Электронная библиотека » Джимми Сони » » онлайн чтение - страница 4


  • Текст добавлен: 29 декабря 2021, 04:24


Автор книги: Джимми Сони


Жанр: Зарубежная публицистика, Публицистика


Возрастные ограничения: +12

сообщить о неприемлемом содержимом

Текущая страница: 4 (всего у книги 24 страниц) [доступный отрывок для чтения: 8 страниц]

Шрифт:
- 100% +
4. МТИ

Клод Шеннон уже не понаслышке знал, что такое холод. Ветер, дувший с Атлантики, был солонее, чем в Мичигане, но не намного холоднее. Снег в Новой Англии был почти так же глубок. Впервые покинув Средний Запад в двадцать лет и очутившись один в новом месте, Шеннон, конечно же, успел изучить окружающую обстановку. А для тех, кто не выносил холода, МТИ мог предложить коридоры и переходы, длинные пространства, покрашенные в традиционный институтский серый цвет. Инженеры могли провести всю зиму, не выходя из помещения. Они могли фактически жить в этих серых переходах. И было много таких дней, когда Шеннон не видел солнца – за исключением особого «ритуального праздника» МТИ, двух зимних дней в году, когда солнце освещало все коридоры, окрашивая на закате их серые стены золотом.

«В институте ходила легенда, что в такие дни зоркий глаз заметит на стенах коридора на уровне плеча карандашные линии, нарисованные параллельно полу, – пишет историк МТИ Фред Хэпгуд. – Считается, что эти следы оставили члены студенческого братства, которые настолько привыкли к этим коридорам, что могли идти по ним вслепую… приставить карандаш к стенке, закатить глаза, забывшись после решения какой-то трудной задачи, и следовать своим курсом на автопилоте». В теплое время года Шеннон мог пройти по улице мимо фасадов с колоннами с выгравированными на них именами великих: Архимеда, Коперника, Ньютона, Дарвина. МТИ был островком неоклассицизма в промышленном пригороде Бостона, а его центральный купол, напоминавший Пантеон, выглядел нелепо рядом с фабриками и заводами, выстроившимися вдоль реки Чарльз. Купол, расположенный над галереями, сам представлял собой компромисс архитекторов. Один хотел, чтобы новый кампус хоть чем-то походил на другой колледж, стоявший выше вдоль реки. Другой настаивал на том, чтобы тот был построен в соответствии с принципами «эффективности и недопущения лишних движений студента и преподавателя, подобно тому, чего мы добились в наших лучших образцах промышленного строительства». Именно такое место занимал МТИ в мире: придаток промышленности с устремлениями к чистой науке – одновременно завод и обсерватория.

Сами корпуса были данью количественному мышлению, известные больше по своим номерам, чем по названиям. Надо сказать, что та самая открытка с информацией об анализаторе Буша привела Шеннона к зданию номер 13, и именно Буш одобрил кандидатуру Клода и допустил его к программе подготовки для получения магистерской степени. Оба были инженерами на скорую руку. Зарабатывая деньги, чтобы содержать семью, Буш умудрился одновременно получить степени бакалавра и магистра. Шеннон окончил старшие классы средней школы за три года, получил две степени бакалавра по двум специальностям за четыре года, а теперь собирался работать над магистерской диссертацией, сделав только небольшой перерыв на лето. Тот факт, что Буш назначил его ответственным за самую сложную и детализированную часть работы, говорило о его уважении к новому ученику.

К 1935 году, за год до прибытия Шеннона в Кембридж, дифференциальный анализатор достиг своих пределов. Будучи механическим устройством, он требовал полной разборки и обратной сборки для решения каждой отдельной задачи. То, что построил Буш и его команда, было не единым механизмом в полном смысле этого слова, но огромной группой машин, объединенных вместе, и их следовало конструировать заново под каждую новую задачу, а затем уничтожать после каждого полученного решения. Это была вынужденная адаптация ради эффективности. И так как назначением анализатора было добиться эффективности расчетов, которые, по крайней мере, в теории могли быть выполнены человеком вручную, то эти повторяющиеся из раза в раз затруднения ставили под сомнение необходимость его использования.

Все это было таким знакомым для Шеннона, еще со времен Гэйлорда и его самодельной телеграфной линии.

Вместо этого Буш мечтал об анализаторе, который мог бы восстанавливать себя сам: аппарат с автоматической системой контроля, позволяющей ему переходить от одного уравнения к другому без всяких пауз или даже решать множественные взаимосвязанные уравнения одновременно. Переключатели должны были прийти на смену отверткам. К тому времени, когда честолюбивые замыслы Буша значительно превысили бюджет МТИ периода Депрессии, он все равно смог получить 265 000 долларов от частных благотворителей фонда Рокфеллера, чтобы заняться разработкой компьютера следующего поколения. И Буш привел Клода Шеннона в МТИ, чтобы тот помог управлять проектом.

Поэтому в последующие три года окружением Шеннона стали серые коридоры и стены гудящей комнаты, и внутри этой комнаты – стенки маленькой коробки, прикрепленной к анализатору, со 100 переключателями, открывающими и закрывающими путь току, – мир внутри мира. В коробке находились мозги мозга, переключатели и реле, которые управляли машиной и перестраивали ее, пока она вращалась. И «каждое реле», как пишет Джеймс Глейк, «электрический переключатель управляется током (идея цикличности)». Разомкнуть. Замкнуть. И так на протяжении недель и месяцев.


Что произошло, когда Клод Шеннон щелкнул выключателем? Представьте себе переключатель или реле в виде разводного моста для электрического тока: опустив его, переключатель позволит току поступать к месту назначения; подняв, переключатель остановит его поток. Пунктом назначения может быть другое реле, которое тогда будет размыкаться или замыкаться на основе полученных вводных данных. Или же это может быть что-то такое же простое, как маленький электрический фонарик. Все это было таким знакомым для Шеннона, еще со времен Гэйлорда и его самодельной телеграфной линии. В Энн-Арбор эти знания были систематизированы: там Шеннон прилежно чертил электрические схемы вместе с остальными инженерами-электриками. Последовательное соединение: ток должен пройти через оба реле, прежде чем он включит свет; параллельное соединение: ток может свободно проходить либо через один, либо через оба реле.

Это были блоки, которые включали в себя логическую схему с сотней переключателей, прикрепленную к дифференциальному анализатору, или электрическую начинку линий сборки, или систему с миллионом реле, которая направляла работу всей национальной телефонной сети. Там были цепи, сконструированные для передачи тока, когда два реле были замкнуты, но не ноль, одно, или три; были цепи, нарисованные в виде ветвистых деревьев или симметричных дельт или плотных ячеек – вся электрическая геометрия, которую Шеннон чувствовал сердцем. И по старой инженерной традиции все это было сделано вручную, нарисовано шаг за шагом на доске или просто соединено вместе в «животе» машины. Единственным доказательством правильности собранной цепи являлись ощутимые результаты: проходил ли звонок, крутилось ли колесо, поставленное ребром на диске, и зажигался ли свет. Электрические цепи до Шеннона были как дифференциальные уравнения до появления аналогового компьютера: ошибки при каждой попытке до тех пор, пока ошибки не прекращались. Построение электрических схем в те времена было ремеслом со всей той путаницей, ошибками и интуитивным подходом, которые подразумевает «ремесло».

Электрические цепи до Шеннона были как дифференциальные уравнения до появления аналогового компьютера: ошибки при каждой попытке до тех пор, пока ошибки не прекращались.

Но здесь Шеннон был один на один в комнате с машиной, построенной для того, чтобы автоматизировать мысль, решать задачи промышленного характера и при этом эффективно функционировать. А еще чтобы отделить ремесло от математики. И в процессе своей работы он пришел к выводу, что знал другой способ, как автоматизировать процесс мышления – тот, который в конечном счете станет гораздо более действенным, чем аналоговая машина.


Что связывает логику и машину? Вот как ответил на этот вопрос один специалист по логике на стыке девятнадцатого и двадцатого столетий: «Точно так же, как материальная машина является инструментом для экономии физических сил, так же и символическое исчисление является инструментом для экономии интеллектуальных усилий». Логика, подобно машине, была инструментом для демократизации силы: построенная с достаточной точностью и умело, она могла многократно увеличить силу как одаренных людей, так и людей со средними способностями.

В 1930-е годы в мире насчитывалась лишь горстка людей, которые одинаково хорошо владели «символическим исчислением», или строго научной математической логикой, и умением собирать электрические цепи. Звучит это и вправду удивительно: до того, как две эти области знаний соединились в голове Шеннона, мало кто представлял, что они могут иметь нечто общее. Одно дело было сравнить логику с машиной – и совсем иное показать, что машины способны действовать логично.

В Мичигане Шеннон узнал (на занятиях по философии, заметьте), что любое логическое утверждение можно представить в символах и уравнениях и что эти уравнения можно решить с помощью ряда простых, похожих на математические, правил. Вы можете доказать, что утверждение истинно или ложно, даже не понимая, что оно означает. На самом деле вы будете меньше отвлекаться, если предпочтете не понимать значения: дедукция может быть автоматизирована. Ключевой фигурой процесса перевода прихотливых слов в точные математические величины стал гений девятнадцатого века по имени Джордж Буль, английский математик-самоучка, чей отец-сапожник смог дать ему образование лишь до шестнадцати лет. Незадолго до того, как Томсон задумал свой первый анализатор, Буль доказал, что он сверходаренный человек, написав книгу, название которой хоть и звучало довольно самонадеянно, но было вполне оправданным: «Законы мышления». Эти законы, показал Буль, основываются всего на нескольких фундаментальных операциях: например, И, ИЛИ, НЕТ и ЕСЛИ.

Скажем, нам нужно определить всех голубоглазых левшей, живущих в Лондоне. Обозначим свойство «голубые глаза» величиной х, а свойство «левша» – у. Пусть функцию умножение обозначает И, сложение – ИЛИ, а простой апостроф (заменяющий знак минус) – НЕТ. Помните, что цель всего этого – доказать верность или неверность утверждения. Поэтому пусть 1 означает «верно», а 0 – «неверно». Все это начальные знания для превращения логики в математику.

Таким образом, группа всех лондонцев, которые одновременно голубоглазы и левши, становится просто ху. А группа всех лондонцев, которые либо голубоглазы, либо левши, это х + у. Теперь представьте, что мы хотим оценить истинность утверждения «этот конкретный житель Лондона голубоглаз и левша». Его верность зависит от верности х и у. И здесь Буль выдвигает принципы для оценки утверждения 1 или 0, учитывая то, что мы знаем о х и у:


0 · 0 = 0

0 · 1 = 0

1 · 0 = 0

1 · 1 = 1


Эти уравнения легко перевести обратно на обычный язык. Если житель Лондона не является ни голубоглазым, ни левшой, то утверждение, которое мы пытаемся оценить, конечно, неверно. Если лондонец только голубоглаз или только левша, утверждение снова неверно. Если лондонец и голубоглаз, и левша, вот тогда утверждение становится верным. Другими словами, знак операции «И» дает «верно», только если все положения, которыми он оперирует, верны.

Но булева алгебра – это больше, чем просто переделка на новый лад обычной математики. Представьте теперь, что мы хотим оценить утверждение «этот конкретный житель Лондона голубоглаз или левша». В этом случае мы получаем следующее:


0 + 0 = 0

0 + 1 = 1

1 + 0 = 1

1 + 1 = 1


Если лондонец ни голубоглаз, ни левша, утверждение неверное. Но если он голубоглаз или левша, или и то и другое вместе, оно верное. Вот поэтому в булевой алгебре 1 + 1 равняется 1. Знак операции ИЛИ дает верный ответ, если какое-то из положений, которыми он оперирует, верно, или все положения верны. (Буль также различал еще один вид «или», названный «исключительным или», который дает верный ответ, только если одно или другое положение верно, но не оба.)

Из этих простых элементов (столь же простых, как переключатели, размышлял Шеннон) мы можем составлять другие уравнения и добиваться все более сложных результатов. К примеру, мы можем доказать, что х + ху = х, или что верность утверждения «либо х, либо одновременно х и у» зависит исключительно от верности х. Или же мы можем доказать, что (х + у)’ = х’у’: другими словами, «х или у» неверно, когда «оба не х и не у», и наоборот. Все это, утверждал Буль, законы логики. Переменные х и у, как и любые другие переменные, могут означать произвольные утверждения при условии, что они либо истинны, либо ложны. И с помощью простого, почти не требующего напряжения ума применения нескольких правил, мы можем делать заключения из всего, что подлежит дедукции. Механическая логика означала, что больше не нужно ломать голову над фразой: «Все люди смертны, Сократ – это человек…» – и так далее, только символы, операции и правила. Гений сформулировал правила, которые мог применить даже ребенок. Или что-то, мыслящее проще, чем ребенок.

Все это было весьма интересно, но на протяжении почти столетия из всего этого мало что вышло практического. Нескольким поколениям студентов, в том числе Клоду Шеннону эта тема преподносилась как забавный философский феномен. В то время, вспоминал он, его в основном забавлял звук слова: «Бу-у-у-улева». Но какие-то крупицы этих знаний остались у него, когда он пытался разобраться в коробке со ста переключателями. Он чувствовал некую простоту правил Буля, присутствующую даже в самых чертовски сложных уравнениях, которые он решал для Буша. Замкнуть, разомкнуть. Да, нет. 1, 0. Что-то из этих знаний осталось с ним, когда он в 1937 году покинул МТИ, уехав на лето в Нью-Йорк. Другой уникальной группой людей, подошедших к сопоставлению логики с электрическими цепями достаточно близко, были умы из «Лабораторий Белла», взявшие к себе Шеннона на летнюю стажировку. Будучи временно нанятым сотрудником, Шеннон, вероятно, занимался самыми рядовыми делами, связанными с промежуточной помощью, и его присутствие в «Лабораториях» летом 1937 года не было отмечено в истории заведения, но именно здесь он смог поделиться своим глубоким пониманием математической логики и продвинутым знанием электрических схем, а еще настойчивым ощущением, что эти две сферы взаимосвязаны. Более того, он передал свои знания прямо в сердце телефонной компании, владевшей самой сложной и протяженной электросетью в стране. И его работа была частью математических попыток заставить эту сеть работать эффективнее и дешевле.

Самое важное – примерно в это время он впервые взялся записывать свои мысли и начал связывать вместе то сходство, которое, по его мнению, было в анализаторе Томсона, сетях «Лабораторий Белла» и логике Буля. Спустя полвека Шеннон попытался вспомнить тот момент прозрения и объяснить, как ему удалось первым понять, что означали эти переключатели. Вот что он рассказывал журналисту:

«Дело не в том, что что-торазмыкаетсяили “замыкается”, или в словах “да” или “нет”, о которых вы говорите. Смысл заключается в том, что две вещи в одной последовательности в логике описываются словом “и”, поэтому вы говорите: это “и” это. В то время как две вещи в параллели описываются словом “или”… Есть контакты, которые замыкаются, когда вы оперируете реле, а есть другие контакты, которые размыкаются, и поэтому слово “нет” относится к этому аспекту реле… Люди, которые занимались релейными цепями, конечно, понимали, как делать эти вещи. Но у них не было математического аппарата булевой алгебры».

Скачок от логики к символам, а затем к схемам: «Мне кажется, что это было самое увлекательное занятие в моей жизни», – вспоминал Шеннон с теплотой эти времена.

Любое понятие из булевой алгебры имело свой физический эквивалент в электрической цепи. Перевод переключателя в положение «включено» мог означать «верно», а перевод в положение «выключено» – «неверно». И все в целом можно было представить в последовательности символов 0 и 1. Но еще более важно, как указывал Шеннон, что логические знаки операции системы Буля – И, ИЛИ, НЕТ – могли быть в точности воспроизведены в виде цепей. И тогда последовательное соединение становится И, потому что ток должен проходить последовательно через два реле, и он не дойдет до своей цели, если оба реле не обеспечат ему этот проход. Параллельное соединение становится ИЛИ, потому что ток может проходить по любому из этих реле или по обоим сразу. Ток проходит по двум замкнутым реле при параллельном соединении и зажигает свет: 1 + 1 = 1.

Скачок от логики к символам, а затем к схемам: «Мне кажется, что это было самое увлекательное занятие в моей жизни», – вспоминал Шеннон с теплотой эти времена. Странное и немного педантичное представление об увлекательности. Но это был молодой человек, всего двадцати одного года, пришедший в трепет от мысли о том, что, заглянув в коробку с переключателями и реле, он увидел там то, что никто до него не видел. Все, что нам осталось, это детали. В последующие годы все будет происходить так, словно он забыл, что публикация научных трудов – это то, чего всегда ждут от блестящих ученых. Он станет бесцельно копить свои феноменальные исследования годами, а в итоге окажется в доме с чердаком, заваленным бумагами, полузаконченными статьями и «хорошими вопросами» на миллиметровой бумаге. Но сейчас, полный честолюбивых замыслов и целей, он едва успевал выдавать новые идеи.


Завершив осенью 1937 года свою магистерскую диссертацию «Символический анализ релейных и переключательных схем», Шеннон представил ее на суд аудитории в Вашингтоне и опубликовал на следующий год, заложив основы для блестящей карьеры. Теперь уже в новой для себя манере Шеннон писал сухим научным языком:

«Любая схема представлена рядом уравнений, условия уравнений соответствуют разнообразным реле и переключателям схемы. Вычисление разрабатывается для того, чтобы этими уравнениями управляли простые математические процессы, большая часть которых напоминает обычные алгебраические алгоритмы. Это вычисление должно быть совершенно аналогично вычислению положений, применяемых при изучении символической логики… Схема, таким образом, может быть мгновенно срисована с уравнений».

И это был ключевой момент: после Шеннона собирание схем перестало быть упражнением в интуиции и перешло в область знаний правил уравнений и сокращений. Рассмотрим проблему, с которой могли столкнуться коллеги Шеннона, когда пытались подвергнуть свою гигантскую аналоговую машину электрическому регулированию. Допустим, определенная функция в схеме позволила бы току проходить – будет выдавать «1» в терминологии Шеннона – в зависимости от положения трех различных переключателей, х, у и z. Ток будет проходить, если только z будет включен, или если только у и z будут включены, или если х и z будут включены, или если х и у будут включены, или если все три будут включены. Методом проб и ошибок коллеги Шеннона могли бы рано или поздно смонтировать одиннадцать отдельных соединений, которые бы сделали работу. Но Шеннон начал с того, что взялся за карандаш и свой вездесущий блокнот. Он выписал уравнение, используя обозначения Буля:

x’y’z + x’yz + xy’z +xyz’ + xyz

Затем он ужал их. Два члена этого уравнения представлены yz, а два – y’z, так что он просто вынес их за скобки, как в любой задаче по алгебре:

yz(x + х’) + y’z (х + х’) + xyz’

Но булева логика говорит нам, что х + х’ всегда верно, и в этом есть смысл: х либо верно, либо нет. Тогда Шеннон, возможно, осознал, что х + х’ не скажет ему ничего интересного о выходе цепи, а значит, все это можно вычеркнуть:

yz + y’z + xyz’

Теперь два члена означали z, и Шеннон могужать их снова: z(y +у’) + xyz’

И потой же самой причине, что и раньше, он мог вычеркнуть члены в следующем уравнении:

z + xyz’

В логике Буля было еще одно правило, позволявшее фильтровать еще дальше. Буль показал, что х + х’у = х + у, или если говорить простым языком, то спрашивать о лондонце, который был либо голубоглазым, либо левшой, но не голубоглазым, было все равно, что спрашивать о лондонце, который был либо голубоглазым, либо левшой. Применяя это правило к приведенной выше функции, Шеннон мог вычеркнуть z’, как дублирующий элемент, оставив следующее:

z + xy

Вспомните тот лишний мусор, с которого Шеннон начинал. Его расчеты смогли доказать, что эти два ряда инструкций абсолютно одинаковы:

Включать, если только включен z, или если включены у и z, или если включены x и z, или если включены х и у, или если включены все три.

Включать, если включен z, или если включены х и у.

Другими словами, он обнаружил способ выполнить работу с одиннадцатью соединениями с помощью всего двух, параллельного и последовательного. И он сделал это, даже не дотронувшись до переключателя.

Вооруженный этим пониманием, далее в своей диссертации он лишь демонстрировал возможности нового подхода. Калькулятор двоичных чисел; замок с комбинацией из пяти кнопок и электронной сигнализацией – как только уравнения были выведены, они сразу же заработали. Построение электрической схемы впервые стало наукой, а превращение ремесла в науку станет фирменной чертой работы Шеннона.

А вот еще одно достоинство этой системы: как только переключатели превращаются в символы, они уже не имеют значения. Система способна работать в любой среде, от громыхающих переключателей до микроскопических рядов молекул. Единственное, что требовалось, это «логические» ворота, способные выразить «да» и «нет», и этими воротами могло быть что угодно. Правила того, как облегчить работу механического компьютера размером с комнату, те же самые, которые будут впоследствии учтены при создании схем электровакуумных ламп, транзисторов, микросхем – на каждом этапе присутствует бинарная логика из 0 и 1.

Все было элементарно, отмечал Шеннон. Но это открытие можно было назвать простым лишь после того, как оно было сделано.

И все же – «возможно, самая важная, а также самая известная магистерская диссертация века?» «Одна из величайших магистерских работ за всю историю?» «Самая важная магистерская работа за все время?» «Монументальная?» Был ли ряд приемов, экономящих время инженерам, действительно достойных такой похвалы? Если работа выполнялась в любом случае, было ли так важно, что Шеннон проделывал за два этапа то, что его коллеги выполняли за одиннадцать?

Все было элементарно, отмечал Шеннон.

Но это открытие можно было назвать простым лишь после того, как оно было сделано.

Да, это было важно. Но главный, фундаментальный результат научной работы Шеннона в основном подразумевался, но не назывался. Ее значение стало понятно лишь со временем. Скрытый смысл станет яснее, если мы поймем, что Шеннон, следом за Булем, использовал знак равенства, как условный: «если».

1+1=1: если ток проходит через два переключателя параллельно, свет загорается (или реле приобретает сигнальное значение «да»). 0+0=0: если ток не проходит ни через один из переключателей в параллельном соединении, свет не загорается (или реле приобретает сигнальное значение «нет»). В зависимости от ввода, одни и те же переключатели могут давать два разных ответа. Давайте совершим антропоморфический прыжок: электросхема может сама принимать решения. Схема способна действовать логично. Многие схемы могли выполнять невероятно сложные логические операции: они могли решать логические задачи и выводить заключения на основании исходных данных, причем так же надежно, как человек, но быстрее. Благодаря тому, что Буль показал, как разложить логику на последовательность бинарных верных-неверных решений, любая система, способная представлять двоичность, получила доступ ко всей логической вселенной, которую он описал. «Законы мышления» распространялись и на неживой мир.

Пройдет еще шесть лет, прежде чем Тьюринг и Шеннон встретятся в кафе, где собирались ученые в годы войны.

В тот же год английский математик Алан Тьюринг сделал чрезвычайно важное заявление относительно интеллекта машины. Он доказал, что любая решаемая математическая задача может быть, в принципе, решена машиной. Он видел перспективы в создании компьютеров, которые бы могли перепрограммировать себя сами в процессе работы, универсальных машин невиданной до той поры гибкости. А Шеннон показал, что любое допустимое логическое утверждение может быть, в принципе, оценено машиной. Машина Тьюринга была все еще объектом теории: он доказал свою версию с помощью управляющего устройства «головки записи-чтения», оперирующей на сравнительно длинной магнитной ленте – абстрактный компьютер с единственной движущейся частью. Шеннон же, напротив, доказал логические возможности схем, которые можно найти в любом телефонном коммутаторе: он показал на практических примерах, какие возможности открываются в будущем перед инженерами и программистами, если вплести логику во внутреннее устройство машины. Этот скачок, отмечает Уолтер Айзексон, «стал базовой концепцией всех цифровых компьютеров».

Пройдет еще шесть лет, прежде чем Тьюринг и Шеннон встретятся в кафе, где собирались ученые в годы войны. Каждый из их проектов был так подробно классифицирован, что они понимали друг друга с полуслова. Они уже практически были готовы конструировать то, что задумали. Тем не менее «в один знаменательный год компьютерной эпохи» эти два человека заложили основы. В частности, они показали возможности цифрового вычисления, крохотных дискретных решений, выстроенных одно за другим. Спустя менее десяти лет после публикации работы Шеннона огромная аналоговая машина, дифференциальный анализатор, устарела и была успешно заменена цифровыми компьютерами, которые могли выполнять ее работу в буквальном смысле в тысячу раз быстрее, отвечая на вопросы в режиме реального времени. Ее направляли тысячи логических ворот, каждое из которых действовало по принципу «все или ничего». Теперь средой были не переключатели, а электровакуумные лампы. Но дизайн был прямым потомком изобретенного Шенноном.


И все же ничего подобного в 1937 году Вэнивар Буш и предположить не мог, планируя все более сложные и эффективные версии своего дифференциального анализатора. И Клод Шеннон тоже. В целом вся эта замечательная машина уже, возможно, казалась признаком регресса: подразумевалось, что мастерски разработанные диски и шестеренки будут вытеснены переключателями не менее сложными по своей сути, чем телеграфный ключ. Что в этой 100-тонной махине было меньше аналитического потенциала, чем в маленькой коробке, прикрепленной к ее стенке. Что на смену этим столь наглядным машинам, которые могли научить механическому вычислению вручную с нуля, должны были прийти какие-то смутно вырисовывающиеся в перспективе блоки. Со времен Томсона и до Буша аналоговый компьютер был, в некотором смысле, одной из длинных инженерных дорог вслепую.

В этой связи следует привести историю Хэпгуда, историка МТИ: «Несколько лет назад один инженер рассказал мне свою фантазию, которая, по его мнению, проливала свет на аспекты инженерного дела или, по крайней мере, на то, что лежало в основе его работы. Летающая тарелка прилетает на Землю, и ее команда начинает облетать все крупные города, плотины и каналы, автострады и линии электропередач. Они следуют за машинами, движущимися по дорогам, и измеряют излучения телебашен. Они телепортируют компьютер в свою тарелку, разбирают его на части и изучают. «Вау, – наконец восклицает один из них. – Разве природа не удивительна во всех своих проявлениях?»

Безразличные к любой красоте, что не служит целям выживания, крайне расточительные и неумолимые – природа и техно не так уж далеки друг от друга.


Страницы книги >> Предыдущая | 1 2 3 4 5 6 7 8 | Следующая
  • 0 Оценок: 0

Правообладателям!

Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.

Читателям!

Оплатили, но не знаете что делать дальше?


Популярные книги за неделю


Рекомендации