Автор книги: Чарльз Уилан
Жанр: О бизнесе популярно, Бизнес-Книги
Возрастные ограничения: +16
сообщить о неприемлемом содержимом
Текущая страница: 4 (всего у книги 25 страниц) [доступный отрывок для чтения: 8 страниц]
Некоторые распределения более рассредоточены, чем другие. Следовательно, среднеквадратическое отклонение значений веса 250 пассажиров самолета будет выше, чем значений веса 250 бегунов-марафонцев. Распределение частот веса пассажиров самолета оказалось бы более «разбросанным», чем бегунов-марафонцев. После того как мы узнаем среднее значение и стандартное отклонение для какой-либо совокупности данных, мы получаем о ней весьма ценные сведения. Допустим, я сообщаю вам, что по результатам проведения единого экзамена по математике какого-либо штата средняя сумма баллов составила 500 при стандартном отклонении, равном 100. Как и в случае с ростом мужчин, большая часть учащихся, сдаваших экзамен, продемонстрировала результаты в пределах одного среднеквадратического отклонения от среднего значения, то есть между 400 и 600 баллами. Сколько учеников, по вашему мнению, получили 720 и выше? Наверное, очень немногие, поскольку такой показатель превышает два среднеквадратических отклонения от среднего значения.
Теперь не мешало бы уточнить, что в данном случае имеется в виду под словами «очень немногие». Думаю, самое время познакомить читателей с одним из наиболее важных, полезных и распространенных распределений в статистике – нормальным распределением. Данные, которые распределены согласно этому закону, располагаются симметрично относительно своего среднего значения, причем это распределение имеет колоколообразную форму, которая наверняка вам хорошо знакома.
Нормальное распределение описывает многие явления, часто встречающиеся в жизни. Представьте себе распределение частот, описывающее, как стреляют зерна воздушной кукурузы (попкорна) на плите. Некоторые зерна начинают лопаться раньше остальных, издавая примерно один-два хлопка в секунду; через десять или пятнадцать секунд зерна уже взрываются как сумасшедшие. Постепенно количество хлопков в секунду сокращается приблизительно до частоты, наблюдавшейся в самом начале поджаривания. Значения роста мужчин-американцев распределены практически в соответствии с законом нормального распределения, то есть расположены почти симметрично относительно среднего значения (5 футов 10 дюймов). Каждый тест SAT специально разрабатывается таким образом, чтобы обеспечить нормальное распределение результатов со средним значением 500 при среднеквадратическом отклонении, равном 100. Согласно Wall Street Journal, американцы даже склонны по закону нормального распределения парковать свои автомобили у крупных торговых центров: большинство автомобилей паркуются напротив центрального входа в торговый центр («вершина» кривой нормального распределения), а «хвосты» машин расходятся вправо и влево от центрального входа.
Красота нормального распределения – его мощь, изящество и элегантность – обусловлена тем, что нам по определению известно, какая именно доля наблюдений в нормальном распределении находится в пределах одного среднеквадратического отклонения от среднего значения (68,2 %), двух среднеквадратических отклонений от среднего значения (95,4 %), трех среднеквадратических отклонений от среднего значения (99,7 %) и т. д. Хотя все это может показаться тривиальным, это именно тот фундамент, на котором строится значительная часть статистики. Мы вернемся к концепции нормального распределения чуть позже, чтобы рассмотреть ее подробнее.
Средним значением является средняя линия, которую часто обозначают греческой буквой µ. Среднеквадратическое (стандартное) отклонение зачастую обозначают греческой буквой σ. Каждая вертикальная полоса на графике представляет одно среднеквадратическое отклонение.
Описательные статистики часто служат для сравнения двух значений или величин. Я на один дюйм выше своего брата; сегодня температура воздуха на девять градусов больше «исторического среднего» для этой даты и т. д. Такие сравнения имеют смысл, поскольку большинство из нас признают используемые в этих случаях шкалы единиц измерения. Один дюйм – не так много, когда речь идет о человеческом росте, поэтому вы можете заключить, что у нас с братом примерно одинаковый рост. И напротив, девять градусов – значительное отклонение температуры воздуха практически для любого климата в любое время года; поэтому, если в какой-то из дней было зафиксировано превышение средней температуры на девять градусов, это существенная аномалия. Но допустим, я сообщу, что хлопья Granola Cereal A содержат на 31 миллиграмм больше натрия, чем хлопья Granola Cereal B. Если вы не знакомились со специальной литературой, в которой рассматриваются последствия употребления в пищу натрия, и не знаете, о какой величине порции хлопьев идет в данном случае речь, на основе приведенной выше информации вы не сделаете полезных выводов. А если я скажу вам, что мой кузен Эл заработал в текущем году на 53 000 долларов меньше, чем в прошлом? Следует ли нам тревожиться за судьбу Эла? А что если он управляющий хедж-фонда, для которого сумма 53 000 долларов соизмерима с ошибкой округления при подсчете его годового дохода?
В примерах с содержанием натрия в хлопьях и доходом Эла отсутствует контекст, который позволил бы оценить масштаб проблемы, если таковая имеется. Самый простой способ придать смысл этим сравнениям – использовать процентные величины. Если бы я сообщил вам, что хлопья Granola Cereal A содержат на 50 % больше натрия, чем хлопья Granola Cereal B, а доход моего кузена Эла сократился в прошлом году на 47 %, это позволило бы вам сделать определенные выводы. Оценка тех или иных изменений в процентах предоставляет нам нечто наподобие шкалы.
Поскольку в школе вас наверняка научили вычислять проценты, не исключено, что у вас возникнет соблазн не читать несколько следующих абзацев. Что ж, возможно, вы правы. Однако прежде чем принять окончательное решение, выполните одно простое упражнение. Допустим, в универмаге продается платье за 100 долларов. Заместитель директора универмага решает снизить цену всех товаров на 25 %. Но впоследствии его увольняют за то, что он зависает в баре с Биллом Гейтсом[13]13
Интересно отметить, что этот менеджер – один из тех десяти парней с годовым доходом 35 000 долларов, которые сидели в баре, когда туда вошел Билл Гейтс с говорящим попугаем на плече. Причуды судьбы!
[Закрыть], а новый заместитель директора распоряжается повысить все цены на 25 %. Какой окажется окончательная цена платья? Если вы скажете (или подумаете), что 100 долларов, то вам лучше все же читать текст подряд.
В действительности окончательная цена платья составит 93,75 доллара. Этот нехитрый трюк принесет вам порцию аплодисментов и восхищение присутствующих на какой-нибудь вечеринке. Процентные величины – полезнейшая вещь, но подчас они порождают в головах людей путаницу и даже способны ввести в заблуждение. Формула для вычисления разности (или изменения) процентов такова: (новая величина – исходная величина) / исходная величина. Числитель (верхняя часть дроби) дает нам величину изменения в абсолютных значениях; знаменатель (нижняя часть дроби) помещает это изменение в контекст путем его сравнения с нашей исходной точкой. Поначалу это кажется очевидным, как в случае, когда заместитель директора универмага снижает цену платья (100 долларов) на 25 %. Двадцать пять процентов от первоначальной цены (100 долларов) составляют 25 долларов; это скидка, в результате цена платья становится 75 долларов. Вы можете вставить соответствующие числа в указанную выше формулу и проделать простые вычисления, чтобы убедиться в правильности моих подсчетов: (100 долл. – 75 долл.) / 100 долл. = 0,25, или 25 %.
Платье продается за 75 долларов до тех пор, пока новый заместитель директора универмага не примет решение повысить цену на 25 %. Именно в этом месте многие совершают ошибку, поскольку 25-процентное повышение цены вычисляется как процент от новой, сниженной цены платья, которая равняется 75 долларов. Повышение цены составит 0,25 × 75 долл. = 18,75 долл.; вот так и получается окончательная цена платья – 75 долл. + 18,75 долл. = 93,75 долл. (а не 100 долларов). Дело в том, что любое процентное изменение всегда дает значение какого-то числа относительно чего-либо еще. Следовательно, нам нужно лучше понять, что же представляет собой это «что-то еще».
Однажды я инвестировал деньги в компанию, основанную моим приятелем, с которым мы проживали в одной комнате студенческого общежития во время учебы в колледже. Поскольку это был частный бизнес, от его владельца не требовалось предоставлять акционерам строго определенный перечень сведений о его деятельности. В течение нескольких лет мне ничего не было известно о судьбе моей инвестиции – бывший приятель предпочитал не распространяться на сей счет. Наконец я получил по почте письмо, в котором говорилось, что прибыль компании выросла на 46 % по сравнению с предыдущим годом. Какой была эта прибыль в абсолютных показателях, в письме не сообщалось, стало быть, я по-прежнему не имел ни малейшего представления об эффективности своих инвестиций. Допустим, в прошлом году эта фирма заработала 27 центов (то есть практически ничего), а в текущем – 39 центов (то есть опять-таки почти ничего). Тем не менее прибыль компании выросла с 27 центов до 39 центов, то есть на 47 %! Очевидно, что рассылка такого письма акционерам – если бы в нем указывалось, что прибыль, накопленная фирмой за два года, меньше стоимости чашки кофе в сети Starbucks, – принесла бы им не радость, а жестокое разочарование.
К чести моего приятеля должен заметить, что в конечном счете он продал свою компанию за несколько сотен миллионов долларов, заработав для меня стопроцентную прибыль на вложенный капитал. (Поскольку вы не знаете, какую именно сумму я вложил в этот бизнес, вы не можете знать, сколько денег я в результате заработал. Впрочем, это лишь подтверждает правильность мыслей, высказанных мною выше.)
Читателям следует уяснить еще одно важное различие. Процентное изменение не следует путать с изменением, выраженным в процентных пунктах. Ставки зачастую выражаются в процентах. Ставка налога с продаж в штате Иллинойс равняется 6,75 %. Я выплачиваю своему агенту 15 % с авторских гонораров, которые получаю за свои книги. Эти ставки применяются к той или иной величине (например, к доходу в случае ставки подоходного налога). Очевидно, что ставки могут изменяться в ту или иную сторону. Менее очевидным является то обстоятельство, что такие изменения ставок можно описывать по-разному. Самым показательным примером в этом отношении может служить недавнее повышение ставки индивидуального подоходного налога в штате Иллинойс с 3 % до 5 %. Такое изменение налога можно выразить двумя способами, причем оба технически корректны. Представители Демократической партии США, которые инициировали это повышение, объясняли (кстати говоря, совершенно правильно), что ставка подоходного налога в этом штате выросла на 2 процентных пункта (с 3 % до 5 %). Представители Республиканской партии США отмечали (также совершенно правильно), что подоходный налог в штате увеличился на 67 %. [Это является весьма удобным способом проверки формулы, приведенной выше: (5 ‒ 3) / 3 = ⅔, что приблизительно соответствует 67 %.]
Демократы сосредоточили внимание на абсолютном изменении налоговой ставки; республиканцы предпочли сфокусироваться на изменении величины налогового бремени. Как указывалось выше, оба описания правильны с технической точки зрения, хотя я настаиваю, что описание, предложенное республиканцами, более точно отражает влияние изменения этого налога, поскольку его величина, которую мне предстоит выплачивать государству – ведь именно она меня интересует, а вовсе не способ ее вычисления, – действительно повысится на 67 %.
Многие явления окружающей нас действительности невозможно идеально описать посредством какой-то одной статистики. Допустим, куортербек Аарон Роджерс выполняет броски на 365 ярдов, которые, однако, не являются тачдаун-пасами. Между тем Пейтон Мэннинг совершает броски лишь на 127 ярдов – но с тремя тачдаун-пасами. Мэннинг зарабатывал больше очков, но, возможно, именно Роджерс приносил своей команде больше тачдаунов (то есть пересечений мячом или игроком с мячом линии зачетного поля соперника). Кого из них считать более ценным игроком? В главе 1 я обсуждал так называемый рейтинг распасовщика, который по идее должен решить эту статистическую проблему и широко применяется Национальной футбольной лигой. Рейтинг распасовщика – пример индекса, представляющего собой описательную статистику, составленную из других описательных статистик. После того как разные показатели эффективности действий куортербеков удалось объединить в один, такая статистика может использоваться для сравнения игры куортербеков в определенный день или даже на протяжении всей спортивной карьеры. Если бы единый индекс такого рода существовал в бейсболе, то вопрос о том, кого следует считать лучшим бейсболистом всех времен и народов, удалось бы давно решить, не так ли?
Преимущество любого индекса заключается в том, что он консолидирует в едином показателе большой объем сложной информации. После этого мы можем сопоставлять между собой вещи, которые в противном случае не поддаются простому сравнению (речь может идти о чем угодно, от сравнения эффективности действий куортербеков до конкурсов красоты или работы разных колледжей). При проведении конкурса «Мисс Америка» победитель определяется по результатам пяти отдельных соревнований: личное интервью, купальник, вечернее платье, индивидуальные способности и вопрос на сцене. («Мисс конгениальность» выбирают сами участницы путем индивидуального голосования.)
Парадокс, но то, что любой индекс консолидирует в едином показателе большой объем сложной информации, является также его недостатком. Вывести единый показатель можно бессчетным множеством способов, причем все они могут приводить к разным результатам. Малкольм Гладуэлл блестяще доказывает этот факт в одной из своих статей в еженедельнике The New Yorker, где высмеивает неизбывную тягу американцев к присвоению рейтингов буквально всему, что их окружает{9}9
Malcolm Gladwell, The Order of Things, The New Yorker, February 14, 2011.
[Закрыть]. (Особенно досталось от Малкольма тем, кто составляет рейтинги учебных заведений.) Гладуэлл приводит пример присвоения журналом Car and Driver («Автомобиль и водитель») рейтинга трем моделям спортивных автомобилей: Porsche Cayman, Chevrolet Corvette и Lotus Evora. Используя формулу, которая включает двадцать одну переменную, Car and Driver поставил на первое место Porsche Cayman. Однако Гладуэлл указывает, что в формуле Car and Driver такой показатель, как «дизайн кузова», оценивается всего в 4 % от совокупного рейтинга, что для спортивного автомобиля смехотворно мало. Если бы «дизайн кузова» оценивался, к примеру, в 25 %, то на первом месте оказался бы Lotus Evora.
Но это еще не все. Гладуэлл также отмечает, что в формуле Car and Driver такой показатель, как рекомендованная цена автомобиля, тоже имел ничтожный вес. Если бы этому важному показателю был присвоен больший вес (так, чтобы у цены, дизайна кузова и характеристик двигателя были одинаковые весовые коэффициенты), то на первом месте оказался бы Chevrolet Corvette.
Любой индекс очень чувствителен к описательным статистикам, которые включены в его состав, а также к весу, присваиваемому каждой из составляющих. В результате диапазон индексов простирается от полезных, но весьма несовершенных инструментов, до полнейших курьезов. Примером первого может служить так называемый индекс человеческого развития (Human Development Index – HDI), применявшийся ООН. HDI разрабатывался как более широкий показатель экономического благосостояния, чем доход как таковой. Доход является лишь одним из компонентов HDI, который включает также показатели средней продолжительности жизни и уровня образования. По объему производства на душу населения Соединенные Штаты находятся на одиннадцатом месте в мире (пропустив вперед такие богатые запасами нефти страны, как Катар, Бруней и Кувейт), а по индексу человеческого развития занимают четвертое место в мире{10}10
CIA, World Factbook, и United Nations Development Program, 2011 Human Development Report, http://hdr.undp.org/en/statistics/.
[Закрыть]. Правда, HDI-рейтинги слегка изменились бы в результате трансформации составных частей индекса, но вряд ли это бы привело к примерному равенству рейтингов Зимбабве и Норвегии. Иными словами, индекс HDI неплохо отражает текущую картину, касающуюся жизненных стандартов в разных странах мира.
Описательные статистики дают нам понимание сути интересующих нас явлений. Исходя из этого мы можем вернуться к вопросам, поставленным в начале главы. Кого же считать лучшим бейсболистом всех времен и народов? С точки зрения целей этой главы, гораздо важнее было бы выяснить, какие описательные статистики больше всего помогли бы нам ответить на этот вопрос. Согласно Стиву Мойеру, президенту Baseball Info Solutions, тройку ключевых статистик (кроме возраста) для оценивания эффективности действий любого игрока, за исключением питчера (подающего), составили бы следующие:
1. Процент попаданий в базу (on-base percentage – OBP), иногда называемый средним показателем попаданий в базу (on-base average – OBA). Оценивает процент успешных попаданий игрока в базу, в том числе и так называемые уоки (которые не учитываются в среднем показателе).
2. Процент отбивания (slugging percentage – SLG). Измеряет процент отбивания мячей путем вычисления совокупного количества попаданий в базу на каждый отбитый мяч. Одинарный оценивается в 1, двойной соответствует 2, тройной – 3, а хоумран – 4. Таким образом, процент отбивания у беттера (отбивающего), который отбил одинарный и тройной из пяти попаданий, составил бы (1 + 3) / 5, или 0,800.
3. Попадания (at bats – AB). Этот показатель помещает все сказанное выше в единый контекст. Любой игрок может продемонстрировать потрясающую статистику в одной-двух играх. Но лишь суперзвезда накапливает впечатляющие показатели на протяжении многих лет выступления за профессиональные бейсбольные команды.
По мнению Стива Мойера (которое я полностью разделяю), лучшим бейсболистом всех времен и народов является Бейб Рут из-за его уникальной способности отбивать броски и выполнять точные подачи. Именно Бейбу Руту до сих пор принадлежит рекорд Высшей лиги «процент отбивания, достигнутый на протяжении всей карьеры бейсболиста»: 0,690{11}11
Baseball-Reference.com.
[Закрыть].
Теперь обратимся ко второму вопросу: что происходит с экономическим благополучием американского среднего класса? Как и в первом случае, я поинтересовался мнением экспертов, обратившись по электронной почте к Джеффу Гроггеру (моему коллеге по Чикагскому университету) и Алану Крюгеру (вы, наверное, помните: именно он изучал причины терроризма, а в настоящее время занимает пост председателя Совета экономических консультантов Барака Обамы). Ни тот ни другой не смог дать мне однозначного ответа на этот вопрос. Чтобы оценить экономическое благополучие американского среднего класса, нам следует проанализировать изменения медианной заработной платы (с поправкой на инфляцию) за последние несколько десятилетий. Кроме того, они порекомендовали проанализировать изменения величины заработных плат в 25-м и 75-м процентилях (есть все основания интерпретировать их как верхнюю и нижнюю границы для среднего класса).
Стоит также упомянуть еще об одном различии. При оценивании экономического благосостояния мы можем анализировать доход или заработную плату. Это не одно и то же. Заработная плата – это то, что нам платят за некое фиксированное количество труда (например, она может быть почасовой или понедельной). Доход представляет собой сумму всех платежей из разных источников. Если у работника есть вторая работа или он отработал большее количество часов, его доход может увеличиться, тогда как заработная плата останется прежней. (Именно поэтому доход может расти даже в случае, когда заработная плата снижается, – при условии, что работник трудится дольше.) Если, однако, работнику приходится больше работать, чтобы больше получать, то оценить, как это скажется на его благосостоянии, довольно сложно. Заработная плата является менее неоднозначным показателем того, как оплачивается труд американцев; чем она выше, тем больше человек получает за каждый час, проведенный на работе.
В дополнение к вышесказанному я привожу график заработной платы американцев за последние три десятилетия. Я также добавил 90-й процентиль, чтобы проиллюстрировать изменения заработной платы работников, относящихся к среднему классу, в сравнении (за тот же период времени) с заработной платой работников, находящихся на вершине этого распределения.
Источник: Changes in the Distribution of Workers’ Hourly Wages between 1979 and 2009, Congressional Budget Office, 16 февраля 2011 года. Данные для этой диаграммы можно найти на сайте https://www.cbo.gov/sites/default/files/112th-congress-2011-2012/reports/02-16-wagedispersion.pdf
На основе этих данных можно сделать немало выводов. Они не позволяют получить единственный «правильный» ответ на вопрос о том, в какую сторону изменяется экономическое благополучие американского среднего класса, зато четко показывают, что типичный американский рабочий, получающий медианную заработную плату, на протяжении почти тридцати лет «топчется на месте». Работники в 90-м процентиле добились за это время гораздо больших успехов. Описательные статистики помогают очертить проблему. Какие именно действия мы предпримем в ответ на это (если вообще предпримем) – вопрос сугубо идеологический и политический.
* * *
Правообладателям!
Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.Читателям!
Оплатили, но не знаете что делать дальше?