Электронная библиотека » Билл Фрэнкс » » онлайн чтение - страница 1


  • Текст добавлен: 1 января 2016, 18:20


Автор книги: Билл Фрэнкс


Жанр: Личные финансы, Бизнес-Книги


Возрастные ограничения: +12

сообщить о неприемлемом содержимом

Текущая страница: 1 (всего у книги 29 страниц) [доступный отрывок для чтения: 10 страниц]

Шрифт:
- 100% +

Билл Фрэнкс
Революция в аналитике. Как в эпоху Big Data улучшить ваш бизнес с помощью операционной аналитики

Переводчик И. Евстигнеева

Редактор В. Мылов

Руководитель проекта М. Султанова

Арт-директор Л. Беншуша

Корректор И. Астапкина

Компьютерная верстка Д. Жаровский


© 2014 by Bill Franks. All rights reserved

© Издание на русском языке, перевод, оформление. ООО «Интеллектуальная Литература», 2016


Все права защищены. Произведение предназначено исключительно для частного использования. Никакая часть электронного экземпляра данной книги не может быть воспроизведена в какой бы то ни было форме и какими бы то ни было средствами, включая размещение в сети Интернет и в корпоративных сетях, для публичного или коллективного использования без письменного разрешения владельца авторских прав. За нарушение авторских прав законодательством предусмотрена выплата компенсации правообладателя в размере до 5 млн. рублей (ст. 49 ЗОАП), а также уголовная ответственность в виде лишения свободы на срок до 6 лет (ст. 146 УК РФ).

* * *

«Я знаю Билла на протяжении многих лет и всегда восхищался его в высшей степени прагматичным и прямым подходом к операционализации аналитики. Два десятилетия практического опыта работы в условиях реального бизнеса выделяют Билла на фоне остальных экспертов и делают его одним из лидеров аналитической мысли!»

Эльпида Орманиду, вице-президент по аналитике в области человеческих ресурсов, компания Walmart

«Фрэнкс создал очередной шедевр прагматичного руководства, показав, как можно взять стандартные практики и вывести их на совершенно новый качественный уровень. Специалисты по аналитике и ИТ-специалисты по достоинству оценят информацию, которую представляет Фрэнкс в своей книге с точки зрения бизнеса. Также эта книга будет чрезвычайно полезна всем тем, кто хочет вывести свои организации на новый уровень использования аналитики и принятия решений на основе данных».


Джефф Тэннер, автор книги «Аналитика и стратегия динамического управления отношениями с клиентами» и директор Инновационной бизнес-коллаборатории Университета Бэйлора

«Еще несколько лет назад многие организации и люди сомневались в ценности больших данных и в необходимости аналитики как таковой. Сегодня те, кто продолжает сомневаться, упускают колоссальные возможности. Их бизнес быстро переходит в разряд устаревших и отстающих. Но с чего начать? Хотя ни одна книга не в состоянии охватить весь спектр вопросов, «Революция в аналитике» предлагает комплексный взгляд на внедрение операционной аналитики. Я искренне рекомендую эту книгу».


Фил Саймон, спикер, журналист и автор книг «Визуальная организация» и «Слишком большие, чтобы их игнорировать»

«Это исчерпывающее и столь востребованное сегодня руководство по внедрению операционной аналитики, автоматизации принятия решений и интеграции анализа данных в бизнес-процессы. В эпоху больших данных аналитика стремительно становится ключевым стратегическим дифференцирующим фактором, и трудно найти лучшего проводника в мир аналитики, чем Билл Фрэнкс».


Джил Пресс, обозреватель Forbes.com

«Книга доходчиво и систематизированно излагает то, что должен знать и применять руководитель, который хочет сделать свою организацию успешной при помощи аналитики. Сегодня аналитика кардинально меняет способы принятия решений в организациях в рамках операционных процессов и даже самими клиентами! Это революционное изменение в подходе к принятию решений становится новой реалией бизнеса. Я рекомендую эту книгу тем, кто хочет доподлинно узнать, чего следует ожидать от операционной аналитики и, главное, что следует делать!»


Рассел Уокер, адъюнкт-профессор в области экономики управления и науки о принятии решений в Школе менеджмента имени Келлога Северо-Западного университета

«Если вы находитесь в гуще движения по внедрению больших данных в вашей организации (а кто может остаться от него в стороне?), вы должны прочитать эту книгу. Используя свой уникальный дар рассказчика, Билл Фрэнкс предлагает нам увлекательный и содержательный рассказ о том, как компании по всему миру превращают собираемые ими массивы данных в новые источники доходов и конкурентного преимущества. В частности, Билл уделяет внимание такой важной теме, как грамотное управление данными, которая часто игнорируется при обсуждении больших данных. Продолжая тему книги «Укрощение больших данных», своими четкими и компетентными рекомендациями он дает в руки читателей доску для серфинга, при помощи которой они смогут укротить волну больших данных и операционной аналитики. Билл также излагает свое видение мира будущего, где правят данные».


Линда Бёртч, управляющий директор рекрутингового агентства Burtch Works Executive Recruiting

«Один из ключевых уроков, который мы выучили в Kaggle, состоит в том, что анализ больших данных – это не только создание продвинутых алгоритмов. Билл написал отличную книгу о том, что нужно знать и делать, чтобы успешно претворить операционную аналитику в жизнь».

Энтони Голдблум, основатель и генеральный директор компании Kaggle

Эта книга посвящается Стейси, Джесси и Даниэль



Предисловие к русскому изданию компании Teradata
Чем больше данных, тем «умнее» наш мир

Человечество умеет прогнозировать процессы и события, опираясь на накопленные знания, известные факты, процессы и связи. Но что, если опыт, полученный ранее, больше не помогает нам ориентироваться в современном мире? Как реагировать на взрывной рост объемов данных и новые экономические вводные, которые постоянно ставят руководителей в неизвестные им до этого условия? Интуиция, которая помогала раньше, подводит, и очевидные, казалось бы, действия приводят к неудачам. Жизнь руководителя сегодня – это принятие решений в максимально неопределенных условиях, при ежедневно нарастающем объеме информации и ее источников.

К 2020 году почти все взрослое население планеты, т. е. не менее пяти миллиардов людей, будет подключено к Интернету. К этому времени в мире будет насчитываться примерно 50 млрд подключенных устройств – источников данных, к ним будут относиться не только всевозможные стационарные, настольные и носимые с собой компьютеры, но и бытовая электроника, транспортные средства, торговое оборудование, медицинские приборы, промышленные системы, датчики ЖКХ и т. д. Возможно, к этому времени Big Data и Internet of Things окончательно перестанут быть предметом дискуссий визионеров и станут повседневной реальностью, которая нас окружает. Объем доступной информации будет колоссальным, и важнейшей задачей станет извлечение ценности из этой информации. Например, человек приехал в торговый центр – на какой машине? Куда он пошел – в кафе? В кино? В магазин? Что он купил? Что он в этот момент искал в Интернете? Заходил ли он в магазин детских товаров или товаров для животных? Как часто он сюда приезжает? Какие точки в этом торговом комплексе посещает в первую очередь, а до каких не добирается вовсе? Все эти данные – золотая жила для ритейлеров.

Но изучение покупательского поведения – только одна из множества областей применения больших данных. Уже в обозримом будущем аналитика поможет нам решать, без преувеличения, любые задачи. Например, возьмем оборудование нефтяных вышек. Как и любое оборудование, оно изнашивается и ломается, каждый день простоя обходится нефтяным компаниям в миллионы долларов. Постоянный мониторинг, сбор и анализ всех данных позволит заблаговременно выяснить, что происходит с этим оборудованием, и своевременно провести его недорогое плановое обслуживание, прежде чем возникнут серьезные неисправности. Каким рабочим нагрузкам оно подвергается? Каковы природные, климатические предпосылки поломок? Какие паттерны отказов можно выделить? Какая возможна профилактика простоев? Если же поломка произошла, как максимально сократить время простоя? Аналитика данных позволит узнать об этом оборудовании буквально все – как оно работает, как ведет себя в той или иной ситуации, когда оно дает сбои и как их предотвратить.

А теперь представьте на месте нефтяной вышки любой другой сложный технический объект. Обслуживание авиалайнера – проект еще более высокой сложности, чем ремонт нефтяной вышки, но аналитика позволит не только прогнозировать, какие узлы самолета стоит диагностировать заранее, не дожидаясь планового осмотра, но и запланировать доставку запчастей в определенный аэропорт – оперативно и экономно!

Обслуживание автомобиля – сравнительно простая задача, но что, если масштабировать ее на миллионы машин? Осознавая сложность подобного проекта, компания Volvo Cars, тем не менее, нашла его осуществимым. Проект сбора и анализа данных со всех датчиков всех автомобилей Volvo, начатый при поддержке Teradata, позволит успешно идентифицировать и предупреждать изначальные причины неисправностей и поломок автомобилей. Для потребителя это будет выглядеть так, будто автомобиль сам следит за собой и прогнозирует необходимость технического обслуживания. Чем больше будет накоплено данных для аналитики, тем «умнее» станут машины.

Огромные перспективы – у предприятий, недавно приступивших к внедрений технологий больших данных и бизнес-аналитики, таких, как службы государственного управления, инфраструктурные предприятия, организации коммунального хозяйства, розничные сети, предприятия здравоохранения. Но даже в тех отраслях, которые изначально и с большим успехом опирались на информационные технологии и бизнес-аналитику – банковский бизнес, телекоммуникационные услуги, – есть, над чем работать. Кардинально улучшить картину взаимоотношений поставщиков и клиентов на соответствующих рынках может аналитический подход к разработке пакетов услуг, условий оказания сервиса, программ лояльности. Необходимые для этого условия – сбор и накопление данных, их обработка с использованием соответствующих аналитических инструментов, методологическая помощь консультантов по бизнес-аналитике и глубокая операционно-аналитическая работа отраслевых специалистов.

Такие подходы успешно работают и в различных областях научных исследований. Именно глубокий анализ данных делает возможным прорыв в изучении генома человека, глобальных изменений климата и поведении Мирового океана. И, если вдуматься, нет ничего удивительного в том, что изначально наукоемкие технологии дают возможность развиваться и бизнесу.

Поэтому я очень рад представить вам новую книгу «Революция в аналитике», которую написал Билл Фрэнкс, директор компании Teradata по аналитике и один из крупнейших в мире специалистов по бизнес-аналитике. Билл Фрэнкс – один из тех, кто очень хорошо понимает, в чем ценность данных и как поставить большие данные и интернет вещей на службу человеку.

Я уверен, что знакомство с этой книгой даст вам новые знания, свежие идеи и понимание удивительных процессов, участниками которых мы все с вами сегодня являемся.

Приятного вам чтения!

Андрей Алексеенко,
глава компании Teradata в России

Предисловие к русскому изданию компании IBS

Взрыв интереса к технологиям «больших данных» породил массу смелых ожиданий и, возможно, некоторое количество разочарований. Да, мы живо представляли себе потрясающее будущее, где компьютеры предотвращают эпидемии, решают транспортные проблемы, управляют экономикой, угадывают желания потребителей и следят за безопасностью. Однако будущее оказалось чуть дальше, чем нам хотелось, потому что по пути к этому светлому будущему нужно еще найти ответы на массу вопросов – технических, организационных, юридических, психологических, – связанных с каждодневным прикладным применением «больших данных».

Так когда, наконец, наступит это удивительное цифровое будущее?

Я рискну высказать мысль, что мы уже в этом будущем. Мы лишь, как обычно, с близкого расстояния не можем оценить глубины тех изменений, которые сейчас переживает мир. Посмотрите на множество успешных стартапов, буквально взорвавших мир и изменивших жизнь миллионов людей, чьи бизнес-модели построены на глубокой аналитике данных и переработке огромных объемов информации! Цифровые модели управляют сегодня такси, маршрутами самолетов и грузовиков, магазинами, логистическими сетями и заводами. Как покупатели и пользователи Интернета и смартфонов мы уже в полной мере живем «цифровой жизнью». А как бизнесменам и менеджерам нам пора задуматься о том, каковы перспективы наших бизнесов в этом новом мире непрерывного цифрового взаимодействия и онлайн-аналитики. Каждый бизнесмен сегодня должен подумать о том, какие возможности и угрозы создает для него современная цифровая среда.

Книга Билла Фрэнкса мне кажется очень своевременной именно потому, что она не пытается убедить нас, что аналитика данных – это будущее, а говорит об «аналитической революции» как об уже свершившемся факте. Автор, не отрицая прогресс в «больших данных», считает совершенно непринципиальным разделять разные виды и источники данных. Главное, по его мнению, уметь эффективно вовлекать правильную информацию всевозможных форматов в процесс анализа и принимать на ее основе правильные решения.

Фрэнкс говорит об «операционализации аналитики», т. е. о переходе к совершенно новой для бизнеса ситуации, когда аналитические решения внутри компании не просто помогают видеть результаты прошлого и тестировать сценарии будущего. Теперь правильно настроенная аналитическая машина способна на основании доступных ей данных самостоятельно принимать решения операционного уровня – безошибочно делая это тысячи или миллионы раз за день. Автор утверждает, что очень многие управленческие решения могут приниматься роботизированными алгоритмами без вмешательства человека. Такая аналитика транзакционного уровня – безусловно, новый шаг по сравнению с традиционным пониманием бизнес-анализа как базы для принятия решений на стратегическом горизонте. Кому-то это покажется слишком смелым, но подобная идея – принципиальное отличие современного цифрового бизнеса! Например, правильно настроенный рекомендательный алгоритм на сайте интернет-магазина гораздо лучше любого человека-продавца умеет предлагать покупателю дополнительные сервисы и покупки. Или, скажем, автоматизированные методы оценки деловых и личных качеств сотрудников уже сейчас демонстрируют достаточно качественные результаты – почему бы не предположить, что в будущем компьютер сможет самостоятельно принимать решения о приеме человека на работу или о его увольнении? А с повсеместным распространением так называемого Интернета вещей (о его приложениях Билл Фрэнкс также упоминает в своей книге) объем данных, доступных для анализа и принятия решений, возрастет еще на порядок, а значит, возрастет точность этих решений и области применения операционной аналитики.

Безусловно, внедрение аналитики операционного уровня – это вызов, и Билл Фрэнкс дает очень конкретные и прикладные советы и рецепты по имплементации такого операционно-аналитического процесса в бизнес. Он предлагает структуру и конкретные шаги, как выстроить внутри компании индустриальный механизм сбора и переработки всевозможных данных. Он предостерегает нас от ошибок, говорит о рисках и анализирует удачные и неудачные примеры из собственной практики. Эта книга – готовая модель по внедрению практики управления компанией на основе анализа данных реального времени.

Я уверен, что Россия не сможет и не захочет остаться в стороне от тренда на создание цифровых бизнес-моделей. В ряде приложений эти новые алгоритмы – самый эффективный способ решения актуальных для нас задач. Скажем, при наших географических расстояниях цифровые логистические модели – очень важная тема, и аналитические системы операционного уровня тут обязательно найдут свое применение. Актуальны задачи управления рабочей силой при нашем сжимающемся рынке труда – алгоритмы могут помочь и здесь.

Мы уже сейчас нередко обсуждаем подобные вопросы с партнерами и клиентами и видим, что компании не всегда знают, с чего начать. Накопленных опыта и знаний в этой новой для нас сфере пока недостаточно, не хватает структурного взгляда – с чего начать, как строить команду, что внедрять, какие управленческие решения принимать. Это вопросы, ответы на которые дает в своей книге Билл Фрэнкс. Я уверен, его советы очень помогут многим компаниям успешно перешагнуть устаревшие бизнес-модели и перейти к цифровому бизнесу завтрашнего дня.

Сергей Мацоцкий,
председатель правления компании IBS

Предисловие автора

Если в течение последних 10–20 лет вы интересовались темами корпоративного интеллекта, аналитики и больших данных, то, возможно, задавались вопросом: что будет дальше? В конце концов первоначальный ажиотаж вокруг больших данных начинает спадать, и аналитика всех видов постепенно становится важной, но уже привычной частью бизнеса.

О том, что будет дальше, вы можете узнать в этой книге. Билл Фрэнкс называет новый феномен «операционной аналитикой», но его также можно назвать «производственной аналитикой», «аналитикой в режиме реального времени», или «автоматизацией принятия решений». Как становится понятным из этих терминов, подход к практическому применению аналитики меняется стремительно. Причем сама по себе аналитика меняется не так сильно. Фрэнкс отмечает, что операционная аналитика по большей части остается той же традиционной аналитикой, которой мы занимались на протяжении десятилетий и даже столетий. Изменился же контекст ее применения.

В подробностях об этом вы можете – и должны – прочитать в данной книге. Отмечу лишь, что, в отличие от неторопливой пакетной аналитики, бывшей уделом бэк-офисов, сегодняшняя операционная аналитика выполняется намного быстрее и к тому же непрерывно. Причем выполняется не отдельно, а интегрируется с существующими бизнес-процессами и системами. Я называю эту тенденцию «Аналитикой 3.0», и вы прочитаете о том в первой главе, но термин Билла «операционная аналитика», безусловно, точнее. И Билл описывает ее феномен гораздо подробнее, чем это когда-либо удавалось сделать мне.

Такое развитие давно уже запоздало – лет на 50, пока существовало разделение между аналитикой и деловыми операциями, породившее ряд проблем. Хотя руководители часто требовали аналитику и данные для поддержки своих решений, но фактически ими не пользовались. Вероятно, они просто хотели предстать более рассудительными и интеллектуальными, чем были на самом деле. Количественные аналитики, которые должны находиться на переднем крае и в центре всех деловых решений и действий, как правило, находились от руководства на значительном удалении (отмечает Фрэнкс в главе восьмой, исходя из собственного опыта). Все, что касалось аналитики, производилось гораздо медленнее, чем следовало бы. Даже и в этих условиях аналитика приносила пользу, но далеко не настолько, насколько была способна.

Принимая во внимание все эти проблемы традиционной аналитики, пожалуй, следует рассматривать как приверженность силе привычки тот факт, что организации по-прежнему планируют внедрение и регламентацию аналитики в своей деловой деятельности, а не переводят ее в разряд дополнительных и необязательных действий. Использование же операционной аналитики исключает пренебрежение к аналитике как таковой вследствие неправильного ее применения. Аналитика нужна для формирования как стратегических, так и тактических решений, и ее нужно выполнять в одно время, в одном месте с основной операционной деятельностью и на той же скорости. Насколько ускоряется поток данных внутри компаний, настолько должна увеличиваться и скорость аналитической обработки и принятия решений.

Если же вы не заглядывали в будущее, то, возможно, сочтете эту книгу очередным опусом на тему больших данных. Ничего подобного. Во-первых, Фрэнкс уже написал замечательную книгу на эту тему: «Укрощение больших данных»1[1]1
  Фрэнкс Б. Укрощение больших данных: Как извлекать знания из массивов информации с помощью глубокой аналитики. – М.: Манн, Иванов и Фербер, 2014.


[Закрыть]
(Taming the Big Data Tidal Wave). Во-вторых, здесь он рассматривает использование любых данных – всех типов и размеров. Фактически его новый труд можно определить как первую книгу после больших данных. Фрэнкс считает само собой разумеющимся, что организации будут использовать имеющиеся у них как небольшие структурированные, так и крупные, менее структурированные информационные активы. Разве может быть иначе? Кажется очевидным, что данные могут быть полезными независимо от их размера или структуры. К сожалению, поскольку «малые данные» появились до «больших», редко кто из авторов рассматривает «все данные» и рекомендует приспособить технологическую среду и аналитические процессы к различным типам данных, которыми вам придется управлять и которые придется анализировать.

Кроме того, это одна из первых книг, где рассматривается «аналитика вещей». Об Интернете вещей уже написано немало: быстрый поиск на Amazon выдает больше десятка книг, несмотря на относительную новизну термина. Но гораздо меньше написано о том, как можно извлечь пользу из сенсорных данных, т. е. анализировать и использовать их для нахождения решений и обнаружения аномалий. Многие из приведенных Фрэнксом примеров применения операционной аналитики включают Интернет вещей, и автор рассматривает то, как аналитика может быть использована для работы с огромными потоками данных, производимых сенсорами.

Хотя Билл Фрэнкс и является ведущим аналитиком компании Teradata, он не отдает предпочтения конкретным технологиям и поставщикам. Например, в главе пятой совершенно беспристрастно обсуждаются сравнительные достоинства платформы Hadoop и коммерческих хранилищ данных, основанных на реляционной технологии. Думаю, что Билл прав в том, что большинство организаций будут использовать разнообразные технологии хранения и анализа данных. Похоже, ничто не исчезает бесследно; новые технологии дополняют старые, а объемы данных растут достаточно быстрыми темпами, чтобы нашлось применение всем технологиям.

Книга охватывает широкий круг вопросов – от технологий и неприкосновенности частной жизни до кадровых проблем. Все это изложено в очень приемлемой форме и доступным языком. Не в стиле Фрэнкса шокировать читателей сенсационными заявлениями и предсказаниями, вместо этого вам предлагается спокойное и откровенное описание состояния операционной аналитики в 2014 г.

Слово «революция» в названии книги вполне уместно. Переход к операционной аналитике является революционным во многих отношениях, что и раскрывается в книге. Тем не менее есть по крайней мере одна нестандартная проблема, которую Фрэнкс не рассматривает подробно. Встроенная в систему, создаваемая в режиме реального времени аналитика поднимает множество вопросов о том, как будут функционировать организации в будущем. Когда принятие решений в значительной степени перейдет к компьютерам, что станет с людьми, ранее принимавшими решения? Как смогут люди контролировать и совершенствовать процесс принятия решений, если он фактически станет невидимым? Фрэнкс указывает – когда решения принимаются в режиме реального времени и без (или почти без) вмешательства человека, потребуется действительно хороший подбор аналитики и правил принятия решений, иначе можно очень быстро потерять много денег. Однако он не раскрывает подробно новые роли людей в этой среде. Должен признаться, что я несказанно рад такому его упущению, поскольку сам как раз пишу книгу на данную тему!

Итак, погрузитесь в эту книгу и в прежде неведомый вам мир, где многие важные решения принимаются благодаря операционной аналитике. Вы ничего не потеряете, кроме нерешительности и своего офиса за вашей спиной!

Томас Дэвенпорт,
почетный профессор в области информационных технологий и менеджмента в Колледже Бэбсона, соучредитель и руководитель научно-исследовательских работ в Международном институте аналитики

Страницы книги >> 1 2 3 4 5 6 7 8 9 10 | Следующая
  • 0 Оценок: 0

Правообладателям!

Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.

Читателям!

Оплатили, но не знаете что делать дальше?


Популярные книги за неделю


Рекомендации