Автор книги: Брайан Грин
Жанр: Прочая образовательная литература, Наука и Образование
Возрастные ограничения: +12
сообщить о неприемлемом содержимом
Текущая страница: 7 (всего у книги 35 страниц) [доступный отрывок для чтения: 12 страниц]
Новой чертой гравитационной версии энтропийного тустепа является то, что процесс этот самоподдерживающийся. По мере того как газовое облако сжимается и испускает теплоту, его температура растет, заставляя еще больше теплоты уходить наружу и обеспечивая продолжение танца. Напротив, когда паровая машина выполняет работу и испускает теплоту, ее температура падает. Без сжигания дополнительного топлива, способного вновь разогреть пар, машина останавливается. Вот почему для конструирования, постройки и поддержания работы паровой машины необходим разум, тогда как область порядка, созданную сжимающимся облаком газа, – звезду – лепит и заставляет работать неразумная гравитация.
Синтез, порядок и второе начало
Подведем некоторые итоги.
Если влияние гравитации минимально, второе начало толкает систему к однородности, объекты распределяются, энергия рассеивается, энтропия возрастает. И если бы это было все, то история Вселенной, от начала до конца, оказалась бы банальной. Но, если материи имеется достаточно, чтобы влияние гравитации стало значимым, второе начало радикально меняет курс и толкает систему прочь от однородности. Материя образует сгустки в одних местах и распределяется однородно в других. Энергия концентрируется в одних местах и рассеивается в других. Энтропия снижается в одних местах и повышается в других. Таким образом, способ, посредством которого выполняется директива второго начала, существенно зависит от силы тяготения. Когда тяготение достаточно – имеется необходимое количество существенно сконцентрированного вещества, – могут формироваться упорядоченные структуры. С учетом этого история развертывания Вселенной становится намного богаче.
Как уже описано, ведущую роль в этом процессе играет сила всемирного тяготения – гравитация. В сравнении с ней действие ядерной силы, ответственной за синтез, представляется откровенно вторичным. Ее работа, на первый взгляд, ограничивается вмешательством: именно ядерный синтез обеспечивает внутреннее давление, способное остановить коллапс под действием гравитации. Приблизительный итог, который ученые обычно озвучивают, таков: именно гравитация в конечном счете является источником любой структуры в космосе; роль ядерного взаимодействия при этом даже не упоминается. Но более честная оценка такова: существует равноправное партнерство между гравитацией и ядерным взаимодействием, когда они работают в паре ради выполнения программы второго начала.
Дело в том, что ядерное взаимодействие тоже участвует в энтропийном танце. При слиянии атомных ядер – как происходит в недрах Солнца, где ядра водорода сливаются в ядро гелия миллиарды и миллиарды раз в секунду, – результатом становится более сложный, более хитроумно организованный низкоэнтропийный атомный кластер. В ходе этого процесса некоторая часть массы первоначальных ядер превращается в энергию (как предписывает формула E = mc2), в основном в виде пучка фотонов, которые разогревают внутренность звезды и обеспечивают излучение света с ее поверхности. И именно при помощи этого раскаленного свечения, которое само представляет собой поток улетающих вовне фотонов, звезда отдает избыточную энтропию окружающей среде. В самом деле, примерно как мы обнаружили в случаях с паровой машиной и сжимающимся газовым облаком, рост энтропии среды более чем компенсирует снижение энтропии благодаря ядру с идущими в нем процессами синтеза и гарантирует, что суммарная энтропия растет, – и истинность второго начала не страдает.
Как природный газ и кислород нуждаются в катализаторе (скажем, чтобы я чиркнул спичкой) для начала химического горения, так и атомные ядра нуждаются в катализаторе для запуска реакции ядерного синтеза. Для звезд таким катализатором является не что иное, как гравитация, которая сдавливает вещество в ядре до тех пор, пока оно не становится достаточно горячим и плотным, чтобы запустилась реакция синтеза. Однажды начавшись, синтез может питать звезду миллиарды лет, без устали синтезируя сложные атомные ядра и одновременно извлекая недоступные в других условиях «залежи» энтропии, которую она излучает в окружающий мир с теплом и светом. И как мы будем говорить в следующей главе, эти продукты – сложные атомы и стабильный мощный световой поток – необходимы для формирования еще более разнообразных и хитроумных структур, включая меня и вас. Таким образом, хотя гравитация и играет жизненно важную роль в образовании звезд и поддержании стабильной звездной среды, но именно ядерное взаимодействие миллиарды лет находится на передовой и возглавляет энтропийную атаку. С этой точки зрения гравитация уже не главное действующее лицо, а лишь необходимый участник долговременного дуэта.
Результат, в антропоморфном изложении, состоит в том, что Вселенная умело использует гравитационные и ядерные силы для извлечения запасов нетронутой энтропии, запертой внутри ее материальных составляющих. Без гравитации частицы распределяются равномерно, как аромат по дому, достигая при этом наивысшего доступного уровня энтропии. Но с гравитацией частицы, сжатые в массивные и плотные шары, при поддержке ядерного синтеза делают ставки в энтропийной игре еще выше.
Этот вариант энтропийного тустепа, запущенный гравитацией и реализуемый средствами ядерной силы, материя исполняет повсеместно по всей Вселенной. Именно этот процесс, доминирующий в космической хореографии чуть ли не с момента Большого взрыва, привел к формированию огромного количества звезд – упорядоченных астрофизических структур, чьи теплота и свет, по крайней мере в одном случае, сделали возможным появление жизни. В таком развитии событий, как мы увидим в следующей главе, задействован своеобразный партнер энтропии – эволюция, – способный формировать самые утонченно сложные структуры во Вселенной.
4
Информация и жизнеспособность
От структуры к жизни
«Уважаемый профессор Шрёдингер, – начиналось скромное письмо 1953 г. от биолога Фрэнсиса Крика к Эрвину Шрёдингеру, одному из отцов-основателей квантовой механики и лауреату Нобелевской премии 1933 г. по физике, – однажды мы с Уотсоном говорили о том, как каждый из нас пришел в молекулярную биологию, и выяснили, что оба мы испытали на себе влияние вашей небольшой книжки „Что такое жизнь?“». После этого упоминания книги Шрёдингера Крик продолжает с едва сдерживаемым возбуждением: «Мы подумали, что вас, возможно, заинтересуют приложенные репринты статей – вы убедитесь, что ваш термин „апериодический кристалл“, похоже, очень подойдет к случаю»[48]48
Письмо от Ф. Х. Ч. Крика Э. Шрёдингеру от 12 августа 1953 г.
[Закрыть].
Уотсон, которого упоминает Крик, – это, разумеется, Джеймс Уотсон, автор, наряду с Криком, еще не остывших после типографского пресса «приложенных оттисков». Среди них – научная статья, которой суждено было стать одной из самых знаменитых статей XX в. В опубликованном виде рукопись заняла бы меньше одной журнальной страницы, и все же этого оказалось достаточно, чтобы описать геометрическую форму ДНК – двойную спираль – и принести Крику и Уотсону, вместе с Морисом Уилкинсом из Королевского колледжа, Нобелевскую премию 1962 г.[49]49
J. D. Watson and F. H. C. Crick, «Molecular Structure of Nucleic Acids: A Structure for Deoxyribose Nucleic Acid», Nature 171 (1953): 737–38. Центральная фигура в этом открытии – химик и кристаллограф Розалинда Франклин, сделанная ею «фотография 51» была передана без ее ведома Уотсону и Крику Уилкинсом. Именно эта фотография позволила Уотсону и Крику завершить модель ДНК в виде двойной спирали. Франклин умерла в 1958 г., за четыре года до присуждения Нобелевской премии за открытие структуры ДНК, – а посмертно Нобелевская премия не может быть присуждена. Будь Франклин жива на тот момент, неясно, как поступил бы Нобелевский комитет. См., к примеру: Brenda Maddox, Rosalind Franklin: The Dark Lady of DNA (New York: Harper Perennial, 2003).
[Закрыть] Замечательно, что Уилкинс тоже признавался, что именно книга Шрёдингера зажгла в нем страстное желание определить молекулярную основу наследственности; по словам Уилкинса, «она привела меня в движение»[50]50
Maurice Wilkins, The Third Man of the Double Helix (Oxford: Oxford University Press, 2003), 84.
[Закрыть].
Шрёдингер написал «Что такое жизнь?» в 1944 г. на основе серии публичных лекций, которые он прочел годом ранее в Дублинском институте перспективных исследований. Анонсируя лекции, Шрёдингер отметил, что тема сложна и что «лекции эти нельзя назвать популярными» – впечатляющая приверженность тщательной проработке темы даже ценой возможного уменьшения аудитории[51]51
Шрёдингер Э. Что такое жизнь? – М.: Атомиздат, 1972.
[Закрыть]. Несмотря на такое предупреждение, три пятницы подряд в феврале 1943 г., когда на континенте бушевала Вторая мировая война, аудитория из более чем 400 человек – включая премьер-министра Ирландии, различных известных людей и богатых светских тусовщиков – набивалась в лекционный зал на верхнем этаже серого каменного здания им. Дж. Фицджеральда в кампусе Тринити-колледжа, чтобы послушать, как родившийся в Вене физик пытается совладать с наукой жизни[52]52
Time magazine, Vol. 41, Issue 14 (5 April 1943): 42.
[Закрыть].
Задачей Шрёдингера, по его собственным словам, было продвинуться в поисках ответа на один-единственный главный вопрос: «Как физика и химия смогут объяснить те явления в пространстве и времени, которые происходят внутри живого организма?»[53]53
Цит. по: Шрёдингер Э. Что такое жизнь? / Пер. А. А. Малиновского, Г. Г. Полошенко. – М.; Ижевск: НИЦ «Регулярная и хаотическая динамика», 2002. С. 11.
[Закрыть] Или, вольно перефразируя: камни и кролики – это не одно и то же. Но чем они различаются? И почему? То и другое – громадный набор протонов, нейтронов и электронов, и все эти частицы (не важно, располагаются они в камне или в кролике) подчиняются одним и тем же законам физики. Что же такого происходит в теле кролика, что делает его набор частиц принципиально отличным от набора частиц, образующих камень?
Именно такой вопрос, по идее, и должен задать физик. Физики чаще всего редукционисты и потому стремятся искать в сложных явлениях объяснения, основанные на свойствах и взаимодействиях их простых составляющих. Если биологи часто определяют жизнь по главным ее действиям (жизнь поглощает сырье для обеспечения самоподдерживающихся функций, удаляет возникающие при этом отходы и в самых успешных случаях воспроизводит себя), то Шрёдингер искал ответ на вопрос «Что такое жизнь?», который пролил бы свет на фундаментальные физические механизмы жизни.
Притягательная сила редукционизма велика. Если бы мы могли понять, что оживляет набор частиц, какое молекулярное волшебство разжигает огонь жизни, мы тем самым сделали бы серьезный шаг к пониманию происхождения жизни и вездесущности – или уникальности – жизни в космосе. Сегодня, более чем полвека спустя, несмотря на колоссальные успехи физики и особенно молекулярной биологии, мы по-прежнему пытаемся найти ответы на вопрос Шрёдингера в разных вариантах. Если в разложении жизни (и материи в более общем случае) на составляющие ученые достигли впечатляющих успехов, то задача понимания того, откуда вдруг появляется жизнь, когда наборы этих составных частей организуются в некоторые конкретные конфигурации, по-прежнему пугающе трудна. Такой синтез – необходимый компонент редукционистской программы. В конце концов, чем с большим увеличением вы рассматриваете нечто живое, тем сложнее понять, что оно живет. Сосредоточьтесь на отдельной молекуле воды, или атоме водорода, или на отдельном электроне, и вы обнаружите, что ни один из этих объектов не несет на себе отметки, по которой можно понять, входит ли он в состав чего-то живого или мертвого, одушевленного или неодушевленного. Жизнь распознается по коллективному поведению, крупномасштабной организации, общей координации громадного числа составляющих объект частиц – даже одна-единственная клетка содержит более триллиона атомов. Пытаться разгадать тайну жизни, сосредоточив внимание на элементарных частицах, – все равно что слушать симфонию Бетховена последовательно, инструмент за инструментом и нота за нотой.
Сам Шрёдингер в своей первой лекции обратил внимание на это. Если тело или мозг могут быть повреждены неудачным движением одного-единственного атома или горстки атомов, то перспективы выживания этого тела или мозга будут весьма туманными. Чтобы избежать такой чувствительности, указал Шрёдингер, тела и мозги состоят из большого количества атомов, которые способны поддерживать собственную, в высшей степени скоординированную деятельность даже при том, что отдельные атомы случайным образом колеблются. Так что целью Шрёдингера было не обнаружить жизнь внутри отдельного атома, но построить на представлении об атомах физическое объяснение того, как большая их коллекция могла бы собраться в нечто живое. По его мнению, это должен быть обширный поиск, который, скорее всего, потребует от науки расширения базового набора концептуальных структур. Кстати, в эпилоге к книге «Что такое жизнь?», где речь шла о сознании, Шрёдингер сильно удивил (и потерял своего первого издателя), сославшись на древнеиндийские Упанишады и высказав предположение о том, что все мы являемся частью некоей «вездесущей, всепостигающей вечной души» и что свобода воли, которой мы все обладаем, отражает наши Божественные способности[54]54
Там же.
[Закрыть].
Хотя мое представление о свободе воли отличается от представления Шрёдингера (как мы увидим в главе 5), я разделяю его склонность объяснять все в широком контексте. Глубокие тайны требуют ясности, которую можно передать через набор вложенных историй. Склонны ли мы к редукционизму или эмерджентизму, к математике или образности, к науке или поэзии, но мы получаем наиболее полное представление о вопросе, когда рассматриваем его с нескольких различных точек зрения.
Вложенные истории
За последние несколько столетий физика собрала и довела до совершенства собственную коллекцию вложенных друг в друга историй, организованных в соответствии с масштабами, на которых каждая из них применима. Это главное в том подходе, который мы, физики, неустанно вдалбливаем своим студентам. Чтобы понять, как бейсбольный мяч, деформированный на мгновение молниеносным свингом Майка Траута, возвращается к первоначальной форме, необходимо проанализировать молекулярную структуру мяча. Именно на этом уровне бесчисленные микрофизические силы выталкивают обратно деформированную часть и посылают мяч в полет. Но молекулярная точка зрения никак не поможет вам разобраться в траектории мяча. Обработать огромный объем данных, необходимый для отслеживания движения триллионов триллионов молекул, когда мяч, вращаясь в полете, со свистом уносится за ограждение в левой части поля, совершенно немыслимо. Когда речь заходит о траектории, нужно убавить увеличение и перейти от молекулярной суеты к рассмотрению движения мяча как целого. Здесь следует рассказать связанную с первой, но отдельную историю более высокого уровня.
Этот пример иллюстрирует простое, но весьма и весьма значимое понимание: вопросы, которые мы задаем, определяют, какие именно истории обеспечат нам самые полезные ответы. Получается нарративная структура, которая опирается на одно из самых неожиданно благоприятных для нас качеств природы. На каждом масштабе Вселенная упорядочена. Ньютон ничего не знал о кварках и электронах, но, если бы вы сообщили ему скорость и направление полета мяча после контакта с битой Майка Траута, он рассчитал бы траекторию мяча, даже не просыпаясь. По мере развития физики после Ньютона мы получили возможность зондировать более тонкие структурные слои, и это очень существенно дополнило наши представления. Но описание ситуации на каждом уровне обладает осмысленностью само по себе. Если бы это было не так – если бы, к примеру, анализ движения бейсбольного мяча требовал разбора квантового поведения всех его частиц, – трудно представить, что мы смогли бы добиться хоть каких-нибудь успехов. Принцип «Разделяй и властвуй» давно стал боевым кличем физики, и эта стратегия привела нас к поразительным результатам.
Не менее важная задача – собрать отдельные истории в цельный нарратив. Для физики частиц и полей такой синтез в самом продвинутом его виде осуществил Кен Уилсон, что принесло ему Нобелевскую премию 1982 г.[55]55
K. G. Wilson, «Critical phenomena in 3.99 dimensions», Physica 73 (1974): 119. Полутехническое описание и ссылки можно посмотреть в нобелевской лекции Кена Уилсона: https://www.nobelprize.org
[Закрыть] Уилсон разработал математический алгоритм анализа физических систем на целом ряде пространственных масштабов – от расстояний намного меньших, скажем, чем те, что исследует Большой адронный коллайдер, до существенно бóльших атомных расстояний, доступных уже на протяжении 100 с лишним лет, – и последующего систематического соединения всех историй с прояснением того, как каждая из них передает «обязанность» ведения нарратива следующей, когда масштаб событий уходит за пределы ее владений. Метод ренормализационной группы лежит в основе современной физики. Он показывает, как язык, концептуальные рамки и уравнения, используемые для анализа физики на одном масштабе, должны изменяться, когда мы переносим внимание на другой масштаб. Воспользовавшись этим методом для проработки ключевого набора различных описаний и обозначив, как каждое из них передает информацию соседним, физики получили детальные предсказания, нашедшие подтверждение в огромном количестве экспериментов и наблюдений.
Хотя методика Уилсона скроена под математические инструменты современного специалиста по физике элементарных частиц высоких энергий (квантовая механика и ее обобщение, квантовая теория поля), самое общее представление о ней находит широкое применение. Существует много способов познания мира. В традиционной структуре естественных наук физика имеет дело с элементарными частицами и различными их объединениями, химия – с атомами и молекулами, а биология – с жизнью. Такая категоризация действует и сегодня, хотя во времена моего студенчества она была намного заметнее; она дает разумное, хотя и грубое, деление наук по масштабу. Однако чем глубже проникают исследователи, тем яснее понимают, как важно разобраться в стыках между дисциплинами. Естественные науки нераздельны. А когда фокус смещается от просто жизни к жизни разумной, на передний план выходят и другие пересекающиеся дисциплины – язык, литература, философия, история, искусство, миф, религия, психология и так далее. Даже непоколебимый редукционист понимает, что, какой бы бессмысленной ни казалась попытка объяснить траекторию бейсбольного мяча в терминах молекулярного движения, еще бессмысленнее было бы привлекать такой микроскопический подход для объяснения того, что чувствует бьющий, когда питчер сделал замах, зрители на трибунах взревели, а мяч стремительно летит. Здесь, напротив, много уместнее будут высокоуровневые истории, рассказанные на языке человеческой рефлексии. Тем не менее – и это ключевой момент – такие уместные истории, рассказываемые на человеческом уровне, должны быть совместимы с редукционистским описанием. Мы – физические существа и подчиняемся физическим законам. Поэтому вряд ли будет какая-то польза от того, что физики объявят свою исследовательскую позицию главной в деле объяснения мира или что гуманитарии станут насмехаться над гордыней буйного редукционизма. Точное представление можно получить путем объединения историй всех научных дисциплин в единый цельный нарратив[56]56
Представление о вложенных историях, иногда описываемых как «уровни понимания» или «уровни объяснения», предлагалось учеными широкого спектра научных дисциплин. Психологи говорят об объяснении поведения на биологическом уровне (с привлечением физико-химических причин), когнитивном (с привлечением высокоуровневых функций мозга) и культурном (с привлечением социальных влияний); некоторые когнитивисты (начиная с нейробиолога Дэвида Марра) организуют анализ систем обработки информации на вычислительном, алгоритмическом и физическом уровнях. Для многих иерархических схем, продвигаемых философами и физиками, характерна приверженность натурализму – термин, который часто используется, но который трудно определить точно. Большинство из тех, кто им пользуется, согласились бы, что натурализм отвергает объяснения с привлечением сверхъестественных сущностей и полагается, напротив, исключительно на свойства природного мира. Конечно, чтобы уточнить эту позицию, нам нужно обозначить четкие пределы того, что составляет природный мир, – а это проще сказать, чем сделать. Столы и деревья определенно располагаются в его пределах, но как насчет числа пять или Великой теоремы Ферма? Как насчет чувства радости или ощущения красного цвета? Как насчет идеалов неотчуждаемой свободы и человеческого достоинства?
С годами подобные вопросы породили множество вариаций на тему натурализма. Одна из крайних позиций гласит, что единственное законное знание о мире исходит из научных концепций и научного же анализа – иногда такую позицию называют сциентизмом. Эта позиция, кстати говоря, требует от своих сторонников точного определения терминов. Что входит в понятие науки? Ясно, что если считать наукой выводы, основанные на наблюдениях, опыте и рациональном мышлении, то границы науки выходят далеко за пределы тех дисциплин, которые обычно представлены на университетских кафедрах. Как вы можете догадаться, в результате от науки требуют решения непосильных задач.
В менее экстремальных подходах приверженность натурализму сочетается с различными организационными принципами. Философ Барри Страуд выступает за то, что он называет «широкий или непредвзятый натурализм», в котором объяснительные границы не установлены жестко с самого начала. Напротив, широкий натурализм сохраняет свободу выстраивать слои понимания, включающие в себя все, от материальных природных ингредиентов до психологических качеств и абстрактных математических утверждений, – все необходимое для объяснения наблюдений, опыта и анализа (Barry Stroud, "The Charm of Naturalism", Proceedings and Addresses of the American Philosophical Association 70, no. 2 [November 1996], 43–45). Философ Джон Дюпре защищает «плюралистический натурализм», который гласит, что мечта о единстве науки – опасный миф; напротив, наши объяснения должны вырастать из «разнообразных и перекрывающихся исследовательских проектов», охватывающих традиционные науки и выходящих за их пределы, вовлекая в себя, среди прочих дисциплин, историю, философию и искусство (John Dupré, «The Miracle of Monism», in Naturalism in Question, ed. Mario de Caro and David Macarthur [Cambridge, MA: Harvard University Press, 2004], 36–58). Стивен Хокинг и Леонард Млодинов ввели понятие «модельно-зависимого реализма», которое описывает реальность как набор отдельных историй, каждая из которых основана на собственной модели или теоретической концепции объяснения наблюдательных данных в микромире частиц или макромире повседневных событий (Хокинг С., Млодинов Л. Высший замысел. – М.: АСТ, 2017). Физик Шон Кэрролл ввел «поэтический натурализм» для разговора об объяснениях, расширяющих научный натурализм включением в него языка и концепций, относящихся к различным сферам интересов (Кэрролл Ш. Вселенная. Происхождение жизни, смысл нашего существования и огромный космос. – СПб.: Питер, 2017). И, как указано в главе 1, примечание 4, Э. О. Уилсон использует термин «схождение», когда речь идет об использовании знаний из совершенно несопоставимых дисциплин для получения глубины понимания, недостижимой в других обстоятельствах.
Я не особый сторонник придумывания новых слов, но если бы мне нужно было как-то обозначить собственную точку зрения – ту самую, что будет направлять наш рассказ на протяжении всей книги, то я назвал бы ее иерархическим натурализмом (nested naturalism). Иерархический натурализм, как станет ясно из этой и последующих глав, привержен ценности и универсальной применимости редукционизма. Он принимает как данность существование фундаментального единства в механизмах мира и постулирует, что такое единство будет обнаружено путем выполнения редукционистской программы до той глубины, до какой потребуется. Все в этом мире может быть описано в терминах фундаментальных составляющих природы, подчиняющихся ее фундаментальным законам. Тем не менее иерархический натурализм подчеркивает, что такое описание обладает ограниченной объяснительной силой. Есть много других уровней понимания, которые охватывают редукционистское объяснение. И в зависимости от исследуемых вопросов эти другие объяснительные истории могут давать гораздо более информативные описания, чем то, что дает редукционизм. Все описания должны быть взаимно непротиворечивы, но на более высоких уровнях могут появляться новые полезные концепции, не имеющие низкоуровневых коррелятов. К примеру, при изучении множества молекул воды концепция водяной волны и разумна, и полезна. Но при изучении отдельной молекулы воды она не имеет смысла. Аналогично при изучении насыщенных и разнообразных историй человеческого опыта иерархический натурализм свободно привлекает оценки с любых структурных уровней, которые оказываются наиболее информативными, одновременно гарантируя, что эти оценки укладываются в связное описание.
[Закрыть].
В этой главе мы остаемся на позициях редукционизма, учитывая, что в последующих главах будем исследовать жизнь и разум, дополнив его позицией человеческого восприятия. Здесь мы поговорим о происхождении атомных и молекулярных ингредиентов, необходимых для жизни, об одной конкретной среде «Земля – Солнце», в которой эти ингредиенты смешались как раз так, как нужно для возникновения и расцвета жизни; также, рассмотрев некоторые поразительные микрофизические структуры и процессы, общие для всего живого[57]57
Всюду в книге, где речь заходит о «жизни», неявно подразумевается «жизнь, какой мы ее знаем на планете Земля», так что я не буду каждый раз об этом напоминать.
[Закрыть], поговорим о глубоком единстве жизни на Земле. Хотя мы не сможем ответить на вопрос о происхождении жизни (это по-прежнему загадка), мы увидим, что вся жизнь на Земле берет начало от общего одноклеточного предкового вида, что четко определяет вопрос, на который наука о происхождении жизни должна будет в конечном итоге ответить. В результате мы придем к рассмотрению жизни в имеющей широчайшее применение термодинамической перспективе, проработанной в предыдущих главах; нам станет ясно, что все живое находится в глубоком родстве не только между собой, но также со звездами и паровыми машинами: жизнь – это еще одно средство, при помощи которого Вселенная высвобождает энтропийный потенциал, запертый в веществе.
Моя цель – не продемонстрировать энциклопедические знания, но привести достаточно подробностей, чтобы вы могли ощутить ритмы природы, резонансные закономерности, разворачивающиеся во Вселенной с момента Большого взрыва до возникновения и развития жизни на Земле.
Происхождение элементов
Измельчите любой объект, бывший прежде живым, распотрошите его сложную молекулярную «машинерию» – и вы обнаружите в избытке шесть типов атомов, всегда одних и тех же: углерод, водород, кислород, азот, фосфор и серу. Откуда берутся эти необходимые для жизни атомные ингредиенты? Ответ на этот вопрос представляет одну из величайших историй успеха современной космологии.
Рецепт построения любого атома, каким бы сложным он ни был, достаточно прост. Соедините нужное число протонов с нужным числом нейтронов, сожмите их в плотный шар (ядро), окружите электронами в количестве, соответствующем числу протонов, и запустите электроны по конкретным орбитам, предписанным квантовой физикой. Вот и все. Проблема в том, что составные части атома, в отличие от деталей конструктора Лего, невозможно просто щелчком поставить на место. Они сильно притягивают и отталкивают друг друга, делая сборку ядра сложной задачей. Протоны, в частности, обладают одинаковым положительным электрическим зарядом, поэтому требуются огромные давление и температура, чтобы сжать их вопреки взаимному электромагнитному отталкиванию и сблизить в достаточной мере, чтобы главенствующую роль взяло на себя сильное ядерное взаимодействие, которое сможет соединить их в мощных субатомных объятиях.
Невообразимые условия, царившие сразу после Большого взрыва, превосходили по своей экстремальности все, что случилось позже, и поэтому тогдашняя среда представляется вполне подходящей для преодоления электромагнитного отталкивания и сборки атомных ядер. Вы могли бы предположить, что в невероятно плотном и энергичном бульоне из сталкивающихся протонов и нейтронов всевозможные агломерации и должны были формироваться естественным образом, выстраивая таблицу Менделеева один атомный номер за другим. Именно такую гипотезу предложили в конце 1940-х гг. Георгий Гамов (бывший советский физик, который в ходе первой попытки побега из СССР в 1932 г. собирался пересечь Черное море на каяке, набитом преимущественно кофе и шоколадом) и его аспирант Ральф Альфер.
Отчасти они были правы. Одна проблема, которую видели Гамов и Альфер, состояла в том, что температура Вселенной в первые мгновения ее существования была слишком высока. Пространство кишело необычайно энергичными фотонами, которые разнесли бы любые возникающие объединения протонов и нейтронов. Но – и это они тоже понимали – всего примерно минуты на полторы позже (а полторы минуты – это большое время, когда речь идет об ураганной скорости, с которой развивалась новорожденная Вселенная) ситуация изменилась. К тому моменту температура значительно упала, так что энергия типичного фотона уже не превосходила по величине сильное ядерное взаимодействие, что позволило наконец образовавшимся союзам протонов и нейтронов уцелеть.
Вторая проблема, проявившаяся позже, состояла в том, что построение сложных атомов – процесс тонкий и требует времени. Для него необходима очень конкретная серия последовательных шагов, при которых предписанные количества протонов и нейтронов сплавляются вместе в различных сочетаниях, затем эти сгустки должны случайно встретиться с вполне конкретными дополняющими их сгустками, слиться с ними и так далее. Как в сложном гурманском рецепте, важен в том числе и порядок, в котором ингредиенты соединяются между собой. Еще более хитроумным этот процесс становится из-за того, что некоторые промежуточные комбинации нестабильны, то есть после образования склонны быстро распадаться, расстраивая все кулинарные приготовления и замедляя атомный синтез. Эта задержка очень важна, так как неуклонное падение температуры и плотности по мере стремительного расширения ранней Вселенной означает, что окно возможностей для синтеза быстро закрывается. Примерно через десять минут после творения температура и плотность падают ниже порога, необходимого для ядерных процессов[58]58
Один из значительных барьеров при формировании атомов с большими атомными весами состоит в том, что не существует стабильных ядер, которые содержали бы пять или восемь нуклонов. По мере того как ядра тяжелеют, последовательно добавляя к себе протоны и нейтроны (ядра водорода и гелия), нестабильность на пятой и восьмой ступенях создает узкое место, сдерживающее нуклеосинтез Большого взрыва.
[Закрыть].
Когда эти соображения переводят в количественный вид, начало чему положил еще Альфер в своей диссертации, а продолжили многие другие исследователи, то выясняется, что непосредственным следствием Большого взрыва мог стать синтез лишь нескольких видов атомов. Математика позволяет нам подсчитать их относительную распространенность после этого: около 75 % водорода (один протон), 25 % гелия (два протона, два нейтрона) и следовые количества дейтерия (тяжелая форма водорода с одним протоном и одним нейтроном), гелия-3 (легкая форма гелия с двумя протонами и одним нейтроном) и лития (три протона, четыре нейтрона)[59]59
Цифры, которые я привел, дают относительную распространенность по массе. Поскольку масса каждого ядра гелия примерно вчетверо больше массы каждого ядра водорода, подсчет числа атомов водорода в сравнении с числом атомов гелия дает другие значения, приблизительно 92 % водорода и 8 % гелия.
[Закрыть]. Тщательные астрономические наблюдения дают в точности такую же оценку распространенности атомов, что можно считать триумфом математики и физики в подробном прояснении процессов, происходивших в первые минуты после Большого взрыва.
А что же с более сложными атомами вроде тех, что необходимы для жизни? Предположения об их происхождении начал высказывать еще в 1920-е гг. британский астроном сэр Артур Эддингтон (он прославился тем, что на вопрос, каково быть одним из всего трех человек, понимающих общую теорию относительности Эйнштейна, ответил: «Я пытаюсь понять, кто же здесь третий») наткнулся на верную идею: раскаленное нутро звезд могло, в принципе, стать космической «медленноваркой» для неспешного приготовления атомов более сложных видов. Это предположение прошло через руки многих блестящих физиков, включая нобелевского лауреата Ханса Бете (мой первый кабинет на кафедре располагался по соседству с его кабинетом, и я мог проверять часы по его совершенно неизменному роскошному чиху в четыре часа пополудни) и косвенным образом Фреда Хойла (в 1949 г. в радиопрограмме Би-би-си он пренебрежительно упомянул об образовании Вселенной за «один большой взрыв», пустив, сам того не желая, в обращение один из самых емких научных терминов[60]60
В полном виде эту историю см. в: Helge Kragh, «Naming the Big Bang,» Historical Studies in the Natural Sciences 44, no. 1 (February 2014): 3. Крэг предполагает, что, хотя Хойл отдавал предпочтение собственной космологической теории (модели стационарного состояния, в которой Вселенная существовала всегда), термин «Большой взрыв» в его устах, возможно, не подразумевал насмешки. Может быть, Хойл использовал словосочетание «большой взрыв» всего лишь как удобный способ отличить собственную теорию от данного конкретного конкурента.
[Закрыть]), в результате чего предположение превратилось в зрелый и предсказательный физический механизм.
В сравнении с безумной скоростью изменений сразу после Большого взрыва звезды обеспечивают стабильную среду, способную оставаться неизменной миллионы, если не миллиарды лет. Нестабильность некоторых конкретных промежуточных комочков замедляет конвейер синтеза и в звездах тоже, но, когда вы никуда не спешите и времени достаточно, работа все же может быть сделана. Так что, в отличие от ситуации с Большим взрывом, процесс ядерного синтеза в звездах далеко не заканчивается на слиянии водорода с образованием гелия. Звезды, которые достаточно массивны, продолжают сжимать ядра, вынуждая их сливаться с образованием более сложных атомов Периодической системы и выделением в ходе этого процесса значительных количеств теплоты и света. К примеру, звезда, в 20 раз превосходящая Солнце по массе, первые 8 млн лет своего существования будет заниматься синтезом гелия из водорода, а следующий миллион лет посвятит синтезу углерода и кислорода из гелия. После этого – а температура в ядре звезды поднимается еще выше – конвейер непрерывно ускоряется: звезде требуется около тысячи лет, чтобы сжечь свой запас углерода, синтезируя из него натрий и неон; следующие полгода дальнейший синтез производит магний; еще месяц идет синтез серы и кремния; а затем всего за десять дней реакции синтеза сжигают оставшиеся атомы, давая на выходе железо[61]61
S. E. Woosley, A. Heger, and T. A. Weaver, «The evolution and explosion of massive stars», Reviews of Modern Physics 74 (2002): 1015.
[Закрыть].
Мы сделали остановку на железе не просто так. Из всех видов атомов именно в железе протоны и нейтроны связаны между собой наиболее прочно. Это важно. Если вы попытаетесь строить еще более тяжелые атомы, заталкивая в ядра железа дополнительные протоны и нейтроны, то обнаружите, что ядра железа не проявляют готовности к объединению. В крепких ядерных объятиях ядрá железа удерживается 26 протонов и 30 нейтронов, уже сжатых до предела и высвободивших по пути столько энергии, сколько было физически возможно. Чтобы добавить к ним еще несколько протонов и нейтронов, потребуется приток – а вовсе не отвод – энергии. В результате, когда мы добираемся до железа, звездный синтез и упорядоченное производство все более тяжелых и сложных атомов с попутным выделением теплоты и света останавливается. Как пепел, оставшийся в топке вашего камина, железо уже не может гореть.
А как же тогда все остальные виды атомов с еще более крупными и тяжелыми ядрами, включая и такие полезные в хозяйстве элементы, как медь, ртуть и никель, и такие нежно любимые серебро, золото и платину, и такие экзотически тяжеловесные, как радий, уран и плутоний?
Ученые обнаружили два источника этих элементов. Когда ядро звезды в основном уже превратилось в железо, реакции синтеза перестают излучать направленную вовне энергию – и обеспечивать давление, необходимое для противодействия силе тяжести. Начинается коллапс звезды. Если звезда достаточно массивна, коллапс ускоряется и превращается в имплозию – направленный внутрь взрыв, настолько мощный, что температура ядра стремительно подскакивает; схлопывающееся вещество отскакивает от ядра и порождает мощнейшую ударную волну, которая уносится наружу. А пока эта ударная волна несется от ядра звезды к ее поверхности, она так яростно сжимает ядра, встретившиеся на ее пути, что формируется целая уйма более крупных ядерных образований. В неистовом круговороте хаотического движения частиц могут синтезироваться все тяжелые элементы таблицы Менделеева, а когда ударная волна достигает наконец поверхности звезды, то эта густая атомная мешанина выплескивается в пространство.
Вторым источником тяжелых элементов являются яростные столкновения нейтронных звезд – небесных тел, которые образуются в предсмертных конвульсиях звезд, масса которых приблизительно в 10–30 раз больше массы Солнца. То, что нейтронные звезды состоят в основном из нейтронов – частиц-хамелеонов, способных превращаться в протоны, – благоприятствует строительству атомных ядер, поскольку нужный строительный материал всегда оказывается под рукой в изобилии. Однако существует и препятствие: чтобы образовать атомные ядра, эти нейтроны должны освободиться от мощной гравитационной хватки звезды. Именно здесь пригождается столкновение нейтронных звезд. При ударе в пространство могут быть выброшены целые фонтаны нейтронов, которые, не имея электрического заряда, не испытывают электромагнитного отталкивания и потому легче объединяются в группы. А после того как некоторые из этих нейтронов, изменив, как хамелеоны, зарядный окрас, станут протонами (высвободив при этом электроны и антинейтрино), мы получаем запас сложных атомных ядер. В 2017 г. столкновения нейтронных звезд перестали быть игрушкой теоретиков и перешли в разряд наблюдаемых фактов: исследователи зарегистрировали гравитационные волны, генерируемые таким столкновением (их обнаружили вскоре после самой первой регистрации гравитационных волн, порожденных столкновением двух черных дыр). Шквал аналитических работ установил, что столкновения нейтронных звезд производят тяжелые элементы более эффективно и обильно, чем взрывы сверхновых, так что вполне возможно, что бóльшая часть тяжелых элементов во Вселенной появилась на свет в результате именно этих астрофизических катастроф.
Правообладателям!
Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.Читателям!
Оплатили, но не знаете что делать дальше?