Текст книги "Полный курс за 3 дня. Микробиология"
Автор книги: Аурика Луковкина
Жанр: Биология, Наука и Образование
сообщить о неприемлемом содержимом
Текущая страница: 5 (всего у книги 25 страниц) [доступный отрывок для чтения: 8 страниц]
Тема 7. Микрофлора растительного лекарственного сырья и микробиологический контроль лекарственных средств
1. Микрофлора растительного сырья
Обсеменение растительного лекарственного сырья микроорганизмами возможно несколькими путями:
1) в процессе обсеменения инфицирование происходит через воду, нестерильную аптечную посуду, воздух производственных помещений и руки персонала;
2) за счет нормальной микрофлоры растений и фитопатогенных микроорганизмов – возбудителей заболеваний растений, способных распространяться и заражать большое количество растений.
Эпифиты – микроорганизмы, развивающиеся в норме на поверхности растений, они не наносят вреда, являются антагонистами некоторых фитопатогенных микроорганизмов, растут за счет обычных выделений растений и органических загрязнений поверхности растений. Эпифитная микрофлора препятствует проникновению фитопатогенных микроорганизмов в растительные ткани, усиливая иммунитет растений. Наибольшее количество эпифитной микрофлоры составляют грамотрицательные бактерии Erwinia herbicola, они образуют золотисто-желтые колонии. Эти бактерии являются антагонистами возбудителя мягкой гнили овощей. Обнаруживают в норме и другие бактерии – Pseudomonas fluorescens, реже – Bacillus mesentericus и небольшое количество грибов. Микроорганизмы находятся не только на листьях, стеблях, но и на семенах растений. Нарушение поверхности растений и их семян способствует накоплению на них большого количества пыли и микроорганизмов. Состав микрофлоры растений зависит от вида, возраста растений, типа почвы и температуры окружающей среды. При повышении влажности численность эпифитных микроорганизмов возрастает, при понижении влажности – уменьшается.
Ризосфера – зона почвы около корней растений, где содержится значительное количество микроорганизмов. В ней часто присутствуют неспорообразующие бактерии (псевдомонады, микобактерии и др.), актиномицеты, спорообразующие бактерии и грибы. Они переводят различные субстраты в соединения, доступные для растений, синтезируют биологически активные соединения, вступают в симбиотические взаимоотношения с растениями, обладают антагонистическими свойствами против фитопатогенных бактерий.
Ризоплана – поверхность корня растений. В ней в большей степени, чем в ризосфере, представлены псевдомонады.
Микориза – симбиоз мицелия грибов с корнями высших растений. Она улучшает рост растений.
Растения окультуренных почв в большей степени загрязнены микроорганизмами, чем растения лесов и лугов. В нижней прикорневой части растений содержится особенно много микроорганизмов. Это явление связано с попаданием микроорганизмов из почвы. В большом количестве обнаруживаются микроорганизмы на растениях, растущих на орошаемых полях, свалках, вблизи складирования навоза, в местах выпаса скота. При этом растения могут загрязняться патогенными микроорганизмами и при неправильной заготовке могут быть хорошей питательной средой для размножения микроорганизмов. Одним из способов, препятствующих их росту на растениях, является процесс высушивания растений.
Фитопатогенными микроорганизмами являются следующие.
1. Бактерии. Болезни, вызываемые бактериями, называют бактериозами. Среди возбудителей бактериозов встречаются псевдомонады, микобактерии, коринебактерии, агробактерии и др. К бактериозам относятся различные виды гнилей, некрозы тканей.
Бактериозы различают:
1) общие: вызывают гибель всего растения или его отдельных частей и проявляются на корнях (корневые гнили) или в сосудистой системе растений;
2) местные: ограничиваются поражением отдельных участков растений, проявляясь на паренхимных тканях.
Передача возбудителей бактериозов происходит через зараженные семена, остатки больных растений, почву, воду, воздух, путем переноса насекомыми, моллюсками, нематодами. Бактерии проникают в растения через устьица, нектарники и другие части растений, а также даже через небольшие повреждения. При проникновении бактерий внутрь растений происходит повреждение растительных клеток, они мацерируются и отслаиваются друг от друга. Такой путь проникновения называется интрацеллюлярным и межклеточным, а заболевания – паренхиматозными. В случаях распространения и размножения бактерий в сосудистых пучках происходит как бы закупоривание их просвета бактериальной массой. В результате этого процесса и действия бактериальных токсинов растения увядают.
2. Вирусы, которые делят на возбудителей:
1) мозаики, когда появляется пятнистая расцветка пораженных листьев и плодов, растения отстают в росте;
2) желтухи, которая проявляется карликовостью растений, измененными многочисленными боковыми побегами, цветками и т. д.
3. Грибы, поражающие растения, могут в случае приготовления из пораженного зерна продуктов питания вызывать пищевые отравления – микотоксикозы. Гриб поражает в поле колоски злаковых: образуются склероции гриба, называемые рожками.
Для борьбы с фитопатогенными микроорганизмами возделывают выносливые растения, очищают и обрабатывают семена, обеззараживают почву, удаляют пораженные растения, уничтожают переносчиков возбудителей болезней, обитающих на растениях.
2. Микробиологический контроль лекарственных средств
Обсеменение лекарственного сырья возможно на всех этапах его заготовки и при хранении. Увлажнение растений и растительного сырья способствует активному размножению микроорганизмов. Размножившись, микроорганизмы вызывают изменение фармакологических свойств препаратов, полученных из лекарственных растений. Микроорганизмы могут попадать из окружающей среды, от людей и обсеменять лекарственные препараты в процессе их изготовления из растительного сырья. Для соблюдения санитарного режима изготовления лекарственных препаратов проводят санитарно-микробиологический контроль объектов окружающей среды предприятия и каждой серии выпускаемой лекарственной формы. Лекарственные средства для парентерального введения в виде инъекций, глазные капли, мази, пленки и иное, в отношении которых имеются соответствующие указания в нормативно-технической документации, должны быть стерильными. Контроль стерильности лекарственных средств проводят путем посева на тиогликолевую среду для выявления различных бактерий, в том числе анаэробов; при посеве на среду Сабуро выявляют грибы, главным образом рода Candida. Стерильность лекарственных средств с антимикробным действием определяют путем мембранной фильтрации: фильтр после фильтрации исследуемого препарата делят на части и вносят для подращивания задержанных микроорганизмов в жидкие питательные среды. При отсутствии роста препарат считается стерильным.
Лекарственные средства, не требующие стерилизации, обычно содержат микроорганизмы, поэтому их испытывают на микробиологическую чистоту. Для этого проводят количественное определение жизнеспособных бактерий и грибов в 1 г или 1 мл препарата, а также выявляют микроорганизмы, которые не должны присутствовать в нестерильных лекарственных средствах. В 1 г или 1 мл лекарственного сырья для приема внутрь должно быть не более 1000 бактерий и 100 дрожжевых и плесневых грибов. В случаях местного применения количество микроорганизмов не должно превышать 100 микробных клеток на 1 г или 1 мл препарата. В таблетированных препаратах не должно быть патогенной микрофлоры, а общая обсемененность не должна превышать 10 тыс. микробных клеток на таблетку.
Тема 8. Основы медицинской биотехнологии
1. Краткая история развития биотехнологии
Как нам известно из древней истории, еще 6000–5000 лет до н. э. люди выпекали хлеб, варили пиво, готовили сыр, а из винограда делали вино. Они и не подозревали, что благодаря им уже в те далекие времена зародилась такая наука, как биотехнология. Не обоснованный научно, этот этап развития биотехнологии длился долгое время вплоть до XIX в., когда Л. Пастер открыл природу процесса брожения. Открытие этого процесса считается началом второго, научного этапа традиционной биотехнологии. С этого момента и по сегодняшний день получены и выделены ферменты, открыты и до сих пор открываются многие микроорганизмы. Кроме того, в результате изучения физиологии, биохимии и генетики микроорганизмов были разработаны способы их выращивания в массовых количествах; получены культуры животных и растительных клеток и разработаны способы их искусственного культивирования; получены многие продукты микробиологического синтеза, необходимые для медицины, сельского хозяйства и промышленности. Таким образом, вначале сформировалась техническая микробиология, а затем – биотехнология, при этом промышленное производство сводилось в основном к получению продуктов на основе природных штаммов.
С течением времени на основе достижений молекулярной биологии и микробиологии, генетики и генетической инженерии, иммунологии и химической технологии на смену старой биотехнологии пришла новая, основанная на применении искусственно получаемых штаммов – суперпродуцентов, использовании иммобилизованных ферментов, применении культур животных и растительных клеток, широком использовании генетической инженерии для получения клеток-рекомбинантов, моноклональных антител и других биологически активных веществ.
2. Понятие о биотехнологии, цели и задачи
Биотехнология – научное понятие, объединяющее в себе такие науки, как микробиология, молекулярная биология, генная инженерия, химическая технология и ряд других наук. Необходимость биотехнологии обусловлена потребностями общества в новых, более дешевых продуктах для народного хозяйства, в том числе медицины и ветеринарии, а также в принципиально новых технологиях.
Биотехнология – это получение продуктов из биологических объектов или с применением биологических объектов, в качестве которых могут быть использованы организмы животных и человека. Например, получение иммуноглобулинов из сывороток вакцинированных лошадей или людей; получение препаратов крови доноров; отдельные органы (получение гормона инсулина из поджелудочных желез крупного рогатого скота и свиней) или культуры тканей (получение лекарственных препаратов). Но чаще всего в качестве биологических объектов используются одноклеточные микроорганизмы, а также животные и растительные клетки. Это обусловлено следующими причинами:
1) клетки являются своего рода биофабриками, которые в процессе жизнедеятельности вырабатывают разнообразные ценные продукты. Ими являются белки, жиры, углеводы, витамины, аминокислоты, антибиотики, гормоны, антитела, антигены, ферменты, спирты и иное, т. е. продукты, крайне необходимые в жизни человека, но недоступные для получения другими способами в связи со сложностью технологии процессов или экономической нецелесообразностью;
2) клетки чрезвычайно быстро воспроизводятся. Это их свойство позволяет за относительно короткое время искусственно вырастить на сравнительно дешевых и недефицитных питательных средах в промышленных масштабах огромные количества биомассы микробных, животных или растительных клеток;
3) биосинтез сложных веществ, таких как белки, антибиотики, антигены, антитела и иное, значительно экономичнее и технологически доступнее, чем химический синтез;
4) возможность проведения биотехнологического процесса в промышленных масштабах при наличии соответствующего технологического оборудования и аппаратуры, доступность сырья, технологии переработки и др.
Клетки животных и растений, микробные клетки в процессе ассимиляции и диссимиляции (или жизнедеятельности) образуют новые продукты и выделяют метаболиты, обладающие разнообразными физико-химическими свойствами и биологическим действием. При этом продукты ассимиляции и диссимиляции предложено делить на 4 категории:
1) сами клетки как источник целевого продукта. К примеру, для получения живой или убитой корпускулярной вакцины используют выращенные бактерии или вирусы; а дрожжи используют как кормовой белок или основу для получения гидролизатов питательных сред и т. д.;
2) макромолекулы, синтезирующиеся клетками в процессе выращивания. К ним относятся ферменты, токсины, антигены, антитела, пептидогликаны и др.;
3) первичные метаболиты – низкомолекулярные вещества, необходимые для роста клеток. Ими являются аминокислоты, витамины, нуклеотиды, органические кислоты;
4) вторичные метаболиты – низкомолекулярные соединения, не требующиеся для роста клеток. Ими являются антибиотики, алкалоиды, токсины и гормоны.
Биотехнология использует эту продукцию клеток как сырье, которое в результате технологической обработки превращается в конечный продукт, который может использоваться в различных отраслях: в медицине для производства антибиотиков, витаминов, ферментов, аминокислот, гормонов, вакцин, антител, компонентов крови, диагностических препаратов, иммуномодуляторов, алкалоидов, пищевых белков, нуклеиновых кислот, нуклеозидов, нуклеотидов, липидов, антиметаболитов, антиоксидантов, противоглистных и противоопухолевых препаратов; в химической промышленности используют ацетон, этилен, бутанол; в пищевой промышленности используют аминокислоты, органические кислоты, пищевые белки, ферменты, липиды, сахара, спирты, дрожжи; в ветеринарии и сельском хозяйстве используют кормовой белок для производства кормовых антибиотиков, витаминов, гормонов, вакцин, а также биологических средств защиты растений и инсектицидов; в энергетике – биогаз и этанол.
Достижения в биотехнологии позволяют применять ее для решения проблем, связанных с нарушением экологии (например, для очистки сточных вод, переработки отходов и побочных продуктов производства, а также их дегидратации (фенола, нефтепродуктов и других вредных веществ, пагубно влияющих на окружающую среду) с помощью микроорганизмов.
В настоящее время в биотехнологии выделяют медико-фармацевтическое, продовольственное, сельскохозяйственное и экологическое направления, поэтому биотехнология подразделяется на медицинскую, сельскохозяйственную, промышленную и экологическую.
Медицинская биотехнология подразделяется на фармацевтическую и иммунобиологическую, сельскохозяйственная – на ветеринарную и биотехнологию растений, промышленная – на соответствующие отраслевые направления (пищевая, легкая промышленность, энергетика и т. д.).
Кроме того, биотехнология подразделяется на старую (традиционную) и новую, которую чаще связывают с генной инженерией.
Таким образом, можно сказать, что биотехнология в некоторой степени является не только наукой, но и производством. Доказательством этого может служить тот факт, что промышленное производство в биотехнологии, основанное на принципах брожения (ферментация), биоконверсии (превращение одного вещества в другое), культивировании растительных и животных клеток, бактерий и вирусов, генетических манипуляциях, невозможно без промышленного оборудования и аппаратуры, отработки и оптимизации технологических процессов, разработки способов оценки и контроля продукции на всех ее стадиях. В связи с этим биотехнологическая промышленность в своем распоряжении имеет крупные заводы, опытно-конструкторские учреждения, научно-исследовательские институты. И хотя на предприятиях промышленной биотехнологии вырабатывается огромное количество (буквально тысячи тонн) продукции, тем не менее потребности быстрорастущего народного хозяйства биотехнология в полной мере удовлетворить не в состоянии. Поэтому развитию биотехнологии в настоящее время уделяется постоянное внимание, и эта отрасль быстро развивается.
3. Микроорганизмы, клетки и процессы, применяемые в биотехнологии
Как нам известно, в природе существует огромное число микроорганизмов, каждый из которых способен синтезировать продукты или осуществлять реакции, которые могут быть пригодны для использования в биотехнологии. На современном этапе развития биотехнологии практическое применение нашло около 100 видов микроорганизмов – бактерии, грибы, дрожжи, вирусы, водоросли, т. е. наиболее изученные.
Дрожжи широко используют в хлебопечении, пивоварении, виноделии, выработки кормового белка, питательных сред для выращивания бактерий и культур животных клеток. Из 500 известных видов дрожжей используется лишь Saccharomyces cerevisiae, Saccharomyces carlsbergencis, Saccharomyces uwarum.
Среди бактерий в биотехнологии применяют представителей таких родов, как:
1) Acetobacter, превращающих этанол в уксусную кислоту, а уксусную кислоту – в углекислый газ и воду;
2) Bacillus – для получения ферментов (В. subtilis), средств защиты растений (В. thuringiensis);
3) Clostridium – для сбраживания сахаров в ацетон, этанол, бутанол;
4) молочнокислые бактерии (Lactobacillus, Leuconostoc, Streptococcus);
5) псевдомонады (например, P. denitrificans – для получения витамина В2, Corynebacterium glutamatum – для получения аминокислот и др.).
Актиномицеты (род Streptomyces), грибы Penicillium chrysogenum, Cephalosporium acremonium и иные применяются в биотехнологии для получения разнообразных антибиотиков.
Кроме того, бактерии, дрожжи и вирусы используют в качестве рецепиентов чужеродного генетического материала с целью получения рекомбинантных штаммов – продуцентов биотехнологической продукции. Например, получены рекомбинантные штаммы Е. coli, продуцирующие интерфероны, инсулин, гормон роста, антигены вируса СПИДа; штаммы В. subtilis, вырабатывающие интерферон; штаммы дрожжей, продуцирующих интерлейкин-2, антиген вируса гепатита В; рекомбинантные вирусы осповакцины, синтезирующие антигены гепатита В, вируса бешенства, клещевого энцефалита и др.
Для получения вакцин и диагностических препаратов используют и патогенные микроорганизмы (брюшного тифа, коклюша, дифтерии, столбняка и др.).
Культуры животных и растительных клеток, строение, физиология, процесс культивирования которых являются более сложными, чем бактериальных клеток, также нашли широкое применение в биотехнологии. Тем не менее из культур тканей растений получают разнообразные соединения, используемые в медицине, и прежде всего алкалоиды, противовоспалительные вещества, противолейкозные и противоопухолевые, противобактериальные, сердечные и почечные средства, ферменты, витамины, опиаты и иное, сельском хозяйстве, химической и других отраслях промышленности. Кроме того, животные клетки используют не только для получения продукции, синтезируемой клетками, но и для выращивания в клетках вирусов с целью получения из них вакцин и диагностических препаратов.
Основными условиями успешного проведения технологического процесса получения продуктов микробного или клеточного синтеза являются:
1) выбор или получение высокопродуктивного промышленного штамма-продуцента и поддержание его в активном состоянии. Это обусловлено тем, что различные штаммы могут иметь существенные различия по количеству и качеству продукции того или иного вещества, что в значительной мере сказывается на экономической эффективности и активности целевого продукта;
2) подбор питательных сред, которые смогли бы обеспечить максимальное накопление биомассы или целевого продукта. При этом питательные среды должны состоять из дешевого, недефицитного и доступного сырья. С этой целью в крупномасштабном производстве для приготовления питательных сред служит обычно сравнительно дешевое сырье, которым являются меласса, парафины нефти, дрожжи, уксусная кислота, природный газ. При получении медицинских препаратов применяются казеин, препараты крови, среды из мясных гидролизатов.
С целью получения продукции в максимальных количествах активный штамм-продуцент выращивают на оптимальной питательной среде в оптимальных условиях культивирования. Выращивание проводят в ферментаторах, или культиваторах, вместимость которых может варьировать от 2 л до 100–400 м3 в зависимости от потребности в продукте. Процесс культивирования ведется в асептических условиях, чтобы получить чистые культуры целевых микроорганизмов или культуры клеток.
В ферментаторах применяют суспензионное (глубинное) культивирование, реже поверхностное – на плотных питательных средах (бактерии, грибы) или в жидком монослое (культуры животных клеток).
Полученную биомассу микроорганизмов или культуры клеток подвергают переработке, вид которой определяется технологией получения целевого продукта.
Наиболее типовые процессы:
1) концентрирование биомассы сепарированием, центрифугированием и приготовление из нее жидкого или сухого продукта;
2) высушивание, проводимое лиофильным способом из замороженного состояния или путем распыления в потоке теплого воздуха в специальных лиофильных аппаратах и распылительных сушилках;
3) сбор центрифугата после отделения биомассы и выделения из нее целевого продукта. В некоторых случаях предварительно прибегают к разрушению клеток механическим, осмотическим или ультразвуковым способом с целью увеличения выхода целевого продукта.
Если из биомассы или центрифугата необходимо выделить активную субстанцию (витамин, аминокислоту, антиген, фермент и др.), то применяют многоступенчатые физические (сепарирование, центрифугирование) или физико-химические (осаждение нейтральными солями, спиртом, ацетоном, ультрафильтрацию, хроматографию, электрофорез) методы очистки, выбор которых зависит от свойств выделяемого вещества, зависящих от природы, молекулярной массы, лабильности к внешним воздействиям и т. д. Чистота получаемого продукта определяется наличием в нем примесей и выражается коэффициентом очистки – отношением числа активных единиц продуктов к 1 мг белка или азота (так называемая удельная активность) в очищенном препарате к удельной активности исходного продукта.
Как правило, в препаратах активная субстанция содержит примеси питательных сред, на которых выращивали микроорганизмы, а также продукты метаболизма и продукты распада микробной клетки. К примесям относятся белки, полисахариды и их комплексы, нуклеиновые кислоты, соли и другие низкомолекулярные вещества – бесполезные для препаратов, но нередко вызывающие нежелательные побочные реакции организма при применении препаратов в виде местных реакций, повышения температуры тела, аллергических проявлений. Этим объясняется стремление к получению препаратов, содержащих активную субстанцию в максимально очищенном состоянии.
После получения активной субстанции из нее конструируют конечный препарат, который в зависимости от назначения и способа применения может быть в жидком или сухом состоянии или в виде мазей. Поскольку он может быть предназначен для наружного, парентерального или энтерального, аэрозольного применения, то может быть стерильным и нестерильным.
Кроме того, конечный препарат, помимо примесей (от которых не удалось освободиться), содержит и необходимые добавки, которыми являются консерванты для поддержания стерильности препарата при хранении, стабилизаторы для повышения устойчивости лабильного активного начала при хранении, активаторы.
В конечной композиции препарат фасуется, этикетируется и снабжается инструкцией по применению.
Каждая серия препарата проходит стандартизацию в соответствии с технической документацией на производстве и в Государственном институте стандартизации и контроля медицинских биологических препаратов им. Л. А. Тарасевича или в Фармакологическом комитете в зависимости от назначения препарата.
Правообладателям!
Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.Читателям!
Оплатили, но не знаете что делать дальше?