Электронная библиотека » Брайан Грин » » онлайн чтение - страница 8


  • Текст добавлен: 21 декабря 2020, 05:11


Автор книги: Брайан Грин


Жанр: Прочая образовательная литература, Наука и Образование


Возрастные ограничения: +12

сообщить о неприемлемом содержимом

Текущая страница: 8 (всего у книги 35 страниц) [доступный отрывок для чтения: 10 страниц]

Шрифт:
- 100% +

Ассорти из атомов различных видов, синтезированных в звездах и извергнутых при взрывах сверхновых или выброшенных при столкновениях звезд и соединившихся уже в фонтанах частиц, плавает по пространству, где скручивается вместе и объединяется в большие облака газа, которые еще через какое-то время заново слепляются в звезды и планеты, а в конечном итоге – и в нас с вами. Так образуются ингредиенты, из которых состоит все без исключения, с чем вы когда-либо сталкивались.

Происхождение Солнечной системы

Солнце, возраст которого чуть больше 4,5 млрд лет, может считаться новичком в космосе. В первом поколении звезд нашей Вселенной его не было. В главе 3 мы видели, что звезды-пионеры родились из квантовых вариаций плотности вещества и энергии, которые инфляционное расширение растянуло по пространству. Компьютерное моделирование этих процессов показывает, что первые звезды зажглись примерно через 100 млн лет после Большого взрыва и их выход на космическую сцену был далек от изящества. Первые звезды, скорее всего, были огромными, в сотни или даже тысячи масс Солнца, и горели с такой интенсивностью, что быстро вымерли. Жизнь самых тяжелых из них закончилась в гравитационном коллапсе настолько мощном, что они коллапсировали сразу в черные дыры – исключительное состояние материи, которое станет главной темой нашего разговора позже. Менее массивные ранние звезды закончили жизнь в неистовых взрывах сверхновых, которые не только засеяли пространство сложными атомами, но и запустили следующий раунд звездообразования. Примерно как ударная волна сверхновой, прорываясь сквозь звезду, принуждает к слиянию составляющие ее атомы, так ударная волна в пространстве сжимает встречные на пути молекулярные облака. А поскольку сжатые области становятся плотнее, они начинают сильнее притягивать окружающее вещество, втягивая в себя еще больше частиц и запуская новый раунд образования гравитационных «снежков» на пути к следующему поколению звезд.

На основе состава Солнца – количества содержащихся в нем тяжелых элементов, определенного при помощи спектроскопических измерений, – специалисты по физике Солнца считают наше светило внуком первых звезд Вселенной, звездой третьего поколения. А вот в вопросе о том, где первоначально оно сформировалось, остается много неясностей. Один из кандидатов, которые изучаются в настоящее время, – область, известная как М 67, расположенная примерно в 3000 световых лет от нас и содержащая скопление звезд, схожих, судя по всему, с Солнцем по химическому составу, что может свидетельствовать о близком семейном родстве. Проблема, решения которой до сих пор нет, – объяснить, как Солнце и планеты Солнечной системы (или протопланетный диск, из которого эти планеты должны были впоследствии сформироваться) могли извергнуться из этих отдаленных «звездных яслей» и мигрировать в наши края. При этом некоторые исследования потенциальных траекторий указывают, что шансов на то, что именно M 67 окажется местом рождения Солнца, практически нет, тогда как другие, с привлечением различных предположений, выдают более обнадеживающие результаты[62]62
  В одном исследовании проанализированы сотни тысяч возможных траекторий и сделан вывод, что почти все они потребовали бы, чтобы Солнце вылетело из скопления с такой высокой скоростью, что оно либо потеряло бы свой протопланетный диск или, если бы планеты к тому моменту успели уже сформироваться, они разлетелись бы (Bárbara Pichardo, Edmundo Moreno, Christine Allen, et al., «The Sun was not born in M67», The Astronomical Journal 143, no. 3 [2012]: 73). В другом исследовании, где выдвигается иное предположение о месте, где сформировалось само скопление M 67, делается вывод о том, что для отправки Солнца в путь достаточно было бы и меньшей скорости вылета, и на этой скорости планеты или протопланетный диск сохранились бы (Timmi G. Jørgensen and Ross P. Church, «Stellar escapers from M 67 can reach solar-like Galactic orbits,» arxiv.org, arXiv:1905.09586).


[Закрыть]
.

С несколько большей уверенностью мы можем сказать, что примерно 4,7 млрд лет назад ударная волна какой-то сверхновой, вероятно, пропахала облако, содержавшее водород, гелий и небольшие количества более сложных атомов; она сжала часть облака, которая став более плотной, чем ее окружение, начала сильнее притягивать все вокруг и втягивать в себя вещество. Следующие несколько сотен тысяч лет эта область газового облака продолжала сжиматься, вращаясь поначалу медленно, а затем быстрее, подобно грациозной фигуристке, прижимающей к себе руки при вращении. И как вращающаяся фигуристка испытывает на себе действие центробежной силы (которая растягивает в стороны детали ее костюма), так и вращающееся облако, которое расправило и сплюснуло свои внешние области и превратилось во вращающийся диск, окружающий небольшую сферическую область в его центре. Затем, в течение следующих 50–100 млн лет, газовое облако демонстрировало медленное и плавное исполнение гравитационного энтропийного тустепа, о котором говорилось в главе 3: гравитация сжимала сферическое ядро, которое становилось все горячее и плотнее, тогда как окружающее вещество остывало и становилось менее плотным. Энтропия ядра снижалась; энтропия внешней части отвечала на это снижение более чем компенсирующим повышением. В конечном итоге температура и плотность ядра преодолели порог, необходимый для запуска ядерного синтеза.

Так родилось Солнце.

В следующие несколько миллионов лет обломки, оставшиеся от формирования Солнца и суммарно составлявшие всего лишь несколько десятых долей процента от первоначального вращающегося диска, образовали множество гравитационных «снежных комьев» и соединились затем в планеты Солнечной системы. Более легкие и летучие вещества (такие как водород и гелий, а также метан, аммиак и вода, которые были бы разрушены интенсивным излучением Солнца) аккумулировались преимущественно в более прохладных внешних областях Солнечной системы, где образовали газовые гиганты – Юпитер, Сатурн, Уран и Нептун. Более тяжелые и устойчивые компоненты (такие как железо, никель и алюминий, способные лучше противостоять более горячей среде ближе к Солнцу) соединились в менее крупные силикатные, то есть каменные, внутренние планеты – Меркурий, Венеру, Землю и Марс. Будучи куда меньше и легче Солнца, планеты способны удерживать собственный скромный вес за счет изначально свойственного их атомам сопротивления сжатию. Температура ядра и давление внутри планет поднялись, но нигде даже близко не подошли к уровню, необходимому для запуска ядерного синтеза, в результате чего на планетах возникла относительно умеренная среда, за которую жизнь – наверняка наша форма жизни и, возможно, вся жизнь во Вселенной – должна быть Вселенной очень и очень благодарна.

Юная Земля

Первые полмиллиарда лет существования Земли называют гадейским эоном[63]63
  В русскоязычной литературе чаще встречается название катархей (катархейский эон), от греч. κατἀρχαῖος – «ниже древнейшего», то есть древнее архея. – Прим. науч. ред.


[Закрыть]
в честь греческого бога подземного царства, ассоциируя Аида (Гадеса) с адской эпохой беснующихся вулканов, потоков расплавленных горных пород и густых токсичных паров серы и цианида. Но теперь некоторые ученые подозревают, что в качестве законодателя мод для юной Земли Посейдон, вполне возможно, подошел бы лучше. Аргументом в пользу этого радикального и пока довольно спорного пересмотра служат всего лишь крохотные пылинки. Хотя образцов горных пород с тех давних времен у нас нет, исследователи сумели распознать древние прозрачные пылинки – цирконовые кристаллы, которые сформировались, когда расплавленная лава юной Земли остыла и затвердела. Цирконовые кристаллы, как выясняется, играют решающую роль в понимании раннего развития Земли, потому что они не только практически неуничтожимы и способны выдержать миллиарды лет геологических пертурбаций, но и работают как миниатюрные капсулы времени. При формировании цирконовые кристаллы захватывают из окружающей среды образцы молекул, которые мы можем датировать стандартным методом по радиоактивным изотопам. Тщательный анализ посторонних примесей в цирконовых кристаллах позволяет представить условия на архаичной Земле.

В Западной Австралии обнаружены цирконовые кристаллы, возраст которых составляет 4,4 млрд лет, всего на пару сотен миллионов лет меньше возраста самой Земли и Солнечной системы. Проанализировав подробно их состав, исследователи высказали предположение, что условия в этой немыслимой древности, возможно, были намного более умеренными, чем считалось ранее. Вполне возможно, что ранняя Земля представляла собой относительно спокойный водный мир, где небольшие участки суши усеивали в основном покрытую океаном поверхность[64]64
  A. J. Cavosie, J. W. Valley, S. A. Wilde, «The Oldest Terrestrial Mineral Record: Thirty Years of Research on Hadean Zircon from Jack Hills, Western Australia», in Earth's Oldest Rocks, ed. M. J. Van Kranendonk (New York: Elsevier, 2018), 255–78. Последние данные не противоречат оригинальному исследованию, описанному в: John W. Valley, William H. Peck, Elizabeth M. King, and Simon A. Wilde, «A Cool Early Earth,» Geology 30 (2002): 351–54, а также в личном сообщении Джона Валли от 30 июля 2019 г.


[Закрыть]
.

Все это ни в коем случае не означает, что история Земли была совершенно лишена драматических и яростных моментов. Примерно через 50–100 млн лет после рождения Земля, скорее всего, столкнулась с планетой размером с Марс, которую мы называем Тейя; подобное столкновение должно было испарить земную кору, уничтожить Тейю и выбросить облако пыли и газа на тысячи километров в космос. Со временем этому облаку предстояло сжаться под действием гравитации и образовать Луну – один из крупнейших спутников планет в Солнечной системе и еженощное напоминание об этой неистовой встрече. Еще одно напоминание о ней – времена года. У нас жаркое лето и холодная зима потому, что из-за наклона оси вращения угол падения солнечного света на Землю меняется; лето – это период более прямого падения лучей, а зима – косого падения. А вероятная причина наклона Земли – столкновение с Тейей. Кроме того, хотя, конечно, эти события не были столь впечатляющими, и Земля, и Луна переживали периоды серьезной бомбардировки не такими большими метеоритами. На Луне нет ветров, вызывающих эрозию, поэтому ее неподвижная кора сохранила эти шрамы, но на самом деле бомбардировка Земли, не так заметная сегодня, была не менее суровой. Возможно, некоторые ранние столкновения частично или даже полностью испаряли всю воду на поверхности Земли. Несмотря на это, «цирконовый архив» свидетельствует о том, что за несколько сотен миллионов лет после образования Земля, скорее всего, остыла в достаточной степени, чтобы атмосферный пар выпал на поверхность дождями, наполнил океаны и образовал ландшафт, который не так уж сильно отличается от той Земли, что мы знаем сегодня. Таков по крайней мере один из выводов, основанных на изучении этих кристаллов.

Время, которое потребовалось, чтобы Земля остыла и покрылась большим количеством воды (сотни миллионов лет или намного больше), служит предметом нескончаемых споров, поскольку это имеет непосредственное отношение к вопросу о том, в какой момент геологической истории Земли на ней впервые появилась жизнь. Утверждение, что где жидкая вода – там жизнь, было бы слишком сильным, но мы можем сказать с достаточной долей уверенности, что там, где нет жидкой воды, нет и жизни – по крайней мере, такой жизни, с которой мы знакомы.

Давайте разберемся почему.

Жизнь, квантовая физика и вода

Вода входит в число самых знакомых нам и при этом наиболее значимых веществ в природе. Ее молекулярная формула H2O стала для химии тем, чем эйнштейновская формула E = mc2 является для физики, – самой знаменитой формулой в соответствующей области науки. Отталкиваясь от этой формулы, мы получили представление об отличительных свойствах воды и выработали кое-какие ключевые идеи по выполнению программы Шрёдингера по изучению жизни на уровне физики и химии.

К середине 1920-х гг. многие ведущие физики мира почувствовали, что общепринятый порядок оказался на грани радикальных перемен. Ньютоновы идеи, предсказательные возможности которых в отношении движения планет по орбитам и летающих камней столетиями задавали золотой стандарт точности в физике, отказывались служить, когда речь заходила о крохотных частицах, таких как электроны. По мере того как из микромира поступали новые странные факты, спокойные воды Ньютоновых представлений становились все менее надежными. Уже вскоре физикам пришлось изо всех сил бороться, чтобы только оставаться на плаву. Жалоба Вернера Гейзенберга, которую он пробормотал про себя, когда бесцельно гулял по пустому парку в Копенгагене после тяжелой ночи интенсивных расчетов в компании Нильса Бора, хорошо описывает ситуацию: «…действительно ли природа может быть такой абсурдной, какой она предстает перед нами в этих атомных экспериментах?»[65]65
  Гейзенберг В. Физика и философия. – М.: Наука, 1989.


[Закрыть]
Ответ – решительное «да» – пришел в 1926 г. от скромного немецкого физика Макса Борна, который, чтобы преодолеть концептуальный затор, ввел принципиально новую квантовую парадигму. Он заявил, что электрон (или любую другую частицу) можно описать только в терминах вероятности того, что она будет обнаружена в какой-то заданной точке. В одно мгновение знакомый Ньютонов мир, в котором объекты всегда занимают определенное положение, уступил квантовой реальности, в которой частица может быть здесь, или там, или еще где-то. И вместо того чтобы все испортить, неопределенность, свойственная вероятностной схеме, вскрыла одно неотъемлемое свойство квантовой реальности, которое долгое время не замечала глубокая, но очевидным образом грубоватая теория Ньютона. Ньютон основывал свои уравнения на мире, который видел вокруг. Мы же через пару сотен лет узнали, что за пределами нашего хрупкого человеческого восприятия существует иная, неожиданная реальность.

Предположение Борна пришло вместе с математической точностью[66]66
  Борн М. Квантовая механика процессов столкновений. – Успехи физических наук. 1977. Вып. 122. С. 632–651. В первоначальном варианте статьи Борн связал квантовые волновые функции непосредственно с вероятностями, но в добавленном позже примечании он ввел поправку, так что соотношение стало включать квадрат нормы волновой функции.


[Закрыть]
. Он объяснил, что уравнение, которое за несколько месяцев до этого опубликовал Шрёдингер, можно использовать для предсказания квантовых вероятностей. Это стало новостью и для самого Шрёдингера, и для всех остальных. Но когда ученые последовали указаниям Борна, то обнаружилось, что математика работает. И очень эффективно работает. Данные, которые прежде приходилось объяснять при помощи ситуативных эмпирических правил или которые вообще не поддавались объяснению, наконец можно было осмыслить с помощью математического аппарата.

В применении к атомам квантовая модель отправила за борт старую «планетарную модель», в которой электроны двигались вокруг ядра по орбитам примерно так же, как планеты вокруг Солнца. Вместо этого квантовая механика представляет электрон как размытое облако вокруг ядра, плотность которого в любой заданной точке указывает на вероятность того, что электрон будет обнаружен именно в этой точке. Электрон вряд ли обнаружится там, где облако вероятностей разрежено, зато в наиболее плотных его областях электрон вполне может оказаться.

Уравнение Шрёдингера придает этому описанию конкретное математическое выражение, определяя форму и плотность вероятностного облака электрона, а также предписывая – и для нашего текущего разговора это ключевой момент – в точности, сколько электронов атома может вместить каждое такое облако[67]67
  Принцип запрета Вольфганга Паули, о котором мы будем говорить в главе 9, также важен для определения разрешенных квантовых орбиталей электронов вокруг ядра. Принцип запрета устанавливает, что никакие два электрона (в более общем варианте – никакие две частицы вещества одного вида) не могут пребывать в одном и том же квантовом состоянии. Вследствие этого отдельные квантовые орбитали, определяемые уравнением Шрёдингера, могут вместить в себя максимум один электрон каждая (или, учитывая степень свободы, связанную со спином, два электрона). Многие из этих орбиталей имеют одинаковую энергию, которая в нашей аналогии соответствует местам, расположенным на одном уровне квантового амфитеатра. Но когда каждое из этих мест оказывается занятым – когда каждая квантовая орбиталь заполнена, этот уровень уже не может принять дополнительных электронов.


[Закрыть]
. Детальное объяснение было бы слишком сложным, но, если вы хотите понять основное, представьте себе атомное ядро в виде центральной арены, а электроны – в виде зрителей, которые наблюдают за происходящим с мест, устроенных в виде круглого многоярусного амфитеатра. В этом «квантовом амфитеатре» рассадкой электронной аудитории по местам управляет математика Шрёдингера в применении к атому.

Опыт подъема по лестнице в верхние ряды настоящего амфитеатра подсказывает нам, что чем выше ярус, тем больше энергии требуется электрону, чтобы до него добраться. Так что когда атом находится в покое (настолько, насколько это в принципе возможно), то есть в минимальной энергетической конфигурации, его электроны представляют собой в высшей степени упорядоченную аудиторию и занимают более высокий ярус только в том случае, когда все более низкие ярусы полностью заняты. Когда атом обладает минимальной энергией, его электроны не поднимаются выше, чем абсолютно необходимо. Сколько электронов может содержать в себе заданный ярус? Математика Шрёдингера дает ответ на этот вопрос – универсальные нормы «противопожарной безопасности», применимые ко всем «квантовым театрам»: на первый ярус допускается максимум два электрона, на второй – восемь, на третий – восемнадцать и так далее, согласно уравнению. Если же в атом закачивается энергия – скажем, под воздействием мощного лазера, – то некоторые из его электронов могут возбудиться в достаточной степени, чтобы перескочить на более высокий ярус, но такой энтузиазм будет недолгим. Возбужденные электроны быстро вернутся на первоначальный уровень, высвободив лишнюю энергию (которую уносят прочь фотоны) и вернув атом в конфигурацию максимального покоя[68]68
  Вспомнив школьную химию, вы поймете, что я несколько упростил ситуацию. В более подробном описании я отметил бы, что (благодаря квантовой механике) атомы организуют ярусы своего амфитеатра в различные подъярусы с разными значениями момента импульса. Иногда более высокий ярус с меньшим моментом импульса обладает меньшей энергией, чем более низкий ярус с большим моментом импульса. В этом случае электроны займут сначала такой подъярус более высокого яруса и лишь затем завершат заполнение более низкого яруса.


[Закрыть]
.

Математика раскрывает одну дополнительную странность, своего рода обсессивно-компульсивный синдром атомов, который является главной движущей силой химических реакций во всем космосе. Атомы питают отвращение к частично заполненным уровням. Пустые уровни? Отлично. Заполненные уровни? Тоже хорошо. Но частичная заполненность? Такое состояние заставляет атомы лезть на стенку. Некоторым атомам везет – им досталось ровно столько электронов, чтобы можно было самостоятельно и полностью заполнить несколько уровней. Гелий содержит два электрона, которые компенсируют электрический заряд двух его протонов, и они радостно заполняют первый ярус. У неона десять электронов, которые компенсируют электрический заряд его десяти протонов, и они столь же радостно заполняют первый уровень, вмещающий два электрона, и второй, вмещающий оставшиеся восемь. Но для большинства атомов число электронов, необходимых, чтобы уравновесить число протонов в ядре, не позволяет заполнить какой-то набор уровней целиком[69]69
  Точнее говоря, стабильность достигается, когда заполнена внешняя подоболочка атома (его валентная оболочка). Вы, возможно, помните из школьной программы «правило октетов», согласно которому атомам обычно нужны в валентной оболочке восемь электронов, в результате чего они, чтобы получить именно это число, готовы отдавать, получать или делить электроны с другими атомами.


[Закрыть]
.

Что же они делают?

Они обмениваются электронами с атомами других видов. Допустим, вы атом и вам на внешнем уровне не хватает двух электронов, а я – другой атом и у меня на внешнем уровне всего два электрона; если я подарю вам два электрона, то мы поможем друг другу удовлетворить страсть к заполненным уровням: в результате этого подарка у каждого из нас будут целиком заполненные ярусы. Обратите также внимание, что вы, приняв мои электроны, получите суммарный отрицательный заряд, а я, отдав электроны, получу суммарный положительный заряд и, поскольку противоположные заряды притягиваются, мы с вами обнимемся и вместе образуем электрически нейтральную молекулу. Или если нам с вами, к примеру, обоим недостает одного электрона до заполнения верхнего уровня, то мы можем заключить сделку другого рода: каждый из нас пожертвует один электрон в общую копилку – этой парой мы будем пользоваться совместно. Тем самым мы удовлетворим страсть друг друга к заполненным уровням и – посредством связи наших общих электронов – опять же объединимся в электрически нейтральную молекулу. Эти процессы, позволяющие заполнить электронные уровни посредством соединения атомов, мы называем химическими реакциями. По этому шаблону строятся подобные реакции у нас на Земле, внутри живых систем и повсюду во Вселенной.

Вода служит важной иллюстрацией этой идеи. Кислород содержит восемь электронов – два на первом ярусе и шесть на втором. Таким образом, кислород жаждет получить еще два электрона и стремится заполнить свой второй уровень до максимальной населенности в восемь электронов. Одним из легкодоступных источников электронов является водород. В каждом атоме водорода имеется один-единственный электрон, который скучает в одиночестве на первом ярусе. Если атом водорода получает возможность дополнить свой первый уровень вторым электроном, он с радостью это делает. Так что водород и кислород соглашаются завести общую пару электронов, что полностью удовлетворяет потребности водорода и делает кислород на один электрон ближе к орбитальному счастью. Добавьте к этому второй атом водорода, который тоже заводит общую с кислородом пару электронов, и все будут счастливы. Общее владение этими электронами привязывает каждый атом кислорода к двум атомам водорода, в результате чего и получается H2O – молекула воды.

Геометрия этого союза имеет далеко идущие следствия. Межатомные силы притяжения и отталкивания придают всем молекулам воды форму широкой V, где в вершине угла располагается кислород, а атомы водорода примостились на верхних кончиках буквы. Хотя молекула H2O не имеет суммарного электрического заряда, кислород так маниакально стремится заполнить свои орбитальные уровни, что подтягивает общие электроны к себе, в результате чего заряд по молекуле распределяется неравномерно. Вершина молекулы – жилище кислорода – обладает отрицательным зарядом, а оба кончика, где обитают водородные атомы, имеют положительный заряд.

Такое распределение электрического заряда по молекуле воды может показаться какой-то заумной подробностью. На самом деле это не так. Эта деталь принципиально важна для появления жизни. Благодаря неравномерному распределению заряда в молекуле вода способна растворить почти все что угодно. Отрицательно заряженная кислородная вершина хватает все, что обладает хотя бы небольшим положительным зарядом; положительно заряженные водородные кончики, напротив, хватают все, что обладает хотя бы небольшим отрицательным зарядом. Вместе оба конца молекулы воды работают как заряженная клешня, способная разорвать почти все, что остается погруженным в воду достаточно долго.

Самый знакомый пример – поваренная соль. Молекула поваренной соли, состоящая из атома натрия, связанного с атомом хлора, имеет небольшой положительный заряд возле натрия (который передает один электрон хлору) и небольшой отрицательный – возле хлора (который принимает электрон от натрия). Бросьте соль в воду, и кислородная сторона H2O (отрицательно заряженная) схватит натрий (положительно заряженный), а водородная сторона H2O (положительно заряженная) схватит хлор (отрицательно заряженный), разрывая молекулу соли пополам и переводя ее в раствор. И то, что верно для поваренной соли, верно и для множества других веществ. Подробности разнятся, но асимметричное распределение заряда делает воду очень сильным растворителем. Вымойте руки, даже без мыла, и электрическая полярность воды примется за работу, растворяя посторонние вещества и унося их прочь.

Вода с ее способностью хватать и заглатывать разные вещества необходима для жизни, и полезность ее далеко не ограничивается применением в целях личной гигиены. Внутренность любой клетки представляет собой миниатюрную химическую лабораторию, работа которой требует быстрого передвижения огромного числа ингредиентов: на входе – питательные вещества, на выходе – отходы, смешение химикатов для синтеза веществ, необходимых для функционирования клетки, и так далее. Именно вода делает все это возможным. Вода, составляющая около 70 % клеточной массы, играет роль транспортной системы. Об этом красноречиво сказал нобелевский лауреат Альберт Сент-Дьёрди: «Вода – это вещество и матрица, мать и среда жизни. Без воды нет жизни. Жизнь смогла покинуть океан, когда научилась выращивать кожу – мешок, в котором можно взять воду с собой. Мы по-прежнему живем в воде, но теперь вода у нас внутри»[70]70
  Albert Szent-Györgyi, «Biology and Pathology of Water,» Perspectives in Biology and Medicine 14, no. 2 (1971): 239.


[Закрыть]
. Это весьма поэтичное прославление воды и жизни. Однако с научной точки зрения у нас нет аргументов, которые доказывали бы универсальную истинность этого суждения, хотя мы и не знаем ни одной формы жизни, которая ставила бы под сомнение необходимость воды для своего существования.


Страницы книги >> Предыдущая | 1 2 3 4 5 6 7 8 9 10 | Следующая
  • 0 Оценок: 0

Правообладателям!

Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.

Читателям!

Оплатили, но не знаете что делать дальше?


Популярные книги за неделю


Рекомендации