Автор книги: Дэвид Хелфанд
Жанр: Классическая проза, Классика
Возрастные ограничения: +16
сообщить о неприемлемом содержимом
Текущая страница: 9 (всего у книги 26 страниц) [доступный отрывок для чтения: 9 страниц]
Глава 7
О кражах и подделках: судебная история искусств
Ведущие мировые музеи хранят в своих коллекциях средневековые картины, богато иллюстрированные хоровые книги и красочные миниатюры XV века, изображенные, в чем нет сомнений, на 500-летнем дереве, покрывалах и пергаменте. Как могут краски оставаться столь яркими по прошествии половины тысячелетия? Ральф Альберт Блейклок, американский живописец, живший в XIX веке, создал сотни картин, но продавались они настолько плохо, что он впал в тоску и окончил свои дни в государственном приюте. В дальнейшем цены на его произведения взлетели до небес – но все ли они принадлежали его кисти? В 1990-х и начале 2000-х годов на аукционах за общую сумму в $36 млн были проданы примерно пятьдесят произведений, в число создателей которых вошли немецкий сюрреалист Макс Эрнст, экспрессионист Генрих Кампендонк и французский мастер Фернан Леже, а также другие художники первых десятилетий XX века. Какой таинственный коллекционер собрал столь обширную галерею? А в чем загадка кхмерских стражей, в незапамятные времена лишившихся ног? Все это тайны – но их можно раскрыть, если задать вопрос свидетелям-атомам.
Безногие стражи
В конце 1980-х годов, когда Метрополитен-музей впервые приобрел двух коленопреклоненных служителей, их головы были отделены от торсов. Дирекция приобретала все фрагменты, какие было возможно, и со временем, за пять лет, собрала четыре отдельные части, а в 1993 году стражей наконец-то восстановили. Однако найти ноги так и не удалось.
Тем временем Федерико Каро, сотрудник научного отдела музея, изучал песчаные карьеры в центральной Камбодже. Двадцать образцов, взятых из карьеров возле Кохкера, и еще двадцать с лишним с плато Кулен – гор, разделивших Кохкер и Ангкор, – позволили ему оценить крошечные концентрации двадцати трех различных элементов, начиная от номера 4, Бериллия, до номера 92, Урана. Он показал, в чем именно эти следовые элементы были схожи со своими «собратьями» из других песчаных карьеров, откуда брали материал для кхмерских городов и храмов тысячу лет назад. Но кроме того, данные помогли установить, что концентрация, в которой присутствовали элемент номер 21, Скандий, и элемент номер 23, Ванадий, составляла лишь десять и шестьдесят миллионных долей. Эти пропорции слегка отличались от соотношения, характерного для других ангкорских храмов, поэтому можно было предположить, что песок для этих построек поступал из разных карьеров1.
Окрестности Кохкера, расположенные за сто километров от знаменитых храмов Ангкор-Вата, особенно интересны тем, кто изучает историю кхмеров. Сражаясь за власть с другими претендентами на трон – сыновьями прежнего, уже умершего правителя, – Джаяварман IV в 921 году перенес в Кохкер столицу, которая прежде находилась в Ангкоре. Соперники властелина умерли в 928 году, и он правил единолично до самой своей смерти в 941 году. Его детально продуманная новая столица была завершена менее чем за двадцать лет, и это наводит на мысль, что Джаяварман IV располагал немалым капиталом и рабочей силой. Источником сырья для построек и скульптур, украсивших новый город, стали те самые карьеры, в которых Каро спустя долгие столетия добывал свои образцы. Поэтому образец камня, из которого были созданы коленопреклоненные стражи, мог бы пролить свет на их происхождение.
Впрочем, еще до того, как было принято непростое решение отсечь от статуй образец для анализа, вмешалась традиционная археология. Ноги стражей были найдены у западных ворот главного храма в Кохкере. В соответствии с соглашением, подписанным в 2013 году, музей вернул обе статуи, и они могли вновь охранять столицу Джаявармана IV, как делали это на протяжении 1100 лет.
Испанский фальсификатор
В 1930 году Метрополитен-музей планировал совершить серьезную покупку и приобрести одну средневековую картину – «Обручение святой Урсулы». Ее автором считался кастильский художник Хорхе Инглес – по крайней мере, именно так полагал английский историк искусства и бывший директор британской Национальной портретной галереи сэр Лайонел Каст. На картине изображена счастливая чета в окружении многочисленной свиты у древнего замка, а на заднем плане по водной глади плывут корабли. Размеры картины – примерно 76 × 60 см, она нарисована на дереве и отличается характерными трещинами, как и можно ожидать от произведения, которому уже пятьсот лет; во всех иных смыслах она в прекрасном состоянии. За нее запрашивали 30 000 британских фунтов, поэтому, прежде чем дать согласие, попечительский совет Метрополитен-музея решил обратиться за консультацией к независимому специалисту – графу Умберто Ньоли, выдающемуся историку искусства и, по совместительству, агенту музея по закупкам. А уже сам Ньоли обратился к Белль да Коста Грин, которая заведовала библиотекой Моргана, расположенной на Манхэттене, в четырех километрах к югу от Метрополитен-музея.
Грин сочла картину подделкой, и музей отклонил покупку. Зная, кому изначально приписывали авторство, Грин в порыве вдохновения окрестила создателя «Испанским фальсификатором». Впрочем, сейчас полагают, что настоящий фальсификатор, скорее всего, работал в Париже в конце XIX – начале XX века. Его имя пока неизвестно, но он явно плодовит: в наши дни он считается автором более 350 произведений, многие из которых находятся в коллекциях самых прославленных музеев мира (включая Метрополитен-музей и библиотеку Моргана).
И анализ Грин, и первоначальное подтверждение Каста были основаны на соображениях, касавшихся истории искусства. О разногласиях среди экспертов мы еще поговорим. Более того, некогда Грин подтвердила подлинность иллюстрированного средневекового служебника, приобретенного библиотекой Моргана двадцатью годами ранее, а впоследствии признала этот артефакт работой того же фальсификатора.
Так есть ли способ, при помощи которого наши беспристрастные историки-атомы могут дать нам окончательный ответ о происхождении этих произведений искусства? Да, есть. Он называется авторадиографией, или, если быть точным, нейтронно-активационной авторадиографией. Как вы помните, нейтроны не имеют электрического заряда, поэтому на их полет в космосе не влияют ни электроны, ни протоны, ни магнитные поля, с которыми они могут столкнуться. Но им очень удобно в атомном ядре, в мощных объятиях сильного ядерного взаимодействия. Конечно же, добавление нейтрона к атомному ядру не меняет идентичность атома – и 12C, и 13C по-прежнему представляют собой Углерод, – но оно создает новый изотоп, который может проявлять или не проявлять склонность к радиоактивному распаду (например, 13C + n =14С, который, как мы видели в главе 6, будет испытывать бета-распад).
Начиная с 1960-х годов графитовый ядерный реактор Брукхейвенской национальной лаборатории, расположенной на Лонг-Айленде, в штате Нью-Йорк, применялся для исследования картин с использованием нейтронной активации. Он генерирует множество нейтронов (от миллионов до триллионов на квадратный сантиметр за секунду), скорость которых достаточно скромна. (Как правило, они обладают энергией 0,025 эВ, и быстрота их перемещения сравнима со скоростью молекул воздуха в замкнутом помещении, поэтому их называют «тепловыми нейтронами».) Крошечная часть этих нейтронов сталкивается лоб в лоб с ядром атома на картине, захватывается благодаря сильному взаимодействию и превращает изначальный атом в его более тяжелый изотоп.
Например, 11-й элемент, Натрий, встречается в природе только в виде своего единственного стабильного изотопа (23Na). Его ядро, захватив нейтрон, становится радиоактивным ядром 24Na, неустойчивым и склонным к бета-распаду – в стремлении обратно к долине стабильности новый атом испускает электрон, уравнивает количество протонов и нейтронов и сдвигается на одну ступень вверх в Периодической таблице к 12-му элементу, Магнию (24Mg). Период полураспада в данном случае составляет 15 часов. Как и в большинстве подобных распадов, ядро Магния остается в возбужденном состоянии, затем испытывает гамма-распад и переходит в основное состояние, испуская фотоны с энергиями 2,75 и 1,37 Мэ В. Эта реакция записывается так:
23Na + n → 24Na → 24Mg* + e— + νe*** → 24Mg + + γ (2,75; 1,37 МэВ)
Добавление одного нейтрона к большинству стабильных изотопов влечет похожую цепочку событий. Обратите внимание на итог: (1) электрон, обладающий высокой энергией, улетает с картины, (2) испускаются гамма-лучи с очень своеобразными энергиями, характерными для нового элемента, и (3) исходный атом превращается в новый, расположенный на одну ступень выше в Периодической таблице.
Нас могло бы обеспокоить то, что нейтронное облучение меняет элементы потенциально драгоценного произведения искусства. Но сколько таких атомов меняется?
Устроители Брукхейвенского проекта анализировали семь работ, приписываемых «Испанскому фальсификатору». Картины располагали на расстоянии 60 см от реактора и облучали на протяжении примерно 90 минут, направляя на каждый их квадратный сантиметр около 1 миллиарда (109) нейтронов за секунду. На шестидюймовой (15 см) странице иллюминированной рукописи это в общей сложности более 1000 триллионов (1015) нейтронов. Впрочем, напомним, что, если нейтрон не оказывается на расстоянии 10–14 см от ядра, он вообще не подпадает под влияние сильного взаимодействия и поэтому проходит прямо через картину. Принимая во внимание крошечный размер мишеней, 99,9999999999 % нейтронов пролетают сквозь нее, и только пять или шесть из каждого триллиона атомов на картине преображаются в результате нейтронного захвата.
Чтобы представить, насколько это незначительно, вообразите склад, занимающий целый квартал Нью-Йорка (ок. 80 × 275 м). Высота этого склада – двадцать этажей, и он полностью заполнен синими шариками, каждый из которых представляет один атом на картине. Нейтронное облучение превращает пять или шесть шариков в красные. Если бы 2000 человек работали по восемь часов в день, пять дней в неделю и ухитрялись бы каждую секунду хватать по одному синему шарику и выбрасывать его в окно, тогда на то, чтобы найти пять красных шариков, им потребовалось бы более шестидесяти лет. А если бы склад находился рядом с Центральным парком, выброшенные шарики заполонили бы весь парк по колено. Так что вполне справедливо назвать авторадиографию неразрушающим методом анализа.
После образования радиоактивных ядер их периоды полураспада оказываются различными. Но нужно точно выяснить, где именно на каждой картине расположены определенные элементы, поэтому на ее лицевую сторону накладывают кусочек пленки с тем расчетом, чтобы улетающие электроны делали его видимым. Пленку оставляют на то или иное время, отмеряя различные интервалы после облучения, – так выявляют присутствие разных элементов с разным периодом полураспада. В произведениях «Испанского фальсификатора» исследователей интересовали такие элементы (с соответствующими периодами полураспада): Марганец (2,58 часа), Медь (12,7 часа), Натрий (15 часов), Мышьяк (26,3 часа), Золото (2,7 дня), Хром (27,7 дня), Ртуть (46,7 дня), Сурьма (60,2 дня) и Цинк (244 дня)2. Пленку накладывали по прошествии определенного времени после воздействия (в скобках указан срок): спустя один день (на один день), спустя четыре дня (на два дня), спустя семь дней (на два дня) и спустя двадцать два дня (на пять дней).
Одна из рукописей, бревиарий XV века, приобретенный библиотекой Моргана в 1900 году – еще до того, как должность заведующей заняла Грин, – содержит двенадцать календарных картин и шесть иллюстраций, на одной из которых изображена сцена с Марией Магдалиной. Книге на самом деле 600 лет, и предполагалось, что, хотя листья и цветы, украшающие поля каждой страницы, оригинальны, миниатюры добавил «Испанский фальсификатор». Авторадиограммы показали, что синяя краска, которой рисовали цветы на кайме (содержащая Медь), отличалась от синей краски, использованной для неба (содержащей Натрий), хотя на вид они были совершенно одинаковы. Пусть даже периоды полураспада этих двух изотопов схожи, вследствие чего можно было бы ожидать равной интенсивности, Медь обладает гораздо большей способностью поглощать нейтроны и, следовательно, проявляется более интенсивно. Синий пигмент, в котором присутствовала Медь, был доступен в средние века, но голубое небо, по всей видимости, изображали ультрамарином (химическая формула Na7Al6Si6O24S3), пигментом, содержащим Натрий и впервые произведенным в XIX веке.
На пленке, экспонированной через семь-девять дней после облучения, видна разница между зелеными листьями, окаймляющими картину, и зеленой травой на иллюстрации – интенсивность последней не столь велика. К моменту экспозиции от 22 до 27 дней зеленая трава совершенно инертна, а листья на границе все еще активны. Это значит, что пигмент, при помощи которого создавалась иллюстрация, содержит Мышьяк; его период полураспада составляет всего 26,3 часа, так что за 22 дня прошло двадцать таких периодов и осталась только одна миллионная часть наведенной радиоактивности3. И действительно, Мышьяк входит в состав парижской зелени (ацето-арсенит меди). Впервые она стала доступной художникам в 1818 году и считалась лучшим зеленым пигментом на протяжении XIX века. Однако она ядовита, и в начале XX века от нее отказались4.
Засветка пленки меняется, поскольку электроны вылетают «строго по графику», который, как отмечалось выше, соответствует различным периодам полураспада наведенных радиоактивных изотопов. Но кроме того, конечные продукты распада остаются в возбужденном состоянии и быстро испускают гамма-лучи, энергии которых соответствуют уникальному набору возбужденных ядерных состояний того или иного элемента и благодаря проявлению определенных характеристик однозначно свидетельствуют о его присутствии. Однако, поскольку эти фотоны испускаются в случайных направлениях, невозможно определить, из каких областей картины они произошли. Поэтому авторадиографическая пленка и спектрометр, распределяющий гамма-лучи по энергии, работают в тандеме: спектрометр подтверждает присутствие Мышьяка, а пленка показывает, где именно он находится. Что касается иллюстрации Марии Магдалины в бревиарии, то гипотеза о том, что рамки были оригинальными, а иллюстрация – поддельной, подтвердилась.
Творческое наследие Блейклока
Перемены в составе пигментов, использованных художниками, или датировка дерева или холста, на которых написаны их картины, помогают обнаружить подделку, когда авторы самих произведений уже давно ушли в мир иной (см. гл. 8). Однако поддельные произведения современных художников нужно исследовать более аккуратно, хотя можно применить некоторые из тех же неразрушающих методов.
Считается, что среди американских художников чаще всего подделывают работы Ральфа Альберта Блейклока. Свой творческий путь он начал в Нью-Йорке в 1870-х годах, вернувшись из трехлетнего путешествия по американскому Западу. Блейклок был в основном самоучкой, и хотя его ранние работы напоминают «Школу реки Гудзон», со временем он развил уникальный романтический стиль, типичный пример которого – дивные пейзажи, залитые лунным светом. Но хотя он писал очень много картин, продавать их он не умел совершенно, и работа не давала ему средств, необходимых для того, чтобы прокормить и одеть свою жену и девятерых детей. В 1891 году у него случился нервный срыв, и к 1899 году его навсегда поместили в лечебницу. После его ухода со сцены успех его работ у критиков резко возрос, как и продажи картин, начавших приносить четырех-, а затем и пятизначные суммы. Из-за такого высокого спроса и отсутствия постоянного предложения быстро стали распространяться подделки, которыми, помимо других, занималась и его дочь Мэриан (впоследствии ее тоже поместили в приют для душевнобольных).
В 1970-х годах Морис Коттер и его коллеги провели обширное исследование произведений Блейклока и его современников, в том числе и ряда известных подделок5. Авторадиографии, а также рентгеновскому облучению подверглись в общей сложности сорок пять картин. Рентгенография картины работает так же, как в рентген-кабинете: фотоны рентгеновского излучения проходят через картину и обнаруживаются на другой стороне – либо на пленке, либо, что более вероятно в наши дни, на электронном детекторе. Как и с изображением сломанной кости, видимой сквозь кожу и мышцы, рентгеновские лучи могут выявить скрытые слои картины; кроме того, поскольку каждый атом поглощает рентгеновские лучи с определенными энергиями – в соответствии с промежутками, разделяющими энергетические уровни его внутренних электронов, – становится возможным опознать химический элемент.
Оценку подлинности творческого наследия Блейклока команда Коттера начала с картины «Восход луны» из коллекции Смитсоновского института, автором которой, несомненно, был сам художник. Рентгеновский снимок произведения показал технику, характерную для работ Блейклока – в ней на картину в качестве основы наносились при помощи мастихина неравномерные слои свинцовых белил, отчасти для сглаживания шероховатой поверхности дерева, а отчасти – в качестве подмалевка. В «Восходе луны» детали, которым предстояло превратиться в ярчайший лунный свет, были изображены самым толстым слоем белой краски. Поскольку Свинец эффективно поглощает рентгеновские лучи (вспомните тяжелый фартук, который стоматолог кладет вам на колени, когда делает рентген зубов), самые плотные слои на рентгеновском снимке кажутся темными.
Авторадиограмма, сделанная через несколько часов после облучения, выявила пигмент на основе Марганца, нанесенный поверх свинцовых белил для сохранения комковатого вида. Другая рентгенограмма, сделанная спустя несколько дней, показала, что в картину был добавлен пигмент, содержащий Мышьяк, – возможно, его внесли деревянным концом кисти, чтобы подчеркнуть свет, проникающий сквозь деревья. Еще одно изображение, полученное в период от четырнадцати до двадцати четырех дней после облучения, показало тонкий слой пигмента, содержащего Ртуть, – художник нанес его кистью для достижения красноватого оттенка, работая в технике лессировки. Такие завершающие тоновые слои типичны для зрелых работ Блейклока.
Еще одно из произведений, изученных авторами, – картина «Женщина в красном», написанная маслом по холсту. Рентген показывает, что, в отличие от работ Блейклока, слой грунтовки очень тонкий, поэтому ткань холста по-прежнему хорошо видна. На рентгенограмме, сделанной через девять-девятнадцать дней после облучения, красное платье женщины насыщено до предела. Причиной этого считают распад радиоактивного изотопа Ртути 203Hg, который формируется при захвате нейтрона наиболее распространенным стабильным изотопом 202Hg и затем разрушается до 203Tl; пигмент киноварь – сульфид ртути (HgS). Краски нанесены совершенно по-другому, чем в «Восходе луны». В левом нижнем углу картины на рентгенограмме видна частично соскобленная подпись. Сравнение с подписанной работой Мэриан Блейклок не оставляет сомнений в том, что в данном случае дочь заменила свою подпись подписью отца.
Ральф Альберт Блейклок, запертый в государственной гомеопатической больнице Миддлтауна в округе Ориндж, штат Нью-Йорк, не подозревал о стремительном взлете своей славы живописца. В 1916 году одна из его пейзажных картин была продана на аукционе за 20 000 долларов (более полумиллиона в современных ценах), что на тот момент было рекордом для американского художника. Репортер New York Tribune нашел Блейклока и впервые за семнадцать лет привез его на Манхэттен. Уже по прошествии тридцати лет журналист вспоминал, что несколько «своих» произведений, выставленных в галерее, Блейклок причислил к подделкам. Но в отчете о посещении галереи репортер решил не упоминать этот факт, поскольку сомневался в ясности мышления художника и не желал портить приятную историю6.
Немецкие подделки и PIXE
В ноябре 2011 года Вольфганг Бельтракки, а также его жена, свояченица и ее муж были признаны виновными в подделке четырнадцати картин европейских сюрреалистов и экспрессионистов, проданных на предположительно авторитетном арт-рынке за более чем 16 миллионов евро (22 миллиона долларов на бирже по курсу 2011 года). В число предъявленных обвинений не попали еще как минимум сорок четыре подделки, выявленные немецкими следователями; подобные цифры возводят это дело в ранг крупнейшего мошенничества в сфере искусства за последние семьдесят пять лет.
Картины были проданы на аукционе в Германии в начале 1990-х годов, и их подлинность была подтверждена историками искусства. В некоторых торгах участвовал аукционный дом Christie’s, что повысило доверие к работам. Комик Стив Мартин купил одно из произведений художника Генриха Кампендонка за 850 тысяч долларов.
Жена Бельтракки придумала хитрую историю о происхождении картин, решив убедить всех в том, что ее дедушка, Вернер Йегерс, купил их в начале XX века у немецкого еврейского арт-дилера искусства Альфреда Флехтхайма, чей бизнес забрали нацисты в 1930-х годах. Ходили слухи, что Йегерс спрятал свою коллекцию в горной пещере недалеко от Кёльна, чтобы ее не украли или не уничтожили нацисты (считавшие произведения того периода «дегенеративными»). На самом деле Йегерс ни разу в жизни не купил ни одного произведения искусства, хотя Бельтракки зашли настолько далеко, что сделали фотоснимки в старинной одежде с висящими на фоне поддельными картинами.
Другая картина Кампендонка, проданная на аукционе Lempertz в Кёльне в 2008 году за 2,5 миллиона долларов, помогла раскрыть мошенничество, когда новый владелец изучил ее с помощью рентгеновского излучения, индуцированного протонами (PIXE). PIXE – еще один полностью неразрушающий метод, основанный на преимуществах уникального «отпечатка пальца», который характерен для каждого атома в наборе определенных длин волн, создаваемых переходами его электронов. При помощи ускорителя PIXE создает пучок протонов с энергией (обычно достигающей нескольких миллионов электронвольт), достаточной для ионизации атомов картины, которая происходит вследствие того, что один из электронов, расположенных ближе всего к центру, насильно срывается со своей орбиты. В ответ внешние электроны каскадом спускаются вниз, заполняя дырку и излучая волны определенной длины, уникальные для каждого элемента. Хотя можно добиться этого и другим путем, осветив картину достаточно энергичными рентгеновскими фотонами (это так называемая рентгеновская флуоресценция), метод PIXE лучше в том плане, что позволяет непрерывно менять энергию излучения и таким образом выбирать глубину, на которую проникнут протоны (благодаря чему получается исследовать различные слои краски, а также определять размеры холста и толщину наложенного лака). Кроме того, можно сфокусировать луч, чтобы осветить определенные микроскопические участки произведения искусства; стандартные размеры луча настолько малы, что составляют всего 0,2 мм (в несколько раз больше ширины человеческого волоса).
Исследование картины Кампендонка, проведенное при помощи PIXE, показало, что в ней содержалось значительное количество Титана, входящего в состав «титановых белил» – пигмента, впервые произведенного спустя семь лет после предположительного создания картины, и тем самым это позволило классифицировать ее как однозначную подделку. При этом сам метод не оказывает на картину совершенно никакого влияния – конечно, если не принимать во внимание ее стоимость.
Внимание! Это не конец книги.
Если начало книги вам понравилось, то полную версию можно приобрести у нашего партнёра - распространителя легального контента. Поддержите автора!Правообладателям!
Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.Читателям!
Оплатили, но не знаете что делать дальше?