Электронная библиотека » Дэвид Хелфанд » » онлайн чтение - страница 3


  • Текст добавлен: 29 мая 2024, 09:21


Автор книги: Дэвид Хелфанд


Жанр: Классическая проза, Классика


Возрастные ограничения: +16

сообщить о неприемлемом содержимом

Текущая страница: 3 (всего у книги 26 страниц) [доступный отрывок для чтения: 9 страниц]

Шрифт:
- 100% +

Глава 3
Атом: утилитарный взгляд

Фундаментальный принцип научного мировоззрения гласит, что существует материальная реальность, не зависимая ни от наших впечатлений, ни от наших попыток измерить и интерпретировать эти впечатления. Наука – это процесс, при помощи которого мы строим фальсифицируемые модели этой реальности, а затем проверяем, насколько точно они соответствуют природе. Его характер итеративен, и прогресс часто достигается не благодаря очередной гениальной догадке, а вследствие того, что нам удается доказать неправильность той или иной модели.

Изначально мы создавали научные модели в попытке объяснить (и предсказать) то, что представало перед нами в непосредственных впечатлениях – полет бейсбольного мяча, движение планет, наши ощущения запаха и вкуса, тепла и холода. Мы можем коснуться мяча, бросить его и поймать; мы видим шествие планет по ночному небу; мы можем вдохнуть аромат нашего кофе, почувствовать его вкус, отметить его температуру. Но когда речь заходит об атомах, у нас нет никакого интуитивного опыта. Мы не можем ни увидеть их, ни дотронуться до них, ни рассмотреть их движение. Однако научные методы применимы и здесь. Они позволяют нам построить подробную, доступную для проверки и фальсифицируемую модель с невероятной предсказательной силой – и тем самым заручиться помощью атомов в нашем стремлении воссоздать историю.

В данном случае наша модель не обязательно должна содержать все, что мы знаем об атомах, и, конечно же, не может вместить того, чего мы не знаем. Но эта модель должна в полной мере соответствовать известной нам физической реальности и описывать все характеристики атомов, имеющие ключевое значение для нашего проекта. В ее определении и заключается предмет данной главы.

Иерархия вещества

Давайте же начнем с того, с чего начинает любой младенец – с окружающего мира, который мы можем видеть и осязать. Такое впечатление, что существуют тысячи разных веществ, и каждое обладает различным цветом, запахом, текстурой, отражательной способностью… всего этого много, очень много. В нашем языке есть слова, призванные классифицировать вещи по назначению (столовые приборы: нож, вилка, ложка), по внешнему облику (блестящая, тусклая, чистая, грязная ложка), по материалу, из которого они сделаны (серебряная, стальная или пластиковая ложка), и по сотням других категорий. Но если бы я попросил вас ограничиться, скажем, лишь тремя категориями – широчайшей группировкой из возможных – и охватить все, что вы когда-либо видели или чувствовали, вы бы, скорее всего, согласились, что такими категориями станут три состояния вещества: твердое тело, жидкость и газ1.

Подобное распределение не означает, что мы должны отказаться от более тонких разграничений в предложенных рамках. Серебряная ложка отличается от пластиковой и на ощупь, и по весу; более того, такие ложки по-разному реагируют на тепло, когда вы опускаете их в кофе, а также стоит сказать, что цена их замены, если вы случайно выкинете их в мусорное ведро, будет различаться. Но у них есть нечто общее: и серебряная, и пластиковая ложка – это твердые тела, и вы не можете их сжать и изменить их форму (по крайней мере без значительных усилий).

С другой стороны, кофе, хотя его тоже нельзя сжать, демонстрирует качественное отличие – он сам собой принимает форму контейнера, в который его наливают; жидкость без усилий вмещается и в кофейник с широким дном, и в более узкую кофейную чашечку.

И, наконец, есть почти прозрачный пар, поднимающийся над кипящим кофе. Если вы попытаетесь его схватить, то можете почувствовать его тепло, но раскройте ладонь – и вы ничего в ней не обнаружите. Газ просто рассеивается.

Давайте на минутку станем на точку зрения Демокрита и вообразим, что для каждого рода этих веществ существует мельчайшая единица – назовем ее пока что «частицей», – которая сохраняет свойства самого вещества. Как нам представить взаимодействие этих мельчайших единиц?

В твердом теле эти частички, должно быть, прочно закреплены на своем месте, поскольку, когда вы толкаете твердое тело, тянете его на себя или сжимаете, оно сохраняет форму. Конечно же, если приложить достаточную силу, вы можете вызвать перемену – согнуть ложку из Серебра и сломать пластмассовую, – но этим вы меняете не сам объем предмета, а только его форму. В твердых телах частички касаются друг друга – вы не можете силой приблизить их, и много сил уходит даже на то, чтобы изменить их взаимную ориентацию.

Поскольку сжать жидкость тоже нелегко2, ее частицы, по всей видимости, тоже соприкасаются. Но между жидкостью и твердым телом есть явное различие. Первая способна легко менять свою форму – более того, она делает это, как только вы переносите ее из одного контейнера в другой. Это позволяет предположить, что, хотя ее частички по-прежнему находятся в соприкосновении, они могут свободно проскальзывать друг над другом и занимать относительно друг друга любые положения, в зависимости от того, какие из этих положений оказываются наиболее удобными.

И, наконец, остаются газы. Они очень рассеяны и по большей части невидимы, так что часто вы даже их не замечаете – вы ведь не чувствуете воздуха, который вас окружает, пока вы сидите и читаете эту книгу? Но, конечно же, воздух в какой-то степени ощутим. Скажем, если вас застигла буря, вы можете ощутить, как он на вас давит, а иногда получается уловить запах газа (скажем, аромат кофе) – видимо, нечто все же входит с вашими чувствами в контакт.

Более того, газы также состоят из частиц, но таких, которые совершенно свободны от соседей и далеки от соприкосновения. Сжать газ относительно легко (представьте, как накачиваете велосипедную шину), поскольку между частичками много свободного пространства. Например, в атмосфере Земли частицы воздуха отделены друг от друга расстоянием, примерно в десять раз превышающим их диаметр, и могут свободно летать куда угодно, отталкиваясь друг от друга при встрече, словно бильярдные шары. Если вы накачаете шины своего велосипеда до рекомендуемой величины в 7,9 атмосферы, то вы только что сжали воздух в два раза во всех трех направлениях, так что расстояние, разделяющее частицы, теперь превышает их диаметр не в десять, а лишь в пять раз. Давление внутри вашей шины теперь в восемь раз больше, чем у окружающего воздуха, поскольку воздушные частицы ударяются о стенки шины в 2 × 2 × 2 раза чаще. Чтобы сконцентрировать водяной пар в жидкую форму, частицы должны сблизиться в 10 × 10 × 10 = 1000 раз, и именно поэтому вода в 1000 раз плотнее воздуха (примерно 103 кг/м3 против 1 кг/м3).

И вот что у нас получается. Три состояния, или «фазы», вещества не показывают фундаментальных различий в свойствах частиц, из которых это вещество состоит. Эти частицы просто могут находиться на четко определенных местах, слабо соприкасаться и проскальзывать друг над другом или свободно витать в пустом пространстве. Вода остается водой вне зависимости от того, пребывает ли она в твердой форме (лед), жидкой (вода) или газообразной (пар), а переходы между этими формами – это лишь вопрос изменения взаимных пространственных отношений, в которые вступают между собой частички воды.

Температура: мера движения

В рассуждении о переходах, которые вещество может совершать между различными состояниями, мы должны ненадолго отклониться от прямого пути и поговорить, во‐первых, о нашей модели для понимания тепла, а во‐вторых, о системе измерений, которую мы используем для его описания. Как нам известно из повседневного опыта, твердая форма воды (лед) – холодная, а газообразная форма (пар) – горячая. Но что такое «холодный» и «горячий»? Оказывается, это просто слова, необходимые нам, чтобы выразить характер относительного движения наших элементарных частиц: горячий = быстрый, а холодный = медленный. То, что мы называем температурой, – это просто непосредственная мера средней энергии движения, также называемой «кинетической энергией» (см. гл. 4) этих частиц.

Элементарные частицы воды в кубике льда соприкасаются друг с другом. Они закреплены на месте, но вибрируют (если угодно, дрожат) со скромным количеством энергии в расчете на частицу. Если поднять температуру, частицы будут вибрировать быстрее. Если повысить ее до достаточного уровня, то связи, удерживающие частицы на местах, разорвутся, и тогда частички смогут свободно скользить друг над другом, а мы получим жидкость. Это происходит, когда температура достигает 32 °F, или 0 °C. Продолжая нагревать воду, мы заставляем частицы двигаться быстрее и быстрее, до тех пор, пока, при 212 °F или 100 °C, они не разлучатся с соседями окончательно и не получат возможность свободно улетучиться прочь в форме газа.

При той или иной температуре не все частицы вещества движутся с абсолютно одной и той же скоростью; некоторые перемещаются быстрее, чем все в среднем, а некоторые – медленнее. Распределение скоростей (или, более точно, кинетических энергий = ½ mv2) отражено в виде кривых, представленных на рис. 3.1. Поскольку ни одна частица не может двигаться медленнее нуля, распределение немного асимметрично, а несколько частиц движутся намного быстрее среднего значения (например, если одна ничего не подозревающая частичка водяного пара получит удар от четырех других, пришедших слева, она с высокой скоростью устремится вправо). Но в общем и целом энергия большинства частиц не превышает среднее значение более чем в два раза3.

Температурные шкалы, которыми мы пользуемся для измерения энергии частиц, как и большая часть единиц измерения, условны. Нулевую отметку на шкале Фаренгейта определил в 1724 году сам Фаренгейт – она обозначала самую холодную температуру, которой он смог добиться, смешав воду, лед и соль (письменные свидетельства не сообщают, сумел ли он в ходе этого эксперимента изготовить хотя бы немного мороженого). Определение градуса, данное им, было совершенно произвольным, из-за чего точка замерзания воды на его шкале пришлась на отметку в 32 °F, а точка кипения – на отметку в 212 °F. Даже эти величины применяются лишь на уровне моря (например, в Денвере вода закипает при 190 °F, а в Ла-Пасе, Боливия, – при 203 °F)4. Стоградусную шкалу (также называемую шкалой Цельсия) изобрел двумя десятилетиями позже шведский астроном Андерс Цельсий. На ней точку замерзания и кипения воды разделили 100 градусов; для сравнения, на шкале Фаренгейта эти две отметки разделены промежутком в 180 градусов, тем самым каждый градус Цельсия равен 9/5 (180/100) градуса Фаренгейта.

Обе эти шкалы были приняты задолго до того, как мы поняли, что же на самом деле измеряет «температура». Теперь, когда нам известно, что она представляет собой меру кинетической энергии частиц, единственной разумной шкалой могла бы стать такая, на которой нулевая отметка обозначала бы состояние полной остановки их движения (v = 0, следовательно, кинетическая энергия = 0). Эта шкала, благоразумная с точки зрения физики, названа в честь лорда Кельвина – создателя современной модели для нашего представления о тепле. Он принял градуировку, предложенную Цельсием, так что точку замерзания воды и точку ее кипения на уровне моря по-прежнему разделяли 100 градусов, но точка нулевого движения была установлена на отметке в –273,16 °C. Поэтому мы говорим, что вода замерзает при 273 К (строго говоря, эти единицы измерения называются не градусами Кельвина, а кельвинами) и закипает при 373 К. Температура поверхности Солнца – 5780 К, а комфортная температура в комнате составляет 68 °F = 20 °C = 293 K.

Эта модель обладает невероятной объяснительной силой. Например, если вы выпекаете печенье с шоколадной крошкой, то ваша духовка, скорее всего, установлена на температуру в 190 °C. Если вы откроете дверцу, чтобы посмотреть, готово ли печенье, и случайно коснетесь подставки, на которой располагается противень, то получите ожог. Почему? Просто частицы, из которых состоит металл противня, вибрируют с высокой скоростью, из-за чего со всей силы врезаются в частицы вашей кожи и разрывают их на части, превращая их… ну, в обожженные частицы кожи. Но постойте, почему вы вообще можете сунуть руку в духовку, нагретую до 190 °C? Разве частицы воздуха не движутся с такой же быстротой? Да, движутся, но, как уже говорилось выше, в расчете на каждый квадратный сантиметр вашей кожи их в воздухе в 1000 раз меньше, и пусть даже он может повредить несколько частичек вашей кожи, вы все равно избавитесь от них через несколько дней, так что никакого вреда не будет. Впрочем, если бы вы оставили руку в духовке не на краткую секунду, а, скажем, на 20 минут (иными словами, продержали бы ее там в 1000 с лишним раз дольше), то ваша рука действительно бы стала похожа на подгорелое печенье с шоколадной крошкой. Заметим, что вы реально чувствуете тепло духовки, когда суете туда руку. Так происходит именно потому, что частицы воздуха в духовке летают намного стремительнее, чем частицы воздуха в комнате, и их более энергичные соударения с вашей кожей приводят к тому, что вы ощущаете «тепло».


Рис. 3.1. Кривые, отражающие распределение скоростей частиц воды при 0 °C и 100 °C. Поскольку ни одна частица не может двигаться медленнее 0 м/с, обе кривые усечены слева. Вертикали представляют средние скорости, которые из-за усечения оказываются немного выше самой распространенной. Обратите внимание, что средняя скорость частиц в кипящей воде составляет примерно 640 м/с, или 2300 км/ч (!), а некоторые движутся в несколько раз быстрее


Получается, что моя недавняя реплика – о том, что вы не «чувствуете» воздух, который вас окружает, пока вы сидите и читаете эти строки, – не совсем соответствует реальному положению дел. Вы чувствуете воздух, поскольку его температура определяет скорость, с которой его частицы ударяются о вашу кожу. Эта скорость может доходить до триллионов раз в секунду, и именно благодаря этому, в свою очередь, возникает испытываемое вами ощущение тепла, холода или «подходящей» температуры.

Эта модель также объясняет, как ваша посуда ухитряется высохнуть (то есть испарить все капельки воды, которые на ней находятся), когда вы оставляете ее просушиться на ночь, – даже несмотря на то, что температура в комнате (на что я очень надеюсь) никогда не достигает точки кипения воды (100 °C). В среднем скорость частиц воды на посуде равна скорости частиц в воздухе, поскольку они постоянно соударяются и уравновешивают свои энергии. Их средняя скорость намного меньше той, какая необходима, чтобы перевести частицу воды из жидкой формы в газообразную. Впрочем, не будем забывать, что существуют некоторые частички воды (и воздуха), которые движутся намного быстрее средних значений, и они могут достигать скорости высвобождения; именно эти стремительные частицы и теряет капля. Когда это происходит, средняя скорость частиц падает (если вычесть самые быстрые, то среднее значение понизится). Если бы на этом все и закончилось, то утром вам потребовалось бы полотенце для кухонной посуды. Но в вашей комнате – просторном хранилище воздушных частиц – все еще содержатся некоторые из быстрых частиц, и когда они соударяются с водой, оставшейся в капле, средняя скорость снова возрастает, и высокоскоростной конец распределения заполняется вновь (рис. 3.1). Эти молекулы воды, в свою очередь, тоже могут улетучиваться, и процесс продолжается до тех пор, пока вся жидкость не превратится в газ, благодаря чему утром вы сможете убрать с подставки сухую посуду.

Эта тепловая модель также объясняет, почему мы потеем. Наше тело так тонко настроено, что оно работает при температуре примерно в 37 °C, и любое отклонение от этой величины вызывает немедленный отклик. Если мы активно занимаемся спортивными упражнениями, то обращаем химическую энергию, запасенную в мышцах, в избыточное тепло, от которого телу необходимо избавиться. Один механизм, предназначенный для этого, задействует наши потовые железы, из-за чего на нашей коже появляются капельки воды. Частицы кожи, покачиваясь немного сверх меры – если говорить о том, как это «воспринимает» наше тело, – передают часть своей энергии частицам воды, заставляя самые быстрые улетучиваться и тем самым уносить энергию с кожи, остужая последнюю. При нанесении ацетона на кожу мы чувствуем холод, поскольку точка его кипения намного ниже, чем у воды (всего лишь 56 °C), поэтому при нормальной температуре тела многие из частиц ацетона начинают двигаться достаточно быстро и переходят в газообразную форму, унося с собой колебательную энергию ваших частиц и заставляя кожу почувствовать холод.

И абсолютно все, от того, почему остывает вода в ванной5, до того, почему земная атмосфера не падает вниз6 (подсказка: она падает), а также от того, почему нагревается ваш велосипедный насос7, до того, почему ваш кондиционер остужает комнату8, объясняется этой моделью, в которой температура представляет собой просто меру скорости движения частиц.

Те самые «частицы» – атомы и молекулы

Теперь настало время снова вернуться к изначальной теме главы. Нужно сказать, что до сих пор мы игнорировали все, что мы знаем о внутренней структуре атомов, и принимали древнегреческую идею, согласно которой каждое вещество обладает мельчайшей единицей – именно их я на протяжении всей нашей беседы именовал частицами. Но что именно собой представляют частицы, составляющие серебряную ложку или каплю воды? Демокрит и Левкипп утверждали, что они «неделимы» (напомню, от греческого atomos – «неразрезаемый») и существуют в бесконечном множестве размеров и форм, чем легко объяснялось наличие миллионов различных веществ, составляющих наш мир. Теперь нам известно, что обе гипотезы неверны. Атомы вовсе не обладают неделимостью, а миллионы веществ состоят из особых сочетаний девяноста четырех уникальных строительных блоков9.

То, что я называл «частицами», – это либо один из девяноста четырех типов таких единообразных блоков, которым мы, пренебрегая этимологией, присвоили имя «атомов», или одна из миллионов «молекул», четко определенных сочетаний, в которые атомы вступают друг с другом. Серебро – это один из девяноста четырех базовых «кирпичиков», и атомы Серебра, соединяясь, могут создать серебряную ложку. Вода – это сочетание двух базовых «кирпичиков», Водорода и Кислорода, которые в пропорции 2:1 формируют молекулу H2O.

Золото в ваших кольцах, Вольфрам в нити накала (если вы еще помните лампы накаливания) и Кремний в чипах вашего телефона – это примеры одного соответствующего из девяноста четырех базовых строительных блоков, которые мы в совокупности называем элементами (подробнее см. гл. 4). Выдыхаемый вами воздух, по большей части диоксид Углерода (CO2), алкоголь в вашем бокале (C2H6O) и песок, из которого был сделан этот бокал (SiO2), – это молекулы, объединенные в фиксированные сочетания и призванные создать неисчислимые сложные структуры, из которых и состоит наш мир. Молекулы могут оказаться очень непростыми: в одной только молекуле ДНК, составляющей первую человеческую хромосому, присутствуют тринадцать миллиардов атомов, и все они соединяются друг с другом, следуя точной закономерности, а она, в свою очередь, представляет собой часть кода, благодаря которому вы – это вы.

Разделить неделимое: строительные блоки атомов

Итак, мы уже отметили, что атомы, несмотря на происхождение термина, можно разделить. Они сделаны из более фундаментальных строительных блоков, подразделенных на два семейства – это лептоны и кварки. Их удерживают воедино четыре фундаментальных взаимодействия, которые передаются при помощи еще одного семейства частиц – бозонов. Если составить перечень всех лептонов и кварков, которые нам удалось открыть, вместе с их антиматериальными двойниками, и добавить к ним бозоны, переносящие взаимодействия, мы получим список из тридцати одной «фундаментальной» частицы10 – и это звучит так, будто они не слишком-то фундаментальны! Многие физики полагают, что нам необходимо спуститься еще на один уровень в строении вещества, и мы обнаружим, что все эти различные частицы – на самом деле проявления крошечных вибрирующих «струн»11. Но пока что наша модель для мельчайших величин, существующих в природе, насчитывает тридцать один объект, и впредь мы будем называть такие объекты фундаментальными частицами.

На рис. 3.2 показана иерархия вещества, начиная от общих состояний, о которых мы говорили в начале этой главы, – твердое тело, жидкость, газ – до молекул и атомов, а потом – от атомов до их составляющих частей. Кроме того, показано число сочетаний частиц на каждом уровне.


Рис. 3.2. Строение вещества, начиная с чашки кофе, в которой присутствуют твердое тело, жидкость и газ, при этом все они состоят из молекул, а те, в свою очередь, созданы из особых сочетаний атомов, которые и сами состоят из более фундаментальных частиц. Число типов частиц на каждом уровне обозначено как n; обратите внимание, что четвертое состояние вещества (не показанное на рисунке) – это плазма, в которой атомы разрываются на части. Представлено лишь первое из трех поколений фермионов


Большая часть рис. 3.2, как и вопрос о том, существует ли еще более глубокий уровень материи, выходит за пределы нашего исследования, поскольку нам в данный момент необходима просто надежная и точная модель атомов, из которых состоит космос. С первых микросекунд возникновения Вселенной имеют значение лишь несколько фундаментальных частиц, и их примерно полдесятка: это электроны (e или e) и их антиматериальные двойники, позитроны (e+ или e+***); нейтрино, ассоциируемые с ними (ve и ve); а также «верхние» (u) и нижние (d) кварки и переносчики взаимодействий. Поговорим обо всех по очереди.

Электрон, открытый в 1897 году, неизмеримо мал (меньше 10–18 м, миллионная триллионная доля метра в диаметре), наделен крохотной (но определенно измеримой) массой в 9 × 10–31 кг и несет отрицательный электрический заряд –1, установленный нами произвольно как единица заряда на атомном уровне. Его антиматериальный двойник, позитрон, обладает такими же размером и массой, но, как и все античастицы, характеризуется противоположным зарядом, +1. Вещество и антивещество не очень хорошо сочетаются – более того, когда электрон встречается с позитроном, они взаимно уничтожают друг друга во вспышке света. Все атомы в современной Вселенной содержат электроны, но нам не следует забывать и о позитронах, поскольку в ходе естественных процессов, как мы еще увидим, могут рождаться и они, а сами эти процессы сыграют ключевую роль в воссоздании наших историй.

Электроны и позитроны входят в группу фермионов (см. рис. 3.2), в которой каждая частица обладает еще одним дополнительным свойством, важным для нашего повествования – это свойство с причудливым именем «спин». Представьте, что все подобные частицы – это крошечные волчки, способные вращаться лишь по часовой стрелке или против нее с амплитудой в ±½ (опять же, это произвольно выбранная шкала атомных единиц, на которой бозоны, переносчики взаимодействий, имеют спин 1 или 2). С другими частицами они вступают в гравитационное (поскольку обладают массой), электромагнитное (поскольку имеют заряд) и слабое ядерное взаимодействие (поскольку у них есть свойство, называемое «лептонным числом» ±1).

Нейтрино (ve) были обнаружены только в 1956 году, хотя ученые постулировали их существование еще за десятилетия до этого, пытаясь объяснить исчезновение энергии в определенных ядерных реакциях. Нейтрино обладают крошечными размерами и еще меньшей массой; ее верхний предел составляет примерно 1/600 000 от массы электрона. Они электрически нейтральны, и для них характерен спин с амплитудой ±½. Поскольку они могут откликаться лишь на гравитацию (очень слабо, при условии их крошечной массы) и на слабое ядерное взаимодействие, они почти не взаимодействуют с обычным веществом. За время, которое вы затратите на прочтение этой фразы, 20 000 триллионов нейтрино, излученных Солнцем, пройдут через ваше тело, а вы этого даже не заметите. Это окажется правдой даже в том случае, если вы читаете эту страницу ночью, когда Солнце находится на другой стороне Земли, поскольку нейтрино проходят прямо через земную толщу и достигнут вас, пройдя через пол. Они играют главную роль в некоторых радиоактивных распадах и будут важны, когда мы применим атомные ядра в роли часов, чтобы составить карту наших будущих исторических экскурсов.

В современной Вселенной есть еще одно семейство фермионов, кварки, которые никогда не оказываются в одиночестве; они всегда связаны в пары или триплеты (см. рис. 3.2). Важное значение для нас имеют два определенных кварка, которые сочетаются, формируя протоны и нейтроны – кварки u и d. Ученые впервые постулировали их существование в 1960-х годах, а впоследствии подтвердили и описали его в многочисленных экспериментах, проведенных на ускорителях частиц. Кварки имеют дробные заряды: u = + 2/3 и d = 1/3, их массы составляют примерно 4,0 и 9,4 массы электрона соответственно, и, как фермионы, они также имеют спин ± 1/2. Все кварки обладают дополнительной уникальной характеристикой: они реагируют на сильное ядерное взаимодействие благодаря своему четвертому свойству, которое мы называем «цветовым зарядом».

Многие сочетания этих и четырех других разновидностей кварков возможны в принципе и могут на мгновения возникать в лабораториях. Но для нашего мира важны два – это триплет uud, образующий протон, и триплет udd, благодаря которому создается нейтрон. Простое суммирование даст нам заряды этих составных частиц: uud — +2/3 + 2/31/3 = +1 для протона и udd – + 2/31/31/3 = 0 для нейтрона. Их спины, сочетаясь, дают чистую величину в ± 1/2. Но с их массами дело обстоит совершенно иначе.

Кажется очевидным, что масса трех кварков должна просто составлять сумму масс каждого отдельного кварка. Согласно таким расчетам, масса протона должна была бы оказаться в 4,0 + 4,0 + 9,4 = 17,4 раза больше массы электрона. Но, взвесив протон, мы получим совершенно иной результат: его масса превышает массу электрона в 1836 раз, иными словами, она в сто с лишним раз больше простой суммы отдельных масс (и эквивалентна 1,67 × 10–27 кг). Откуда берется вся эта избыточная масса? Ее источник – «клей», благодаря которому кварки соединяются воедино. Как мы уже говорили, кварки – это уникальные обитатели «зоопарка частиц», поскольку только они реагируют на сильное ядерное взаимодействие. Точно так же, как и дополняющее его слабое ядерное взаимодействие, оно имеет свои особенности, поскольку существует только на масштабах, сравнимых с размерами атомного ядра (примерно 10–14 м, 1 % от триллионной доли метра). Кварк, проходящий мимо протона, скажем, в 5 % от триллионной доли метра, не отреагирует совершенно никак.

Это радикально отличается от других взаимодействий, знакомых нам по повседневной жизни, а именно электромагнитного и гравитационного – их дальность неограниченна. Чем дальше друг от друга располагаются два объекта, обладающие массой или зарядом, тем слабее воздействие электромагнетизма и гравитации, которому они подвергаются, но само оно не исчезает. Нептун находится на расстоянии в 4,5 миллиарда километров от Солнца, и сила притяжения воздействует на него в 900 раз слабее, чем на Землю, но он тем не менее движется по орбите вокруг Солнца из-за их взаимного гравитационного взаимодействия. Оба ядерных взаимодействия, напротив, просто исчезают за пределами атомного ядра.

И именно глюоны, сами по себе не обладающие массой, но в изобилии переносящие энергию, увеличивают массу протона в сто с лишним раз по сравнению с простой суммой масс составляющих его кварков (сюда вносит свой вклад и кинетическая энергия самих кварков, болтающихся в своем маленьком мешочке). У нейтрона, по сравнению с протоном, один из u-кварков заменен на немного более тяжелый d-кварк, и сам нейтрон тоже слегка массивнее (на 0,14 %). За исключением атома Водорода, ядро которого составляет один-единственный протон, все остальные атомы, о чем мы подробно поговорим чуть позже, содержат как протоны, так и нейтроны, соединенные вместе.


Страницы книги >> Предыдущая | 1 2 3 4 5 6 7 8 9 | Следующая
  • 5 Оценок: 1

Правообладателям!

Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.

Читателям!

Оплатили, но не знаете что делать дальше?


Популярные книги за неделю


Рекомендации