные красные звезды массой в десятые доли масс Солнца. Само Солнце относится к классу G и по этой классификации считается желтым карликом.

Звезды эволюционируют с разной скоростью, которая зависит прежде всего от массы звезды. Чем больше звезда, тем меньше она будет жить. Это кажется контринтуитивным, но все встает на свои места, если вспомнить, что термоядерные реакции идут лишь в центре звезды, в области, размер которой зависит от внутреннего давления в звезде. Чем более массивна звезда, тем с большей скоростью вещество переплавляется в ее ядре и тем быстрее она эволюционирует. Так, самые массивные звезды главной последовательности живут от нескольких миллионов до пары десятков миллионов лет. Старея и все больше увеличивая свою светимость и температуру, они никогда не позволят развиться углеродной жизни на любой из своих планет. Звезды солнечного типа, желтые карлики, существуют на главной последовательности около 10 миллиардов лет, пока у них в ядре не закончится водородное топливо и они не станут красными гигантами. Когда это произойдет с Солнцем, примерно через 4,5 миллиарда лет, оно увеличится в размерах настолько, что поглотит Меркурий, Венеру и, возможно, даже Землю. Красные карлики живут до 10 триллионов лет.

Итак, сегодня мы неплохо понимаем эволюцию материи в нашей Вселенной – эволюцию галактик, межзвездного газа и самих звезд. Но повествование в этой книге сосредоточено на планетах и экзопланетах. До недавнего времени единственной планетной системой, о которой мы знали хоть что-то, была наша Солнечная система. Она состоит из восьми планет, пяти карликовых планет и бессчетного числа малых тел, таких как астероиды, транснептуновые объекты и кометы. В Солнечной системе выделяют три зоны. Первая зона – каменистые планеты. Их еще называют внутренними планетами Солнечной системы или планетами земной группы. Это Меркурий, Венера, Земля и Марс. Земля самая тяжелая и большая из этих планет. Вторая зона состоит из газовых и ледяных гигантов, в противовес внутренним планетам их называют внешними планетами Солнечной системы. Их тоже четыре: Юпитер, Сатурн, Уран и Нептун. Масса самой легкой из этих планет, Урана, в 14,6 раз больше массы Земли, а масса самой тяжелой, Юпитера, превосходит массу Земли более чем в 317 раз. Первую и вторую зоны разделяет Главный пояс астероидов.



За орбитой Нептуна начинается третья зона – пояс Койпера, область пространства, «населенная» миллионами небольших каменно-ледяных объектов самых разных размеров, вплоть до объектов размером с Плутон (а может, и более крупных). В поясе Койпера находится четыре из пяти карликовых планет Солнечной системы: Плутон, Хаумеа, Макемаке и Эрида. Единственная карликовая планета, расположенная не там, а внутри орбиты Нептуна, – Церера. Радиус карликовых планет не превышает 1 000 км. Считается, что за поясом Койпера простирается облако Оорта – сферическая область пространства, которая служит источником посещающих внутренние части Солнечной системы долгопериодических комет. Вот, собственно, и все – довольно просто, не так ли?


Рисунок 4. Мозаичное изображение крабовидной туманности, составленное из 24 снимков, сделанных телескопом «Хаббл»


Последнее, о чем стоит упомянуть перед тем, как мы пойдем дальше, это определение масс и расстояний. На Земле для измерения этих величин мы пользуемся граммами и метрами. Эти единицы измерения выбраны из соображений удобства, нам хочется, чтобы все, с чем мы имеем дело, измерялось в чем-то, что можно посчитать, причем желательно должно хватить пальцев на обеих руках. В граммах и килограммах удобно измерять массу продуктов питания, а в метрах и километрах – расстояние от одного дома до другого. Однако массы и расстояния в космосе настолько огромны, что привычные нам единицы измерения перестают быть информативными. Интуитивно разница между триллионом и квинтиллионом километров совершенно не ощущается, ведь такие цифры в обычной жизни не встречаются. И потому астрономы часто используют специальные единицы. Массу планет принято измерять в массах Земли или Юпитера. Значки для них следующие: M и MJ соответственно. Массы звезд измеряются в массах Солнца (M). Для определения величины радиусов планет и звезд используют, как вы уже догадались, радиусы Земли (R) и Солнца (R). Но даже это мелочи по сравнению с межпланетными и межзвездными расстояниями. Радиусы орбит планет принято измерять в астрономических единицах. Одна астрономическая единица (1 а. е.) равна среднему расстоянию от Земли до Солнца, что составляет примерно 150 миллионов километров. Между звездами расстояния в сотни тысяч и миллионы раз больше, поэтому для того, чтобы сказать, как далеко от нас расположена, к примеру, Проксима Центавра – ближайшая к Солнцу звезда, – обычно используются световые годы (да, это мера расстояния!) и парсеки (пк). Световой год (св. год) равен пути, который свет проходит за один год, то есть примерно 9,5 триллиона километров, а в одном парсеке содержится 3,26 св. года. В этих единицах расстояние от Солнца до Проксимы Центавра составляет 4,24 св. года, или 1,3 пк. Диаметр Млечного Пути равен 100 000 св. лет. Перевести в километры можете на досуге сами[6]6
  Если однажды капитан Джеймс Кирк предложит вам прокатиться на «Энтерпрайзе» по какой-нибудь галактике, хорошо подумайте, перед тем как взойти на борт этого корабля, имеющего максимальную скорость всего 9 000 скоростей света!


[Закрыть]
.


Глава 2. Астероиды и формирование планетных систем

Я видел дальше других только потому, что стоял на плечах гигантов.

ИСААК НЬЮТОН


Утром 15 февраля 2013 года жители Города услышали громкий рев с неба. Казалось, небеса разверзлись и вот-вот появится знамение, которое точно не будет предвещать ничего хорошего. Кто-то решил, что началась война и в небо уже взмыли военные самолеты, а кто-то подумал об аварии на одном из расположенных в Городе промышленных заводов. Между тем по небу двигался огромный огненный шар, а за ним тянулся шлейф черного дыма. Это был метеорит – заплутавший астероид, завершавший свое долгое космическое путешествие. Вдруг раздался громкий взрыв, и наблюдателей ослепила яркая белая вспышка. Тени домов скользнули по тротуарам и исчезли. Цвет вспышки мгновенно пожелтел, а затем потемнел до оранжевого. Позже выяснится, что на высоте 15 км астероид не выдержал сопротивления атмосферы и разрушился на тысячи мелких осколков. Не одну неделю жители Города и ученые будут искать в его окрестностях оставшиеся от метеорита железные капли.

Подлетая к Земле, астероид был диаметром 20 м и весил 13 000 т. Взрыв высвободил энергию, которая сейчас оценивается в 450–500 кт в тротиловом эквиваленте, что почти в 30 раз превышает мощность атомных бомб, превративших Хиросиму и Нагасаки в радиоактивный щебень. Ударная волна, поразившая Город, существовала 32 с, обернувшиеся бесконечностью для его жителей. Прокатившись по городу, она выбила окна в квартирах и офисах, разбила семейные сервизы, тысячи людей пострадали от острых осколков, многие попали в больницы. Люди с ужасом стояли и смотрели в небеса, а по всему Городу выли автомобильные сирены, мобильные сети не работали, матери не могли дозвониться до своих детей, а те – до родителей. В истории это событие сохранилось как падение Челябинского метеорита.

Астероиды – это каменные глыбы неправильной формы, вращающиеся вокруг Солнца. Размер астероидов мал для того, чтобы они считались планетами, а от комет их отличает отсутствие большого количества льда на поверхности и круглые орбиты. В любую безоблачную ночь вы можете увидеть пронзающие атмосферу «падающие звезды» – это метеоры. Так называют обломки астероидов, которые полностью сгорают при попадании в атмосферу планеты. Метеоритами именуют те части небесных тел, которые достигли поверхности планеты, не разрушившись полностью.

Челябинску, конечно, повезло: будь астероид чуть крупнее или войди он в атмосферу под другим углом, от города могли бы остаться только руины. Челябинский метеорит очень наглядно показал, насколько человечество слабо и беззащитно перед силами природы. Если извержения вулканов и наводнения мы порой способны предсказать и заранее эвакуировать людей, то метеорит может упасть в любую минуту, даже сейчас, в любую точку нашей планеты.

Несмотря на то что астероиды представляют собой потенциальную угрозу, эти тела могут рассказать нам много интересного о Солнечной системе. Пока я пишу эти строки, несколько космических аппаратов исследуют околоземные астероиды. Например, с июня 2018 года японский аппарат «Хаябуса-2» изучает астероид Рюгу, а 31 декабря 2018 года американский аппарат OSIRIS-REx вышел на орбиту вокруг астероида Бенну. Он уже обнаружил кое-что интригующее: выбросы частиц с поверхности астероида – как будто там взрываются гейзеры5, но однозначного объяснения причин этого явления пока нет. «Хаябуса-2» уже взял образцы астероидного вещества, а OSIRIS-REx еще только готовится это сделать. В 2020-х годах аппараты доставят грунт на Землю для более тщательного исследования в лабораториях.

До недавнего времени изучение астероидов ограничивалось лишь теми из них, которые попали на Землю в виде метеоритов. Метеоритное вещество находят повсюду. В Москве, в Институте геохимии и аналитической химии им. В. И. Вернадского, например, хранится одна из самых крупных коллекций метеоритного вещества в мире. Здесь можно увидеть такие метеориты, как Ensisheim – первый зарегистрированный в мировой истории метеорит, упавший во Франции в 1492 году; Бородино – метеорит, упавший накануне Бородинского сражения в расположение русских частей; Weston – метеорит, узнав о котором президент США Томас Джефферсон заметил: «Легче поверить в то, что два профессора-янки врут, чем в то, что камни падают с неба»[7]7
  Свидетелем падения метеорита Weston в 1807 году в штате Коннектикут (США) стал некий судья Уиллер. Он сообщил об этом событии в Йельский университет, и к расследованию необычного происшествия приступили два уважаемых и скептически настроенных профессора. Они нашли осколки метеорита и не могли взять в толк, что это и как сюда попало. В конце концов им осталось признать, что «должно быть, камни упали с неба». История дошла до Белого дома, но Томас Джефферсон, в то время президент США, не поверил выводам судей, заявив: «Gentlemen, I would rather believe that two Yankee professors would lie than believe that stones fall from heaven».


[Закрыть]
; и конечно же, осколки Челябинского метеорита и многих других.

Мы можем исследовать астероиды не только после того, как они попали на Землю и стали метеоритами, или после того, как образцы их вещества были доставлены на Землю космическими аппаратами. Для изучения состава космических объектов астрономы используют спектральный анализ. Весь свет, который мы можем регистрировать измерительными инструментами или своими глазами, отраженный или излученный, можно разложить на пучки света с одинаковыми длинами и частотами волн2[8]8
  Частота волны – это число колебаний в единицу времени (например, за 1 секунду). Для звуковых волн увеличение частоты приводит к росту высоты звука.


[Закрыть]
. Частота и длина волны обратно пропорциональны друг другу: чем больше длина волны, тем меньше частота. Пучки света с одинаковой длиной волны воспринимаются нами как имеющие определенный цвет: красный, синий, желтый и так далее. На уроках физики свет обычно раскладывают по длинам волн с помощью призмы, а в природе порой после дождя мы видим радугу – такое же разложение солнечного света. Чем больше длина волны (и меньше частота) в рассматриваемых нами пучках света, тем соответствующий им цвет ближе к красному концу радуги, чем длина волны короче (и больше частота) – тем ближе к фиолетовому. Но как за красным, так и за фиолетовым краем свет не перестает существовать – просто человеческий глаз уже не способен его увидеть. За красным, в сторону увеличения длины волн (и уменьшения частоты), идет сначала инфракрасное излучение, а затем микроволновое и радиоизлучение. За фиолетовым концом цветовой шкалы, в сторону уменьшения длины волн, следуют ультрафиолетовое, рентгеновское, и гамма-излучение. Таким образом, видимый свет – это лишь узкая полоска в куда более широком диапазоне частот электромагнитного излучения.

Но помимо того что свет имеет определенную частоту, он обладает и определенной интенсивностью, которую в каком-то смысле можно понимать как количество фотонов той или иной частоты в воспринимаемом луче света. Например, чем больше интенсивность красного цвета в луче, тем более красным мы будем видеть свет. Совокупность всех длин волн света и соответствующих этим длинам волн интенсивностей называется электромагнитным спектром. Наука, занимающаяся изучением спектров различных веществ, называется спектроскопией; приборы, с помощью которых исследуют спектры объектов, – спектрометрами.

Существованием спектроскопии мы обязаны тому факту, что атомы разных веществ по-разному взаимодействуют со светом: некоторые атомы поглощают частоты, а некоторые – отражают. Когда определенная частота падающего излучения поглощается, в спектре – в месте, соответствующем отсутствующей частоте, – появляется черная линия поглощения. Расположение и количество этих линий говорит о химическом составе вещества, а их интенсивность – о концентрации тех или иных атомов. Например, уже полученный спектр света, отраженного от поверхности астероида Рюгу, показывает, что его химический состав близок к составу первичного вещества Солнечной системы. Это означает, что в Рюгу буквально вморожены частицы пыли, которые остались с тех времен, когда около Солнца еще не было планет, а был лишь огромный газопылевой протопланетный диск. Анализ спектров используется не только в астрофизике, но лишь в астрофизике он имеет такое важное значение. По сути, большинство наших знаний о Вселенной так или иначе связано с анализом спектров космических объектов.


Рисунок 5. Фотография ядра кометы Чурюмова – Герасименко, полученная бортовой камерой «Розетты»


Космические аппараты побывали уже на всех типах тел Солнечной системы. Недавно состоялась историческая посадка на комету. В 2014 году спускаемый модуль «Филы» космического аппарата «Розетта» успешно приземлился на поверхность ядра кометы Чурюмова – Герасименко. Ему немного не повезло: при посадке он оказался в зоне тени и не смог пополнить заряд аккумуляторов с помощью солнечных панелей. Однако на том заряде, что у него был, «Филы» успел собрать и передать на Землю данные, полученные встроенными в него научными приборами, выполнив тем самым основную часть своей миссии.

Успехи в таких невероятно сложных миссиях, как «Розетта», «Хаябуса-2», OSIRIS-REx, очень важны, поскольку они означают, что человечество обладает технологиями и умениями, необходимыми для исследования далеких космических объектов. По этим миссиям историки будущего будут изучать нашу космическую экспансию.

Сложность каждой миссии можно оценить хотя бы по следующему описанию. Буквально через месяц после того, как «Филы» перешел в режим энергосбережения, к астероиду Рюгу отправилась «Хаябуса-2». Большая полуось орбиты астероида Рюгу равна 1,18 а. е. Из-за значительного эксцентриситета (степень вытянутости) орбиты в перигелии Рюгу оказывается внутри орбиты Земли, а в афелии[9]9
  Перигелий – ближайшая к Солнцу точка орбиты небесного тела, а афелий – самая дальняя.


[Закрыть]
– дальше Марса. Таким образом, «Хаябуса-2», прежде чем достигла цели, пролетела 3,2 миллиарда километров (почти 21,5 а. е.) за 3,5 года! Это больше, чем расстояние от Солнца до Урана.

Почему же «Хаябуса-2» летела так долго и преодолела такое значительное расстояние? Из геометрии мы знаем, что самый короткий путь между двумя точками – прямая. На Земле путь по прямой оказывается чаще всего и самым быстрым. Но если дорогу вам преграждает, скажем, гора, гораздо меньше сил и энергии вы затратите, если эту гору обойдете, нежели если будете карабкаться по ней вверх, а потом вниз. Часто вы выбираете обходной путь, даже если на него требуется больше времени. Примерно так же рассуждают инженеры, только для них затраченная на доставку космического аппарата к астероиду энергия конвертируется в топливо, а в конечном счете – в деньги.

Для того чтобы достигнуть небесного тела наикратчайшим путем – по прямой, – космическому аппарату потребуются очень большие запасы топлива, и обойдется это невероятно дорого. В целях экономии инженеры максимально используют гравитационные маневры. Суть этих маневров состоит в том, чтобы за счет своевременного включения двигателей аппарат мог «оттолкнуться» от массивного тела, такого как планета, и изменить свою орбиту на более подходящую, затратив при этом минимальное количество топлива. Обычно гравитационные маневры совершаются в перицентре орбиты аппарата вокруг массивного тела[10]10
  Замкнутые орбиты всех небесных тел (и искусственных спутников) имеют форму эллипса, в одном из фокусов которого обычно находится массивное тело. Ближайшая к этому телу точка орбиты другого тела или спутника называется перицентром, а самая дальняя – апоцентром.


[Закрыть]
. В этой точке аппарат имеет наибольшую скорость, и даже малое ускорение может кардинальным образом изменить его орбиту. Перемещаясь с орбиты на орбиту с помощью таких маневров, космические аппараты успешно путешествуют по Солнечной системе. Однако каждый оборот на промежуточной орбите может занимать годы, что сильно увеличивает длительность полета. «Хаябуса-2» во время своего путешествия совершила один гравитационный маневр возле Земли и трижды ускорялась, сменив три орбиты.

Помимо дистанционного исследования Рюгу с помощью бортовых камер и научных приборов, «Хаябуса-2» сбросила на астероид четыре небольших мобильных модуля, которые успешно достигли его поверхности. Таким образом, «Хаябуса-2» стала первым космическим аппаратом, спускаемые модули которого совершили посадку на астероид[11]11
  На самом деле еще в 2001 году космический аппарат NEAR Shoemaker совершил первую успешную мягкую посадку на астероид Эрос, но она была импровизацией команды управления. Главная задача аппарата состояла все же в выходе на орбиту вокруг астероида.


[Закрыть]
. Из-за слабой гравитации колеса на модулях использовать нельзя (в этом случае они становятся неуправляемыми). Поэтому инженеры придумали альтернативный способ: модули передвигались по поверхности астероида небольшими прыжками за счет вращения ассиметричного маховика, расположенного у них внутри.

Когда «Хаябуса-2» долетит до Земли[12]12
  Ожидается, что это произойдет 6 декабря 2020 года.


[Закрыть]
, образцы вещества, собранные на Рюгу, будут сброшены на Землю в герметичной капсуле для дальнейшего анализа[13]13
  Для автора это событие еще в будущем. Но если вы читаете эту книгу после 2020 года, для вас оно наверняка уже в прошлом.


[Закрыть]
, а сам аппарат приступит к новой исследовательской миссии. Впервые в истории доставку астероидного вещества на Землю в 2010 году совершил аппарат «Хаябуса», предшественник «Хаябуса-2».

Взятие образцов осуществлялось в два этапа. Сначала, в феврале 2019 года, производился сбор частиц грунта с поверхности астероида. «Хаябуса-2» в момент максимального сближения с поверхностью астероида выстрелил по ней 5-граммовой танталовой пулей, захватил разлетевшиеся частички грунта, а затем снова поднялся на орбиту. Целью второго этапа, который начался в апреле 2019 года, был сбор образцов из более глубоких слоев грунта. 5 апреля от «Хаябуса-2» отделился 2,5-килограммовый медный снаряд с несколькими килограммами взрывчатки, а сам космический аппарат «эвакуировался» на другую сторону астероида. Затем произошла детонация взрывчатки, и ускоренный медный снаряд направился прямиком к астероиду! Ничего подобного прежде не предпринималось. Ученые могли лишь предполагать, какие последствия вызовет столкновение астероида со снарядом. Когда в конце апреля «Хаябуса-2» вернулся к месту событий, ученые обнаружили, что снаряд оставил на поверхности астероида 10-метровый кратер – это достаточно ценные сведения, исходя из которых можно довольно точно прогнозировать, как поведет себя астероид при более крупных столкновениях. В июле 2019 года «Хаябуса-2» произвел сбор образцов выброшенного из глубины вещества, не подвергавшегося воздействию суровой космической среды6, в области рядом с кратером. А в ноябре 2019 года японский аппарат сошел с орбиты вокруг Рюгу и отправился домой. Сложность каждого этапа миссии была колоссальной: любой просчет – и многолетний труд сотен людей оказался бы напрасным.

Все эти прошедшие, настоящие и будущие, сложные и дорогостоящие миссии по изучению астероидов и комет необходимы для того, чтобы детально, не упустив ничего важного, разобраться, как некогда скопление газа и пыли вокруг непримечательного молодого желтого карлика превратилось в астероиды и планеты и как в конечном итоге на одной из этих планет появилась жизнь. Какие из условий, возникших около Солнца, были уникальными, а какие должны были стать повсеместными? Существует ли хоть что-то, что отличает нашу звездную систему от тех миллиардов других, что мы находим в Галактике?



* * *

Проблема происхождения планетных систем, пожалуй, одна из самых интересных и фундаментальных в астрономии. Первую гипотезу, которую можно назвать научной, предложил французский математик и философ Рене Декарт. Согласно его идее Солнце и все планеты сформировались из гигантского газопылевого вихря. Декарт был современником Иоганна Кеплера и Галилео Галилея. К тому времени Коперник уже создал гелиоцентрическую модель и опубликовал трактат «О вращении небесных сфер», а вот Ньютон еще не родился и не изложил свою теорию гравитации в «Математических началах натуральной философии»[14]14
  Если быть точным, Исаак Ньютон (1643–1727) застал живого Рене Декарта (1596–1650), хоть в те годы еще не мог вести с ним научные беседы. Сама теория появилась за десять лет до рождения Ньютона, но опубликована она была только через десять лет после смерти Декарта.


[Закрыть]
. Так что вихревая гипотеза Декарта вполне вписывалась в научную парадигму того времени, объясняя устройство Солнечной системы без привлечения гравитации. В XVIII веке усилиями Эммануила Сведенборга7, Иммануила Канта8 и Пьера-Симона де Лапласа9 была разработана теория, которая объясняла формирование Солнечной системы как результат вращательной неустойчивости газопылевой туманности. Эта теория хоть и учитывала гравитацию, но и в ней обнаружились недостатки. Например, сегодня нам известно, что в Солнечной системе на долю планет приходится 98 % момента импульса – величины, характеризующей инерцию вращательного движения, тогда как на долю Солнца лишь 2 %. Согласно же теории Сведенборга – Канта – Лапласа должно было быть наоборот.

В 60-х годах XX века советский астроном Виктор Сергеевич Сафронов опубликовал работу «Эволюция допланетного облака и образование Земли и планет»10, ставшую впоследствии классической. Сафронов смог не только создать теорию, объясняющую особенности строения нашей планетной системы, но и предсказать результаты еще не произведенных наблюдений – например, существование протопланетных газопылевых дисков и их кольцевидную структуру. Его идеи получили продолжение в трудах многих ученых. И все это привело к тому, что уже к концу 1970-х годов небулярная[15]15
  От латинского nebula – «туман».


[Закрыть]
(или аккреционная) теория формирования планет казалась единственно верной, практически завершенной и довольно понятной.

Теория Сафронова объясняет многое из того, что мы видим в Солнечной системе и знаем о ней: разделение планет на относительно маленькие каменистые и огромные газовые, расположение орбит всех планет в одной плоскости – экваториальной плоскости Солнца (ее называют плоскостью эклиптики), одинаковое направление обращения всех планет вокруг Солнца (об исключениях вроде Венеры и Урана выдвигались различные версии), химические и физические свойства планет. В общем, это была отличная теория. Однако же в те времена, когда она создавалась, в распоряжении ученых была лишь одна планетная система для исследования – наша. И казалось логичным предположить, что все планетные системы вокруг других звезд, которые мы когда-либо обнаружим, будут похожи на нее, а процесс формирования планет окажется идентичным тому, что произошел когда-то около Солнца. Такой была старая научная парадигма.

Последние десятилетия принесли нам почти экспоненциальный рост числа открытых внесолнечных планет. Мы обнаружили планетные системы со структурой, совершенно не похожей на нашу. Телескопы, которые мы создали, находят газовых гигантов, расположенных ближе к своим звездам, чем орбита Меркурия к Солнцу. Как они туда попали? Мы находим планеты таких типов, которых нет в Солнечной системе. Как они могли образоваться? Планеты и их характеристики перестали укладываться в старую парадигму. То, что мы раньше считали типичным, оказалось если не уникальным, то все же совсем не типичным. И пришлось создавать новую парадигму. Ее формирование еще далеко от завершения, но кое-что понять нам уже удалось.

Начнем с самого начала – молекулярных облаков. Во Вселенной очень много молекулярного газа, состоящего в основном из водорода (~90 %) и гелия (~10 %) с небольшими примесями других химических элементов. Масса межзвездного газа в Галактике составляет несколько десятков миллиардов масс Солнца. Этот газ не распределен равномерно в галактической плоскости, он собирается в огромные облака. Такие облака могут быть поистине гигантскими – до миллиона масс Солнца – и очень холодными: их средняя температура около –230 °C.


Рисунок 6. Молекулярное облако Барнард 68 в созвездии Змееносца. Изображение получено с помощью 8,2-метрового телескопа «Анту» комплекса VLT в Чили


Некоторые из них выглядят как огромные черные провалы. Когда английский астроном Уильям Гершель увидел их в свой телескоп, он подумал, что эти «дыры в небесах» – разрывы в структуре Галактики11. Сам по себе газ, конечно, прозрачен, но содержащиеся в облаке пылинки, размером всего в несколько микрон, поглощают практически все оптическое излучение, падающее на них, и облако становится абсолютно черным для наблюдателя. Другие туманности в телескопы выглядят совсем иначе. Например, о туманности в созвездии Ориона тот же Гершель в 1774 году писал как о «бесформенном огненном тумане, хаотической материи будущих солнц». Он правильно предположил, что в таких облаках происходит процесс звездообразования.

Пройдет 270 лет со дня рождения Гершеля, когда в космос отправится космический телескоп «Гершель» – самый крупный из когда-либо запущенных в космос инфракрасных телескопов. В 2013 году он завершил свою работу, благодаря ему мы многое узнали о процессе формирования звезд, планет и галактик и получили впечатляющие фотографии далеких облаков газа. Как оказалось, эти облака состоят в основном из молекулярного водорода и гелия, пыли и частиц различных видов льда (в основном водяного). Внутри облака́ имеют неоднородную структуру: газ концентрируется в длинные нитеобразные структуры – филаменты, – которые находятся в постоянном движении.

Типичная масса молекулярного межзвездного облака составляет от миллиона до сотен миллионов масс Солнца, а значит, теоретически каждое из них может породить миллионы звезд. Однако такого большого количества звезд из них не формируется: молекулярные облака являются довольно устойчивыми структурами и не склонны к процессам звездообразования. Их равновесие поддерживает внутреннее давление мощных турбулентных вихрей газа. Турбулентные потоки препятствуют разрушению молекулярных облаков под действием сил гравитации, но в относительно малых масштабах влияние этих потоков не столь велико, и коллапс небольших облаков газа все же происходит – так инициируется процесс образования звезд. Например, если рядом с таким облаком, находящимся на грани коллапса, или внутри него взрывается сверхновая или облако сталкивается с другим облаком, то равновесие может быть нарушено.



Считается, что наше Солнце родилось около 4,6 миллиарда лет назад12 в результате взрыва сверхновой в окрестностях одного из таких молекулярных облаков. Волны сжатия, распространяющиеся по межзвездному газу, приводят к значительному повышению концентрации вещества, и равновесие в некоторых частях облака нарушается. То место, где это происходит, становится центром притяжения, и к нему стекается газ из соседних областей – происходит коллапс участка облака. Размер этого участка газопылевого облака, газ из которого формирует звезду, составляет тысячи астрономических единиц. Коллапс облака напоминает процесс формирования снежного кома, несущегося с горы: газ поступает в центр коллапса все быстрее, его становится все больше. Когда масса газа достигает около 7–8 % от массы Солнца, примерно через десять тысяч лет, начинаются термоядерные реакции и зажигается новая звезда. Но это не единственный возможный путь образования звезд. Исследования некоторых ученых показывают, что инициировать звездообразование могут также столкновения филаментов внутри газопылевого облака13.

Коллапсирующее облако формирует тонкий диск, окружающий центр коллапса – будущую звезду. Образовавшиеся диски называют протопланетными, потому что в них в скором времени начнется «стройка» планет. Почему вещество оседает на диск, а не равномерно окружает протозвезду? Причины тут две. Первая состоит в том, что коллапс облака из-за неравномерности распределения газа происходит в каком-то одном из трех измерений, причем этот коллапс, опять же из-за неравномерности распределения, придает материи коллапсирующего облака начальное вращение. Вторая причина более фундаментальна: уменьшение радиуса коллапсирующего облака приводит к тому, что скорость его вращения увеличивается[16]16
  Это вызвано тем, что для всех участков облака должна сохраняться такая физическая величина, как угловой момент, пропорциональный скорости этого участка и расстоянию до центра вращения. Если радиус вращения уменьшается, то скорость должна возрасти, чтобы угловой момент не изменился.


[Закрыть]
, и тут на авансцену выходят центробежные силы. Они препятствуют аккреции (падению)[17]17
  Поэтому протопланетные диски называют также аккреционными. Аккреционные диски возникают не только вокруг звезд, а могут окружать даже черные дыры.


[Закрыть]
вещества на протозвезду в плоскости вращения и не мешают его падению во всех остальных направлениях. С течением времени масса звезды увеличивается, а в экваториальной плоскости вращения формируется тонкий диск.

Так как протопланетные диски нагреваются излучением звезды, их структуру и свойства лучше изучать в инфракрасном диапазоне – современные телескопы позволяют проводить такие наблюдения. Но современные телескопы позволяют изучать небо в различных диапазонах электромагнитного излучения. На фотографиях, полученных с помощью инфракрасных и субмиллиметровых космических и наземных телескопов, межзвездные облака и протопланетные диски предстают перед наблюдателем во всей красе. Такие телескопы, как уже упоминавшаяся космическая обсерватория «Гершель», спутник IRAS, космический телескоп «Спитцер», система телескопов ALMA, расположенная в высокогорной пустыне в Чили, телескоп Джеймса Клерка Максвелла и некоторые другие, позволили в прямом смысле заглянуть внутрь протопланетных дисков, увидеть их структуру.

Межзвездные облака, в которых идет процесс интенсивного звездообразования, часто поэтически называют «звездные колыбели». Ближайшее к нам место, где прямо сейчас рождаются звезды, – туманность Тельца – располагается на расстоянии 140 св. лет от наc; интенсивное звездообразование также идет в туманности Ориона и многих других. Как правило, звезды в газовых облаках рождаются группами: чтобы это представить, вообразите себе пчелиный рой, застывший в воздухе, замените каждую пчелу на звезду и поместите этот «рой» в огромное газовое облако.

В молекулярных облаках астрономы находят только очень молодые звезды и почти не находят те, что старше 10 миллионов лет. Это происходит потому, что после рождения «рой» звезд выталкивается приливными силами из своей «колыбели» и начинает самостоятельное движение по галактике, а связанный с ним газ быстро рассеивается. На своем пути звезды, выброшенные из звездных колыбелей, взаимодействуют с десятками других звезд, которые, в свою очередь, тоже находятся в движении. Эти взаимодействия приводят к тому, что постепенно «рой» распадается. Сегодня, когда астрономы наблюдают звезды, они редко могут определить место рождения звезды. Скорее всего, мы никогда не узнаем, где родилось наше Солнце.

Вернемся к новорожденной звезде. Наблюдения подтверждают трехкомпонентную структуру звездообразования: это аккрецирующий со всех сторон на звезду газ, протопланетный диск и… джеты – струи вещества, не поглощенные звездой, «бьющие» из полюсов новой звезды. Их формируют огромные магнитные поля, сопровождающие рождение звезды. По всей видимости, они играют одну из ключевых ролей в звездообразовании, унося вместе с веществом значительную часть момента импульса, позволяя гравитации победить центробежные силы и обеспечить необходимую плотность вещества в звезде для того, чтобы запустить процессы ядерного синтеза.


Страницы книги >> Предыдущая | 1 2 3 4 5 | Следующая
  • 0 Оценок: 0

Правообладателям!

Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.

Читателям!

Оплатили, но не знаете что делать дальше?


Популярные книги за неделю


Рекомендации