Электронная библиотека » Батыр Каррыев » » онлайн чтение - страница 3


  • Текст добавлен: 16 октября 2020, 10:43


Автор книги: Батыр Каррыев


Жанр: Прочая образовательная литература, Наука и Образование


Возрастные ограничения: +6

сообщить о неприемлемом содержимом

Текущая страница: 3 (всего у книги 28 страниц) [доступный отрывок для чтения: 9 страниц]

Шрифт:
- 100% +

Зачастую ошибочно сообщают об увеличении числа землетрясений на планете исходя из этих данных. Однако это не так. Повышение чувствительности приборов и количества пунктов на планете позволяет регистрировать больше сейсмических событий. Это хорошо видно на примере графиков числа зарегистрированных землетрясений с 1900 по 2015 год. Для землетрясений магнитуды 6 и 7 такой рост действительно происходит но он связан с инструментальными возможностями и использованием в обработке данных электронно-вычислительных машин. Для землетрясений больших магнитуд роста нет и среднегодовое число значимо не изменятся.


Динамика роста количества информации о происходящих на планете землетрясениях. Из графика событий магнитудой около 6 по шкале Рихтера видно, как увеличивалась чувствительность сейсмических наблюдений в мире. На восходящем тренде землетрясений магнитуды около 7 выделяется квазипериодические колебания с пиками в 1911—1920, 1931—1940, 196—1970 и 1991—2000 годах обязанные природному фактору.


Развитие Интернет позволило оперативно сообщать о происходящих на планете землетрясениях. На специальных веб-сайтах благодаря машинной обработке очень быстро появляются сведения о каждом сильном землетрясении, где бы оно не произошло на планете. Подобные службы имеются в Европе, США, России и других странах.

Методы сейсмологии оказались востребованы после запрета испытаний в воздухе и на земле. Подрывы ядерных зарядов начали проводить под землей, а поскольку от них сейсмические волны распространяются также так же как от землетрясений, поэтому по их записям можно точно определить место, время и мощность испытанного ядерного оружия.

Основная проблема заключается в том, как отличить ядерные взрывы от землетрясений, происходящих на планете почти непрерывно. Тем более что для сокрытия мощности и особенностей ядерного заряда испытания проводятся там, где часто возникают обычные землетрясения. Отметим, хотя волновые поля от взрывов и землетрясений содержат заметные для сейсмологов отличия и, все же по ним не всегда удается однозначно установить факт проведения подземных взрывов.

Сейсмические явления сопровождают эволюцию других планет солнечной системы, и получают научное наименование в зависимости от места своего возникновения. В 1997 году орбитальным спутником Сохо зарегистрировано солнцетрясение излучившее в сорок тысяч раз больше энергии, чем землетрясение в Сан-Франциско 1906 года. Этой энергии с лихвой хватило бы для обеспечения США электроэнергией в течение двадцати лет.

20 июля 1969 года произошло знаменательное событие. Впервые сейсмические наблюдения начали вестись на другой планете. Американскими астронавтами Нилом Амстронгом и Базом Олдрином во время экспедиции «Аполлон-11» в Море Спокойствия в 168 метрах от лунного модуля установлена первая инопланетная сейсмическая станция. Аппаратура весила 48 килограмм и запитывалась от солнечных батарей. Станция проработала около месяца позволив обнаружить лунотрясения, а также то, что падение метеоритов вызывает долго незатухающие сейсмические колебания лунной поверхности.


Сейсмограммы землетрясения (1995) магнитудой 5,1 и ядерного взрыва (1998) магнитудой 4,8 в Индии.


В ноябре 1969 года экспедиция «Аполлон-12» смогла провести более длительные сейсмические наблюдения на Луне. Затем экспедициями 14, 15 и 16 на видимой стороне спутника Земли были установлены еще три высокочувствительные станции оснащенные приборами для наблюдений в широком частотном диапазоне.

Во время экспедиции «Аполлон-12» зарегистрировано много лунотрясений. Их природа была связана как с тектоническими процессами и воздействием на Луну земных приливов, так и ударами метеоров о её поверхность. Самое первое записанное лунотрясение было вызвано ударом о поверхность модуля, на котором астронавты летали на поверхность Луны.

Удар 2,5 тонного аппарата «Аполлон-12» на первой лунной космической скорости (1,7 км/с) был эквивалентен взрыву 800 килограммов тротила. С поверхности поднялось многотонное облако пыли, а через 23,5 секунды волны от удара записал сейсмометр. Колебания лунного грунта продолжалось около часа, что стало сюрпризом для исследователей. Оказалось, что в отличие от Земли на Луне возникают долго незатухающие колебания, подобно тому, как если это был колокол.

Помимо обнаружения лунотрясений астронавты смогли провести первую сейсморазведку на другой планете. На профилях длиной в несколько десятков метров они через каждые 4 – 5 метров производили удары по грунту, и записывали сигналы. На первых инопланетных профилях также устанавливались специальные заряды, подрывавшиеся по команде с Земли, но уже без космонавтов на Луне.


Сейсмостанция экспедиции «Аполлон-17» на Луне (NASA, Public Domain).


13 мая 1972 года в 142 километрах от лунной сейсмостанции упал метеорит диаметром два метра на скорости 20 км/с. Удар от него был настолько силн, что образовался кратер диаметром в сто метров. Сейсмометры на двух сейсмостанциях расположенных в 967 километрах и 1026 километрах от места падения метеорита зашкалили, но смогли записать лунотрясение. После обработки сейсмограмм было обнаружено существование у Луны коры. Она оказалась слоистой и сложенной из кальциево-алюминиевых пород с высокими градиентами скоростей.

Во время экспедиции «Аполлон-13» высадки людей на поверхность Луны не было, но ею было вызвано искусственное лунотрясение. Так, третья ступень ракеты «Сатурн» весом в 15 тонн на второй космической скорости (2,5 км/с) ударилась о лунную поверхность на расстоянии 135 км от сейсмометров. Это удар был эквивалентен взрыву десяти тонн тротила, а колебания от него не затухали четыре часа.

Еще недавно казалось, что исследования сейсмичности Луны представляют чисто научный интерес, однако планы организовать на этой планете обитаемую станцию перевели их в разряд практически важных. На Луне в 1972 – 1977 годах зарегистрированы несколько лунотрясений с магнитудой около 5,5 по шкале Рихтера. Если подобное лунотрясение произойдет вблизи от лунной станции, то она может не выдержать сейсмического удара.


Цифровые сейсмические станции в мире. Увеличение числа и чувствительности станций позволяет регистрировать всё больше сейсмических событий на планете.


Еще продолжалась работа первой лунной сейсмической сети, когда к сейсмическому патрулю присоединилась четвёртая планета Солнечной системы – Марс. Первые сейсмические наблюдения на этой планете были проведены спустя сто лет после Великого противостояния 1877 года, когда были открыты спутники и каналы Марса.

Планировалась работа на Марсе двух сейсмических станций летевших на космических аппаратах «Викинг». Однако первый сейсмометр при посадке на равнине Хриса не смог распаковаться, и включить электропитание. Зато второй, на равнине Утопия, проработал в течение 19 земных месяцев, с 4 сентября 1976 года по 3 апреля 1978 года.

6 ноября 1976 года удалось впервые записать марсотрясение с магнитудой около трех по шкале Рихтера. Однако общие результаты марсианских наблюдений оказались менее результативны, чем на Луне. Видимо только в будущем удастся найти ответы на поставленные вопросы о внутреннем строении четвертой планеты. Тем не менее, важен тот факт, что сейсмические исследования перекинулись на другие планеты, свидетельствуя о появлении нового направления сейсмологии – внеземного.

Изучение сейсмической активности небесных тел очень важно для понимания геологических процессов происходивших на Земле в древности и её будущей судьбы. В этой связи в 1968 году учёный и писатель Иван Ефремов отметил: «К физическим исследованиям Земли как планеты, небесного тела примыкает астрофизика. Изучение развития разновозрастных планет, звезд, метеоритов дает нам возможность в известной мере восстановить ту часть истории Земли, которая не записана в геологической летописи – слоях земной коры и относится к эпохе начального образования Земли».

Сейсмология: Цифры и Факты

132 год. В Китае астроном Чжан Хэн изобретает сейсмоскоп – первый в мире прибор для регистрации землетрясений.

1703 год. Во Франции Отфёй изобретает сейсмоскоп.

1760 год. В Великобритании Джон Мичелл опубликовал книгу «Предположения о причинах возникновения землетрясений и наблюдения за этим феноменом».

1787 год. В Италии Атанасио Ковалли построил сейсмоскоп собственной конструкции сейсмоскопа.

1846 год. Ирландский учёный Роберт Маллет представил в Королевской ирландской академии свой доклад «О динамике землетрясений».

1862 год. Ирландский учёный Роберт Маллет опубликовал статью «Великое Неаполитанское землетрясение 1857 года: основные законы наблюдательной сейсмологии».

1883 год. В странах Латинской Америки начато использование шкалы Росси-Фореля для оценки силы проявления землетрясений.

1887 год. В Японии профессор Секийа впервые на трехмерной проволочной диаграмме создал модель перемещения точки грунта впервые двадцать секунд после начала землетрясения на основе сейсмограммы полученной 15 января 1897 года в Японии.

1892 год. В Великобритании Джон Мильн сконструировал первый сейсмограф способный регистрировать сильные землетрясения на планете.

1893 год. Сейсмолог Джон Мильн и инженер В.К.Бёртон опубликовали книгу «Великое землетрясение в Японии 1891».

1899 год. В Великобритании Ричард Диксон Олдхэм в записях Ассамского землетрясения 1897 года выделил истинные вступления S-волн.

Конец XIX века. В Швейцарии создана первая шкала для оценки силы проявления землетрясения на поверхности земли. Появилась десятибалльная шкала М. Росси (1834—1898) и Ф. Фореля (1841—1912).

1900 год. В Германии Эмиль Вихерт разработал теорию сейсмографа, и конструирует первые высокочувствительные приборы для записи колебаний от землетрясений.

1900 год. В Японии начала применятся семибалльная шкала Омори для оценки силы землетрясения на поверхности земли.

1902 год. В Европе создана шкала Меркалли для оценки силы проявления на поверхности земли землетрясения.

1902 год. В России Б. Б. Голицын разработал гальванометрический метод регистрации сейсмических волн, позволявший автоматически преобразовывать механические перемещения в электрическую форму.

1905 год. Образована Международная ассоциации сейсмологии.

1906—1908 годы. В США после землетрясения в Сан-Франциско и Мессине проводятся специальные инженерные исследования причин разрушения и повреждения зданий.

1912 год. В России Б. Б. Голицын опубликовал «Лекции по сейсмометрии»,

1912 год. В Германии Альфред Лотар Вегенер в опубликованной в журнале «Геологише Рундшау» статье излагает гипотезу континентального дрейфа материков, и публикует книгу «Возникновение материков и океанов».

1912 год. Во многих странах используется 12-ти балльная шкала определения интенсивности сейсмических колебаний Меркалли-Канкани-Зиберга.

1917 год. Международной ассоциацией сейсмологии и недр Земли для употребления в европейских странах утверждена 12-ти балльная шкала Меркалли-Канкани-Зиберга.

1922 год. В Германии Альфред Лотар Вегенер опубликовал книгу «Климат древних времён».

1923 год. В Японии сейсмолог Фусакити Омори под впечатлением трагических последствий Великого землетрясения Канто разработал первый в мире метод расчёта сейсмостойких конструкций.

1924 год. В США Гарольд Джеффрис опубликовал книгу «Земля: ее происхождение, история и строение».

1927 год. В СССР ученый Завриев в общей форме изложил принципы метода динамического расчета сейсмических нагрузок на сооружения.

1931 год. В США начала использоваться модифицированная Вудом шкала Меркалли для оценки силы проявления землетрясения на дневной поверхности.

1933 год. Впервые при землетрясении в городе Лонг-Бич (США) царапина, оставленная на полу кухонной плитой, стала документальным подтверждением существования сложных движений в эпицентральных зонах сильных землетрясений.

1933 год. В СССР И. Мушкетовым опубликована первая макросейсмическая карта сейсмического районирования Центральной Азии.

1935 год. В США Чарльзом Рихтером разработана шкала магнитуд для сравнения по энергии землетрясений.

1937 год. Появилась первая в мире официальная нормативная карта общего (обзорного) сейсмического районирования всей территории бывшего СССР Г.П.Горшкова. Он положил начало регулярному составлению таких карт для регламентирования проектирования и строительства в сейсмоактивных районах СССР. Карта включена в официальное издание «Правила антисейсмического строительства».

Начало 40-х годов прошлого столетия. В США на основе инженерного анализа повреждения сооружений при землетрясениях 1923 года в Сан-Франциско и 1933 года в городе Лонг-Бич разработан спектральный метод динамического воздействия на сооружения.

Середина 40-х годов прошлого столетия. В СССР Корчинский создаёт теоретические основы спектрального метода расчета сейсмостойких конструкций на основе реальных акселерограмм (записей ускорений грунтов при землетрясениях).

1945 год. Составлена первая карта основных сейсмических зон Турции с пояснительной запиской Эгерена и Лана.

1948 год. В СССР последствия катастрофического землетрясения в Ашхабаде привели к разработке государственной программы сейсмостойкого строительства в СССР. Впервые в стране проведено крупномасштабное изучение причин массового обрушения и повреждения зданий гражданского и промышленного назначения.

1948 год. В Иране при Тегеранском университете создан институт геофизики для проведения исследований землетрясений и разработки рекомендаций по сейсмостойкому строительству в Иране.

1949 год. В СССР приняты «Технические условия проектирования зданий и сооружений для сейсмоактивных районов».

1951 год. В СССР утверждено «Положение по строительству в сейсмических районах».

1952 год. В СССР утверждена новая редакция шкалы ОСТ-ВКС4537 для определения интенсивности сейсмических колебаний как государственный стандарт ГОСТ-6249—52.

1957 год. В СССР опубликованы новые «Нормы и правила строительства в сейсмических районах» и Карта общего сейсмического районирования (ОСР) под редакцией С.В.Медведева и Б.А.Петрушевского.

1958 год. В США Чарльз Рихтер опубликовал книгу «Элементарная сейсмология».

1959 год. В США ассоциация инженеров-конструкторов Калифорнии подготовила отчет по проблеме сейсмостойкого проектирования и выпустила переработанное издание рекомендаций по расчету на горизонтальные нагрузки. Оно вошло во все последующие издания Единых строительных норм США.

1959 год. В СССР Ю.В.Ризниченко для сравнения уровня сейсмической активности территорий предложен новый параметр – «сейсмическая сотрясаемость».

1964 год. В СССР начала использоваться 12-балльная шкала МSK-64, разработанная Медведевым (СССР), Шпонхойером (ГДР) и Карником (Чехословакия).

1968 год. В СССР Опубликована новая карта общего сейсмического районирования (ОСР) под редакцией С.В.Медведева.

1969 год. Впервые сейсмические наблюдения начали вестись на другой планете. Американскими астронавтами Нилом Амстронгом и Базом Олдрином во время экспедиции «Аполлон-11» в Море Спокойствия в 168 метрах от лунного модуля установлена первая инопланетная сейсмическая станция.

1970 год. В СССР приняты новые «Строительные нормы и правила» учитывающие особенности строительства в сейсмоактивных регионах страны.

1971 год. В США землетрясение в Сан-Фернандо привело к пересмотру всей системы проектирования сейсмостойких конструкций. В числе сильно разрушенных построек оказались и новые, построенные на основе ранее принятых норм и правил расчета конструкций на сейсмические нагрузки.

1975 год. В СССР сейсмолог Д.Н.Рустанович собрал и систематизировал записи колебаний поверхности земли в эпицентральных зонах сильных землетрясений.

1976 год. Впервые во время американской экспедиции «Викинг» на Марсе начаты сейсмические наблюдения на равнине Утопия.

1977 год. В СССР издан «Новый каталог сильных землетрясений на территории СССР». Каталог стал основой для создания новой карты сейсмического районирования СССР – СР-78.

1978 год. В СССР принята новая карта сейсмического районирования СР-78 под редакцией М.А.Садовского.

1970-е годы прошлого столетия. В США создаются принципы общего процесса проектирования на основе представления о рисках.

1977 год. В США Хиро Канамори и Том Хэнкс разработали шкалу сейсмического момента для сравнения энергии крупнейших землетрясений.

1985 год. Землетрясение в Мехико привело к пересмотру представлений о методах современного сейсмостойкого градостроительства в сложных грунтовых условиях.

1988 год. В СССР землетрясение в Армении (Спитак) положило началу пересмотра утвержденных в 1981 году норм сейсмостойкого строительства в стране. С распадом Советского Союза процесс пересмотра карты общего сейсмического районирования для России затормозился, а в странах СНГ практически не был начат.

1995 год. В Японии землетрясение в Кобе ставит вопрос о необходимости паспортизации зданий и сооружений старой постройки в стране.

1998 год. В Европейском союзе начала использоваться макросейсмическая шкала ЕMS-98 для описания эффекта землетрясения.

1998 год. В Казахстане введены новые нормы сейсмостойкого строительства и проектирования.

1999 год. Землетрясения в Турции и на Тайване выявили значительные ошибки в подходе к проектированию жилья и применения норм сейсмостойкого строительства в современных условиях.

2000 год. В России издан комплект карт общего сейсмического районирования территории Российской Федерации ОСР-97.

2001 год. В России принята федеральная целевая программа «Сейсмобезопасность территории России».

Почему столь многочисленны жертвы землетрясений?

Вот пришло землетрясение, какую пользу принесло богатство? Труд того и другого пропал, погибло имущество вместе с владением, дом вместе со строителем. Город сделался общим для всех гробом, устроенным внезапно не руками мастеров, но несчастным случаем. Где богатство? Где любостяжание? Видите ли, как все оказалось ничтожнее паутины?

Иоанн Златоуст
«О Лазаре. Слово шестое», 386—397 годы

В повседневной жизни серии удач или неудач обычно имеют свои причины, но с природными бедствиями понятие удачи не существует, поскольку здесь важна не удача, а предусмотрительность. Удача всегда дело случая. Сильное землетрясение детерминировано по своей природе и вопрос, когда оно произойдёт, не столь важен, если заранее не озаботится предохранением от его последствий.

В отличие от прежних времён когда природные бедствия, вне понимания их истинных причин, нагружались сакральным смыслом сегодня ситуация другая. Природа землетрясений известна, а территории их преимущественно возникновения в основном определены. Сами причины разрушений и гибели людей просты и определяются несколькими причинами.


Карта сейсмически опасных территорий на планете (Global Seismic Hazard Program, 2011). Наиболее сейсмоопасные территории одновременно и самые населённые в мире.


Во-первых, с тем, что Земля геологически эволюционирует. В её недрах непрерывно протекают физико-химические процессы, перемещаются огромные массы материи, а дневная поверхность деформируется и возникают землетрясения.

Во-вторых, с тем, что человек издавна селится там, где ему удобнее, а не безопаснее жить. Местами предпочтительного расселения в силу различных факторов были и остаются побережья морей и океанов, устья рек и подножья гор. Однако именно эти места наиболее часто подвержены ударам природной стихии.

В-третьих, мировое население растёт, и всё больше людей проживает в крупных городах расположенных на сейсмоопасных территориях. Современные технологии позволяют строить в сложных условиях, но полностью обезопасить инженерные сооружения они неспособны, особенно в быстрорастущих мегаполисах с усложнённой инфраструктурой.

По статистике наибольшие среднегодовые потери человечество несёт от превратностей погоды, и только затем идут землетрясения. Но если принять во внимание сокрушительность и скоротечность подземных ударов они ни в чем не уступают погоде, а по коварству намного её превосходят. В отличие от погоды и других стихийных бедствий потери от землетрясений можно оценить только по большим интервалам времени – за десятки лет. Это связано с тем, что они происходят редко, но с большим ущербом. Их влияние на экономику и жизнь людей растягивается на годы и десятки лет.

Землетрясения способны мгновенно сбить ритм жизни сотен тысяч людей на огромной территории. В отличие от погоды их невозможно предсказать и, следовательно, заблаговременно предупредить население. Тем не менее, и здесь есть много способов снижения приносимого ими ущерба.

Уже давно замечено, что при землетрясениях люди редко гибнут на открытой местности, вне зданий и сооружений. Примеров тому немало – грандиозные подземные удары, происходящие в пустынных местностях и на морском дне, приносят минимальный ущерб и, чаще всего, не сопровождаются человеческими потерями. В тоже время, меньшие по силе землетрясения, но возникающие рядом с населенными пунктами, ежегодно уносят тысячи жизней. Почему так происходит?

Несмотря на привычность современного бытия, создающего иллюзию безопасного мира, жизнь людей находиться под знаком постоянной угрозы в том случае, если не были восприняты предыдущие уроки. Их суть состоит в непрерывном строительстве безопасной жизни, когда накопленные знания становятся правилом, а правила создают возможность получать новые знания. Знания, вложенные в технологии строительства, городское и сельское планирование, подготовку населения и штатных служб к действию в экстремальной ситуации позволяют нивелировать риски при любом стихийном бедствии.

Разумеется, даже при идеальном положении вещей случайные жертвы неизбежны. Они являются своеобразной платой за технический прогресс. Однако трагические потери XX и начала XXI века от стихии нельзя назвать делом случая только по одной причине – человечество больше знает, и научилось защищаться от большинства смертельных в прошлом угроз.

Сильнейшим землетрясениям, а иногда благодаря вмешательству человека в природную среду и более слабым толчкам, свойственна каскадность поражающих факторов. Иными словами, подземные удары становятся спусковым крючком для возникновения новых губительных процессов – цунами, пожары, эпидемии и др. Наиболее впечатляющий пример этого случившееся в 2004 году мегацунами в Юго-Восточной Азии и трагедия Гаити в 2010 году.


Расположение очагов сильнейших землетрясений магнитуды 7 и выше с 1900 по 2015 год. На верхней врезке карта плотности населения на планете (тёмные цвета).


Предшествующий землетрясению у берегов Суматры бум курортной индустрии, отсутствие системы предупреждения цунами, пренебрежительное отношение к природным угрозам привели к катастрофе. Погибло более двухсот тысяч человек из 54-х стран мира. Это еще раз подтвердило вступление человечества в эпоху глобализации не только в экономике, но и потерям от стихийных бедствий.

Некогда войны сравнивались с землетрясениями. После двух мирровый войн уже подземные удары сравнивают с ужасами войны. В своё время европейский пацифист Нидти заметил: «Великие войны подобны землетрясению. Многие из явлений войны легко понять тем, которые были очевидцами того разрушения, которое продолжается в течение нескольких лет на пространстве, подвергшемся землетрясению… После великих войн, как и после землетрясения, содрогается конвульсивно весь мир, все политические системы, все человеческие представления». После таких событий как мегацунами в ЮВА или землетрясения в Японии с разрушением АЭС «Факусима» в 2011 году стало со всей очевидностью ясно, что глобализация касается не только экономик, но и рисков больших жертв от природных катастроф.

Во все времена сообщества смирялись с неизбежными массовыми жертвами, а мировые войны XX века снизили болевой порог восприятия природных бедствий. И сегодня, в век мгновенной коммуникации, масс-медиа «пошумев» по поводу огромного числа жертв от стихии быстро переходят к другим новостям, не вскрывая истинных причин трагедий которые хорошо известны специалистам и оказываются теми же самыми что сотни и тысячи лет назад. С чем это связано?

Сейсмическая угроза относиться к ситуации, когда ведущие к катастрофе перемены происходят крайне медленно не только для отдельного человека, но и для общества. Изменения климата хороший тому пример. Если температура повышается на доли градуса в год, а в отдельные годы даже падает, люди осознают необратимость перемен лишь тогда, когда они проявляются со всей очевидностью. Из-за этого механизм социальной защиты запаздывает или не включается вовсе.


Потери от стихийных бедствий с конца XX века растут опережающими темпами по сравнению с увеличением мирового населения и согласно его всё большей концентрации в городах.


В голливудском кинофильме «Dante’s Peak» приводится своеобразный «рецепт» катастрофы на примере вопроса – как сварить живую лягушку? Ответ прост – необходимо поместить её в кастрюлю с холодной водой и медленно нагревать. Тогда лягушка не ощутит увеличения температуры, и не успеет выпрыгнуть из закипевшей воды. Иными словами, когда угроза превратиться в очевидную реальность спасаться ей будет поздно.

Сильные землетрясения в одних и тех же местах возникают с интервалом в десятки и сотни лет. Период их повторения перекрывает смену если не нескольких поколений то, по крайне мере, срок жизни отдельного человека. Поэтому, сейсмическая угроза в обществе не овладевшим механизмом передачи и воспроизводства научных знаний с течением времени становится менее реальной.

Строгое научное знание возникло для решения проблемы выживания, и человек не сможет оставаться таковым, если не будет его постоянно пополнять и строить на этой основе фундамент жизни будущих поколений. Благодаря этому риск умереть от болезни или дорожного происшествия снижен накопленным опытом. Знания, превращенные в ремни безопасности, лекарства, системы навигации позволяют избежать массовых смертей, и свести их к строке случайных событий в наше время, но не во всем мире. Поскольку сама по себе наука не снижает интенсивность действия природных сил, она лишь позволяет оценить их опасность и дать обществу необходимые для выживания знания.

В 1978 году японский сейсмолог Хиро Канамори установил, что суммарная энергия всех землетрясений на планете за 1900—1980 годы и размер человеческих потерь не имеют между собой прямой зависимости. Так, максимум суммарной энергии землетрясений в шестидесятых годах не стал пиком ущерба, а на относительно спокойные сейсмические периоды пришлось больше несчастий, чем на самый неспокойный сейсмический год. Иными словами, размер потерь прямо не связан с активностью земных недр, а определялся социальными причинами и вот почему.


Общее число жертв и сейсмическая активность с 1900 по 2015 годы. Стрелками отмечены моменты возникновения катастрофических землетрясений и число жертв. Максимумы сейсмической активности и пики потерь не совпадают между собой.


Еще недавно люди проживали в сельской местности, а крупных городов было немного. Этому способствовало то, что там, где периодически возникали природные катаклизмы, поселения не успевали разрастись. С началом индустриальной революции в конце XVIII века ситуация резко изменилась. Появились адекватные новому времени строительные технологии, и произошёл резкий рост городского населения. Наиболее крупные города, в силу коммуникационных и других условий, а это 40% всех городов мира с населением более полумиллиона, оказались на побережье океанов, морей или в устье рек. Именно там, где всегда был высок риск природных катаклизмов: наводнений, штормов, землетрясений, цунами и циклонов.

Исторически места расположения человеческих поселений определялись такими факторами, как близость к источникам питьевой воды и пищи, удобством торговли и т. д. До середины XX века среди них никогда не было фактора геобезопасности. Землетрясения, цунами или извержения вулканов происходили редко и, как правило, о них забывали следующие поколения.

Ситуация изменилась с возникновением городов и появлением возможности не только сохранять информацию, но делать ее доступной обществу. К сожалению это произошло сравнительно недавно, поэтому многие города продолжают находиться в непосредственном соседстве с заснувшим вулканом или затаившимся в складках горной породы очагом землетрясения.

С другой стороны, если сравнить размеры потерь с состоянием экономики той или иной страны выясняется простой факт. Чем беднее страна, тем больше жертв и наоборот, чем она богаче, тем меньше людских потерь, но выше продолжительность жизни. Хотя в «бедных» странах проживает только 58% населения планеты, но на них приходится 88% погибших и 92% от всех пострадавших от стихии (1965—1992 гг.).

В странах с низким доходом общее количество погибших и пострадавших в 5,8 раз больше, чем со средним и в 45,2 раза больше, чем в странах с высоким доходом. Истина проста. Низкие доходы не позволяют «бедным» странам выдерживать конкуренцию со стихией, а плохое управление, в сочетании с коррупцией, иметь средства для создания безопасных условий жизни своим гражданам.

Еще лет сто назад развитые по тем временам страны страдали от землетрясений не меньше, а даже больше чем бедные страны. Вектор максимальных потерь приходился на богатые города и зажиточные провинции Европы и Америки. В 1906 году несколько тысяч погибших в США, а в Италия десятки тысяч в 1908 году. В то же время, на Ямайке в 1907 году менее одной тысячи, а в Иране около пяти тысяч погибших в 1909 году. Правильно извлеченные из катастроф уроки позволили развитым странам снизить человеческие потери от стихийных бедствий.


Страницы книги >> Предыдущая | 1 2 3 4 5 6 7 8 9 | Следующая
  • 0 Оценок: 0

Правообладателям!

Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.

Читателям!

Оплатили, но не знаете что делать дальше?


Популярные книги за неделю


Рекомендации