Автор книги: Дмитрий Соколов
Жанр: Техническая литература, Наука и Образование
сообщить о неприемлемом содержимом
Текущая страница: 6 (всего у книги 11 страниц) [доступный отрывок для чтения: 3 страниц]
Глава 10 Вспомогательные устройства высокотехнологичных комплексов
Эти устройства похожи на традиционные основные блоки, описанные в предыдущей главе. Однако у них есть отличие, заключающееся в том, что они выполняют вспомогательную функцию в высокотехнологичных комплексах. То есть постановка новой задачи для них затруднительна.
Первое желание, которое возникает при создании высокотехнологичного комплекса, – это оснастить его покупными вспомогательными системами или хотя бы кем-то уже ранее разработанными. Однако покупная система не всегда адаптируется под конкретные задачи комплекса либо может слишком дорого стоить. Использовав чужую разработку, как уже отмечалось, можно нарушить чьи-то права на интеллектуальную собственность. И если высокотехнологичный комплекс выйдет на стадию продажи, даже при наличии на него патента и патентов на его основные высокотехнологичные составляющие, можно не выполнить критерий «патентная чистота». Следует заметить, что даже если вспомогательные устройства приобретены, как покупные изделия, нет гарантии, что они не запатентованы третьими лицами. В этом случае необходимо требовать от поставщиков либо предъявления патентов, либо проведения патентных исследований и доказательств не нарушения чьих-либо прав. Следовательно, если высокотехнологичный комплекс предназначен на продажу, необходимо вспомогательным устройствам обеспечивать хотя бы новизну, а лучше еще и изобретательский уровень.
Подходы к решению этой проблемы могут быть следующие. Первым делом необходимо в комплексе выделить его специфические особенности и чем они будут глубже, тем лучше. В этом случае созданные вспомогательные устройства будут в большей степени отличаться от возможных аналогов. Рассмотрим такой подход на примерах транспортных систем, которые почти всегда присутствуют в высокотехнологичных комплексах.
Горизонтальная транспортная система в конкретном исполнении для зондовой микроскопии должна обеспечивать загрузку зондов и образцов в сканирующий зондовый микроскоп (СЗМ). Специфика использования такого комплекса заключается в том, что зонды представляют собой иголки длиной 2–3 мм, имеющие диаметр 200–300 мкм, или кантилеверы в виде кремниевых чипов близких размеров. Для таких однородных по размерам объектов может использоваться один и тот же носитель. Образец же в зондовой микроскопии обычно более 10 мм в поперечнике и, соответственно, носитель для него будет иметь свое исполнение. Вторая специфика такой системы часто заключается в том, что один и тот же манипулятор необходимо использовать с одним и тем же пассивным захватом. Эти особенности и определили новизну и изобретательский уровень разработанной транспортной системы. Суть этой системы заключается в том, что первый штырь 1 и второй штырь 2 (рис. 10.1) захвата 3, предназначенного для перемещения носителя 4 образца 5, имеют зацепы 6 и 7, необходимые для извлечения носителя 4 и малогабаритного носителя 8 из рабочих позиций. При этом штырь 1 имеет плоское (в сечении) исполнение для отдельной транспортировки и ориентации малогабаритного носителя 8 зонда 9. Для наглядности на рис. 10.1 носители 4 и 8 повернуты на 90° относительно своего рабочего положения.
Транспортировка носителя 4 осуществляется, когда штыри 1 и 2 вставлены в первые отверстия 10, а транспортировка носителя 8, когда штырь 1 находится во втором отверстии 11, имеющем продолговатую форму. Более подробно работа этой транспортной системы описана в [1]. Новизна этого технического решения была обеспечена благодаря использованию одного манипулятора с минимальным набором степеней свободы для транспортировки разных объектов.
Вторая транспортная система должна передавать зонд и образец внутрь вакуумного криостата, причем манипулятор при линейном перемещении должен иметь активный захват, но без использования специального привода. Криостат при этом должен иметь вертикальное исполнение. Данная специфика также определила оригинальное решение транспортной системы, в которой активизация захвата была осуществлена благодаря использованию одной линейной степени свободы манипулятора.
Рис. 10.1. Горизонтальная транспортная система: 1 – первый штырь; 2 – второй штырь; 3 – захват; 4 – носитель образца; 5 – образец; 6,7 – фиксаторы; 8 – носитель зонда; 9 – зонд; 10 – первые отверстия; 11 – второе отверстие
Рис. 10.2. Вертикальная транспортная система: 1 – лапки захвата; 2 – захват; 3 – манипулятор; 4 – нерабочие концы лапок; 5 – возвратный механизм; 6 – зацепы; 7 – канавки носителя; 8 – носитель зондов и образцов
Это удалось сделать, используя сближение лапок 1 (рис. 10.2) захвата 2 при линейном перемещении манипулятора 3 вверх и взаимодействии нерабочих концов 4 лапок 1 с возвратным механизмом 5, неподвижно закрепленным на стенке вакуумного криостата (не показан). Это необходимо, чтобы лапки 1 вернуть в исходное положение (для последующего захвата носителя 8), так как их раздвижка (для освобождения носителя) происходит при движении захвата 2 вниз и взаимодействии зацепов 6 с канавками 7 носителя 8. Новизна и изобретательский уровень в этой системе [2] были обеспечены помимо использования возвратного механизма еще и средствами, обеспечивающими точную ориентацию носителей 8 в зоне измерения за счет канавок 7.
Третья транспортная система имела специфику силового закрепления носителя образца в зоне измерения, связанную с возможностью его нагрева или охлаждения. Силовое закрепление необходимо для обеспечения хорошего теплового контакта между носителем образца и модулем тепло-подвода (теплоотвода). В результате возникло оригинальное решение, которое связано с использованием сильных пружин для фиксации носителя образца и возможностью его извлечения.
Для фиксации носителя 1 образца 2 (рис. 10.3) на нагревателе (холодильнике) 3 был использован первый зацеп 4, сопряженный с выборкой 5.
При этом высокая жесткость манипулятора 6 на кручение обеспечила выгрузку носителя 1. Это осуществлялось следующим образом. Манипулятор 6 поворачивали по часовой стрелке, пружина 7 поднималась (вид А), выборка 5 размыкалась с первым зацепом 4, второй зацеп 8 взаимодействовал с краем отверстия 9 и снимал носитель 1 с нагревателя 3.
В данном случае новизна и изобретательский уровень помимо использования описанных элементов были достигнуты еще и благодаря обеспечению тепловых контактов в широком диапазоне температур, и за счет измерения температуры рабочей поверхности образца, и за счет применения специальных материалов (подробно см. в [3]).
Рис. 10.3. Силовая транспортная система: 1 – носитель образца; 2 – образец; 3 – нагреватель (холодильник); 4 – первый зацеп; 5 – выборка; 6 – манипулятор; 7 – пружина; 8 – второй зацеп; 9 – отверстие носителя (на виде А показана верхняя часть пружины 7)
Рис. 10.4. Инерционный шаговый двигатель: 1 – плоские пружины; 2, 3 – первая и вторая подвижные каретки; 4 – направляющая; 5,6 – трущиеся поверхности
Следующим вспомогательным элементом почти каждого высокотехнологичного комплекса является двигатель для перемещения объектов. В одном из вариантов специфика использования инерционного шагового двигателя для высокоточной системы измерения заключалась в минимизации его нефункциональных перемещений, которые необходимы при работе с нанообъектами. Данная специфика была учтена и реализована благодаря применению упругих плоских пружин 1 (рис. 10.4), соединяющих первую 2 и вторую 3 подвижные каретки, установленные на направляющей 4 с возможностью перемещения, например, по координате X, что и явилось основным отличительным признаком от известного технического решения.
Использование пружин 1 обеспечило стабильное положение кареток 2 и 3 (относительно друг друга) при перемещении их по трущимся поверхностям 5 и 6 направляющей 4 и стабилизацию усилия между ними, что дополнительно повысило надежность работы двигателя [4].
В другом варианте шагового двигателя (см. рис. 10.4) новизна была достигнута за счет треугольной в сечении формы направляющей 4 и формирования микроканавок на ней [5].
Рис. 10.5. Координатный стол с пьезоподвижкой: 1 – основание; 2 – трехкоординатный пьезоэлемент; 3 – первая каретка; 4 – шаровые опоры; 5 – вторая каретка; 6 – ориентир; 7 – третья каретка; 8 – первый магнит; 9 – второй магнит
Довольно часто в качестве вспомогательных устройств высокотехнологичных комплексов используются координатные столы.
Координатный стол (рис. 10.5) одновременно объединяет и адаптацию вспомогательного устройства под задачи высокотехнологичного комплекса, и постановку новой задачи, характерной для основных блоков, описанных в главе 9.
В этом столе на основании 1 посредством трехкоординатного пьезоэлемента 2 закреплена первая каретка 3. На ней на шаровых опорах 4 установлена вторая каретка 5, на которой на ориентирах 6 расположена третья каретка 7. При этом на основании 1 установлен первый магнит 8, на второй каретке 5 – второй магнит 9, а третья каретка 7 выполнена из магнитного материала.
В этом случае адаптация под условия эксплуатации была связана с малогабаритностью координатного стола, из-за чего был использован пьезоэлемент 2. А новые задачи определялись необходимостью ориентированной установки третьей каретки 7 и ее перемещением. Решение этих задач и получение патента [6] было достигнуто благодаря использованию магнитов 8 и 9, которые позволили перемещать каретку 5 по опорам 4 и одновременно сохранять точное положение каретки 7 на ориентирах 6.
В двухкоординатном столе, изображенном на рис. 10.6, необходимо было обеспечить быстрый съем и координатную установку подвижной каретки.
Двухкоординатный стол с ручным приводом содержит платформу 1 и установленную на ней подвижную каретку 2, сопряженную с дифференциальными толкателями 3 и пружинными упорами 4. Этот стол был защищен патентом [7] благодаря возможности быстрого откидывания в стороны упоров 4, а также расположению упорных плоскостей 5 и 6 под разными углами к направлению перемещения, что расширило его функциональные возможности в высокотехнологичном измерительном комплексе.
Рис. 10.6. Двухкоординатный стол с ручным приводом: 1 – платформа; 2 – подвижная каретка; 3 – толкатели; 4 – пружинные упоры; 5,6 – упорные плоскости
В качестве вспомогательного устройства высокотехнологичного измерительного комплекса рассмотрим еще тестовую структуру для градуировки оптических и зондовых микроскопов. Эта структура выполнена из опаловых сфер 1 определенного размера, закрепленных на подложке 2 (рис. 10.7).
Специфика ее использования в сканирующем зондовом микроскопе заключается в том, что для туннельных исследований тестовая структура должна быть проводящей, а для расширения ее функциональных возможностей еще и многослойной. Это и позволило получить патент [8].
Часто в высокотехнологичных комплексах могут использоваться оптические микроскопы. При исследовании оптически прозрачных, например, биологических образцов с помощью СЗМ 1 (рис. 10.8) возникла необходимость наблюдения с высоким разрешением за зоной измерения на образце 2, закрепленном на основании 3.
Рис. 10.7. Тестовая структура: 1 – опаловые сферы; 2 – подложка
Рис. 10.8. СЗМ с инвертированным оптическим микроскопом: 1 – СЗМ; 2 – образец; 3 – основание; 4 – осветительная система; 5 – отверстие; 6 – платформа; 7 – объектив оптического микроскопа
Для этого осветительная система 4 осуществляет подсветку образца 2, минуя СЗМ, через отверстие 5 в платформе 6. Благодаря этому удалось разместить объектив 7 оптического микроскопа максимально близко к зоне измерения, что позволило наблюдать образец 2 с большим увеличением. В результате был получен патент [9], расширяющий функциональные возможности устройства.
Второй вариант использования оптического микроскопа заключался в многовариантном его применении (рис. 10.9).
В этом случае зонд 1 закрепляют в оптически прозрачном держателе 2, сопряженном с платформой 3, которая установлена посредством опор 4 на основании 5. Образец 6 закреплен на системе предварительного сближения 7. Оптический микроскоп 8, используя оптический модуль 9, имеет возможность наблюдения зоны измерения образца 6 под разными углами от 0 до 90°. Благодаря этой особенности наблюдения образца 6 был получен патент [10].
Рис. 10.9. СЗМ, совмещенный с оптическим микроскопом: 1 – зонд; 2 – оптически прозрачный держатель; 3 – платформа; 4 – опора; 5 – основание; 6 – образец; 7 – система предварительного сближения; 8 – оптический микроскоп; 9 – оптический модуль
И последний пример касается проведения атомно-силовых измерений в магнитном поле (рис. 10.10).
Для этого используются первый 1 и второй 2 магнитопроводы, расположенные с зазорами относительно подвижной каретки 3 с образцом 4. При этом зона измерения зондом 5 образца 4 всегда находится в магнитном поле, формируемом магнитом 6. Необходимость использования подвижной каретки 3 определило специфику использования магнитопроводов 1 и 2, расположенных с зазором относительно нее и позволило получить патент [11].
Рис. 10.10. Магнитно-силовой микроскоп с переменным магнитом: 1,2 – первый и второй магнитопроводы; 3 – подвижная каретка; 4 – образец; 5 – зонд; 6 – магнит
Таким образом, при патентовании вспомогательных устройств высокотехнологичных комплексов необходимо выделить их специфику и даже если не удастся запатентовать оригинальное решение, то наличие новизны в них обезопасит комплекс от нарушения чьих-то патентных прав. При этом постановка новой задачи, если это будет возможно, облегчит получение патента.
Литература
1. Патент RU2158454. Сверхвысоковакуумная транспортная система для сканирующих зондовых микроскопов. 22.04.2000.
2. Патент RU2380785. Сверхвысоковакуумная транспортная система. 23.11.06.
3. Патент RU2244948. Устройство поддержания температуры для сканирующих зондовых микроскопов. 06.06.2003.
4. Патент RU2347300. Инерционный шаговый двигатель. 04.05.2006.
5. Патент RU2297072. Инерционный двигатель. 08.11.2005.
6. Патент RU2254640. Координатный стол. 05.03.2004.
7. Патент RU2255321. Координатный стол. 29.10.2003.
8. Патент RU2244254. Тестовая структура для градуировки сканирующих зондовых микроскопов. 28.02.2003.
9. Патент RU2180726. Сканирующий зондовый микроскоп, совмещенный с инвертированным оптическим микроскопом. 25. 05.2001.
10. Патент RU2244332. Сканирующий зондовый микроскоп, совмещенный с оптическим микроскопом. 15. 04.2002.
11. Патент RU2276794. Магнитно-силовой микроскоп с переменным магнитом. 18.11.2004.
Глава 11 Высокотехнологичные устройства узкоспециального назначения
На первый взгляд патентование таких устройств не должно вызывать особых трудностей. Ведь специальное назначение требует решения специфических задач, а это, как уже неоднократно отмечалось ранее, приводит к появлению большого числа отличительных признаков, из которых должно формироваться патентоспособное техническое решение. Однако на практике дело осложняется следующим. Прибор, имеющий узкоспециальное назначение, чаще всего эксплуатируется в условиях с жесткими для него ограничениями по габаритам, массе, конструктивным материалам и т. п. А это может приводить к тому, что различные группы разработчиков, не связанных между собой, будут создавать очень похожие решения. На примерах сканирующих зондовых микроскопов (СЗМ) узкоспециального назначения рассмотрим особенности процесса создания и патентования таких устройств.
Для решения ограниченного круга проблем была поставлена задача сконструировать СЗМ, работающий при температурах жидкого азота. Одним из основных узлов СЗМ является система предварительного сближения зонда и образца. На момент постановки задачи существовали в основном две группы систем этого сближения: пьезоинерционные и механические с внешними приводами от шаговых двигателей вращения. Пьезоинерционные еще не были до конца адаптированы под низкие температуры, работали ненадежно из-за смерзания движущихся частей и уменьшения пьезоотклика на напряжение. Следовательно, предпочтительным решением оставалось использовать шаговые двигатели вращения. Вторая особенность устройства связана с тем, что наиболее оптимальным решением достижения низких температур является использование стандартных криостатов 1 (рис. 11.1), серийно выпускаемых промышленностью в различных модификациях для решения широкого круга задач.
Эти криостаты имеют похожее конструктивное исполнение: горловину 2 с отверстием 3, имеющим диаметр порядка 50 мм, и расстояние L от этого отверстия до рабочей зоны 4 порядка 1 м. Теперь, если эти ограничения наложить на конструктивное исполнение СЗМ, то получится, что шаговый двигатель 5 будет закреплен на фланце 6, который устанавливается на горловину 2.
Рис. 11.1. Низкотемпературный СЗМ: 1 – криостат; 2 – горловина; 3 – отверстие; 4 – рабочая зона; 5 – шаговый двигатель; 6 – фланец; 7 – механизм сближения; 8 – привод; 9 – тонкостенная трубка; 10 – СЗМ; 11 – опоры
Вращение к механизму сближения 7 зонда и образца будет передаваться приводом 8, установленным на тонкостенной трубке 9, обеспечивающей минимизацию подвода тепла в зону измерения. Сам СЗМ 10 должен быть закреплен на тонкостенных опорах 11 и иметь вертикальное исполнение, так как сканирующее устройство в СЗМ – обычно пьезотрубка длиной порядка 30 мм и вместе с объектом в отверстие 50 мм ее горизонтально не вставить. Кроме этого большинство сканирующих зондовых микроскопов обычно защищают от вибраций и в данном случае это скорее всего будут длинные пружины 12, на которых висит СЗМ 10. Кроме этого, для обеспечения подвода зонда к образцу (не показаны) необходимо жесткое механическое замыкание привода 8 и механизма сближения 7. Данные ограничения привели к тому, что разработанный прибор чуть ли не во всех деталях повторил уже запатентованную конструкцию [1]. Дело в том, что патентный поиск на начальной стадии разработки не обнаружил это решение, а выявил его на стадии начала изготовления прибора. Пришлось известное решение брать за прототип и его дорабатывать. Возможности доработки нашлись в механизме сближения 7, где не было таких жестких ограничений. Выполнение этого механизма рычажным, а также доработки системы теплозащиты позволили получить патент [2] на частное техническое решение.
Второй пример касается СЗМ, совмещенного с жидкостной ячейкой. В приборах такого рода есть ограничения на условия функционирования, связанные с тем, что зонд и образец должны перемещаться друг относительно друга, но при этом зона измерения должна быть защищена от окружающей среды. Почти единственное решение заключается в использовании эластичной мембраны 1 (рис. 11.2), соединенной с ячейкой 2 и держателем образца 5. Мембрана 1 позволяет осуществлять сближение зонда 4 и образца 5 (механизм сближения условно не показан) и их взаимное сканирование.
Рис. 11.2. СЗМ, совмещенный с жидкостной (электрохимической) ячейкой: 1 – эластичная мембрана; 2 – ячейка; 3 – держатель зонда; 4 – зонд; 5 – образец; 6 – зуб; 7 – прокладка; 8 – пьезосканер
Рис. 11.3. Электрохимическая ячейка: 1 – сильфон; 2 – держатель зонда; 3 – зонд; 4 – ячейка; 5 —аэростатический подшипник; 6 – держатель образца; 7 – образец
Здесь повторилась та же ситуация и разработанное решение почти полностью повторило запатентованную конструкцию [3]. В этом случае также пришлось дорабатывать конструкцию в мелочах и получать патент на частное техническое решение, отличающееся условиями закрепления мембраны 1 между зубом 6 и эластичной прокладкой 7, выполнением мембраны 1 двухслойной, конфигурацией пьезосканера 8 и формой рабочего объема ячейки [4]. В одном из вариантов этого решения держатель образца 3 осуществлял сканирование, а мембрана 1 была закреплена на нем (не показано).
Следующая разработка уже электрохимической ячейки учла эту ситуацию и для обеспечения новизны вместо мембраны был использован сильфон 1 (рис. 11.3), соединяющий держатель 2 зонда 3 и ячейку 4, на которой установлен держатель 6 образца 7. Изобретательский уровень определили многовариантное соединение сильфона 1 с держателем 2, в том числе посредством аэростатического подшипника 5, быстросъемное соединение держателя 6 с ячейки 4, а также специальный подбор материалов [5].
Следующий пример связан с решением задачи виброразвязки СЗМ в условиях высокого вакуума. Известно, что при отсутствии внешнего сопротивления добротность колебательной системы возрастает. То есть объект, подвешенный на пружинах, будет долго сохранять колебательный режим перемещения, а если этот объект СЗМ, то, пока он будет сохраняться, нельзя приступать к работе. Для решения этой проблемы возможно использования эффекта токов Фуко, которые возникают в проводнике при пересечении им магнитных силовых линий и, взаимодействуя с ними, тормозят перемещающийся проводник. На момент создания устройства виброразвязки применение этого явления уже давно было описано в разнообразных источниках и патентование изделия разработчиком не планировалось.
Аналогичное запатентованное и поддерживаемое техническое решение было найдено случайно [6] и для того чтобы выйти из под него, пришлось магниты 1 и 2 (рис. 11.4), закрепленные на основании (не показано), расположить таким образом, чтобы замкнуть магнитные линии соседних пар магнитов, благодаря чему проводник 3 с СЗМ 4, подвешенный на пружинах 5, будет более эффективно тормозиться в магнитном поле, что и было запатентовано в [7].
Рис. 11.4. Магнитный гаситель на токах Фуко в высоковакуумном СЗМ: 1,2 – магниты; 3 – проводник; 4 – СЗМ; 5 – пружины
Вывод, который напрашивается при производстве приборов узкоспециального назначения, заключается в необходимости проведения особо тщательного патентного поиска на более ранних стадиях разработки.
Следует заметить, что помимо изложенного подхода к патентованию специальных устройств можно идти и другим путем. Можно модернизировать средства, которыми решается основная задача. Например, фирма Attocube разработала инерционные шаговые двигатели [8], способные работать при низких температурах. Благодаря их малым размерам они подошли под азотные криостаты и была разработана серия приборов на их основе [9].
Второй путь, по которому можно идти, чтобы обезопасить себя от нарушения чужих патентов – это постановка сверхзадачи в данном направлении. Например, помимо рабочих азотных криостатов существуют гелиевые транспортные криостаты с входных отверстием порядка 15 мм. Эти криостаты не предназначены для работы в них приборов, а лишь для хранения и транспортировки гелия. Разработка по патенту [10] решила сверхзадачу размещения СЗМ внутри транспортного гелиевого криостата благодаря использованию малогабаритных дифференциальных винтов. То есть второй путь при создании узкоспециальных устройств может заключаться в попытке поиска новых задач и средств, обеспечивающих патентную чистоту разработок.
Но и в этом случае патентный поиск должен занимать важное место. Не исключено, что похожую сверхзадачу решали ранее, на другом уровне развития техники. Например, для малогабаритного гелиевого СЗМ [10] был найден аналог [11], в котором сканирующий туннельный микроскоп был размещен также в транспортном гелиевом криостате. Здесь также были использованы тонкостенные элементы закрепления, внешняя установка привода и т. п. То есть даже при наличии сверхзадачи в установках узкоспециального назначения патентный поиск должен быть предельно тщательным.
Литература
1. Патенти85410910. Cryogenic atomic force microscope. 22.12.1993.
2. Патент RU2271583. Криогенный сканирующий зондовый микроскоп. 09.09.2004.
3. Заявка ЕР0564088. Scanning force microscope with integrated optics and cantilever mounts and method for operating the same. 25.02.1993.
4. Патент RU2210818. Сканирующий зондовый микроскоп с жидкостной ячейкой. 12.04.2001.
5. Патент RU2248600. Сканирующий зондовый микроскоп с электрохимической ячейкой. 26.09.2003.
6. Патент US4605194. High-performance vibration filter. 13.08.1992.
7. Патент RU2244178. Магнитный демпфер. 28.02.2003.
8. Патент GB2316222. Inertial positioner. 18.02.1988.
9. Патент GB2323234. Near-field optical microscope. 16.09.1988.
10. Патент RU2258901. Малогабаритный сканирующий зондовый микроскоп. 09.09.2004.
11. Альтфедер И.Б. и др. Малогабаритный низкотемпературный сканирующий туннельный микроскоп. – ПТЭ, 1989, № 5, с. 188–190.
Правообладателям!
Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.Читателям!
Оплатили, но не знаете что делать дальше?