Электронная библиотека » Джо Боулер » » онлайн чтение - страница 5


  • Текст добавлен: 27 сентября 2019, 13:00


Автор книги: Джо Боулер


Жанр: Математика, Наука и Образование


Возрастные ограничения: +16

сообщить о неприемлемом содержимом

Текущая страница: 5 (всего у книги 19 страниц) [доступный отрывок для чтения: 6 страниц]

Шрифт:
- 100% +

Неправильное понимание концепций, возникающее у учеников при рассмотрении идеальных примеров, аналогично проблемам, возникающим при отработке обособленных методов. Ученикам дают несложные ситуации, требующие простого применения процедур (а во многих случаях никаких ситуаций и нет). Ученики изучают метод, но, когда им дают математические задачи или нужно использовать математику в реальном мире, они не могут применить его (Organisation for Economic Co-operation and Development, 2013). Реальные задачи зачастую требуют отбора и адаптации методов, применению которых дети никогда не учились и даже не знают о них. В следующей главе мы проанализируем характер содержательных математических задач, позволяющих избежать таких проблем.

В ходе знаменитого научного исследования в Англии я три года отслеживала успеваемость учеников при применении подхода к изучению математики, основанного на практике. Дети снова и снова отрабатывали на уроках обособленные примеры (Boaler, 2002a). Я сравнила их результаты с результатами, полученными в случае, когда ученикам демонстрировали всю сложность математики. При этом предполагалось, что дети должны постоянно размышлять на концептуальном уровне, выбирая и применяя те или иные методы. Два этих подхода к преподаванию математики использовались в разных школах в работе с учениками одинакового происхождения и уровня успеваемости, причем обе школы находились в небогатых районах. Дети, которых учили многократно отрабатывать методы в школе с жесткими требованиями ко времени выполнения заданий, получили гораздо более низкие оценки во время государственного экзамена по математике по сравнению с теми, кого стимулировали размышлять на концептуальном уровне. Во время государственного экзамена (включающего ряд процедурных вопросов) ученики традиционной школы столкнулись с серьезной проблемой: они не знали, какой метод выбрать, чтобы найти ответы. Они многократно отрабатывали методы, но им никогда не предлагали проанализировать ситуацию и выбрать подходящий. Вот размышления двух учеников этой школы о трудностях, с которыми они столкнулись во время экзамена.

Это глупо. Когда ты на уроке выполняешь задание (даже трудное), то получаешь от силы один-два неправильных ответа. Но большинство ответов правильные, и ты думаешь: «Ну вот, когда будет экзамен, я смогу ответить на большинство вопросов правильно». Ведь ты правильно понял все темы. А на самом деле ты ничего не понял (Алан, Эмбер-Хилл).

Все совсем иначе. Все не так, как тебе говорили, – описание, вопрос; все не так, как в учебниках, как объясняет учитель (Гэри, Эмбер-Хилл).

Чересчур упрощенный подход к математике – одна из причин проблем в ее изучении. Вдобавок у учеников не развивается математическое мышление: им внушают, что на уроках математики нет места размышлениям и осмыслению концепций, требуется лишь многократное повторение определенных методов.

В ходе еще одного исследования, которое было проведено в США, мы спрашивали детей, которых обучали математике по модели отработки методов, какова их роль на уроках по этому предмету (Boaler & Staples, 2005). Поразительно много учеников (97 %) дали один и тот же ответ: «Максимально сосредоточиться». Этот пассивный акт наблюдения (а не размышлений, построения логических выводов или осмысления) не приводит к пониманию предмета или формированию математического мышления.

Ученикам часто дают практические задания по математике на дом. Но многие данные демонстрируют, что домашние задания в любой форме бесполезны или губительны (подробнее см. главу 6). У меня есть дети, и домашние задания – самая распространенная причина слез в нашем доме, а математика – предмет, работа над которым дома вызывает у детей самый сильный стресс, особенно если задание представляет собой длинный список разрозненных вопросов.

Ученики получают целые страницы домашних заданий по математике. Кажется, никому нет дела до того, как плохо это влияет на обстановку в доме. Но есть надежда: в школах, где заданий на дом не дают, успеваемость не снижается; при этом в семьях учеников существенно повышается качество жизни (Kohn, 2008).

Результаты крупных научных исследований показали, что домашние задания практически не влияют на уровень успеваемости (Challenge Success, 2012), но при этом создают заметное неравноправие (Program for International Student Assessment, 2015). Мы вернемся к этой проблеме в главе 6. Задания на дом играют крайне негативную роль в жизни многих родителей и детей. Исследования показывают, что единственный случай, когда она эффективна, – если ученики получают ценный учебный опыт, а не листы с задачами, и когда она рассматривается не как норма, а как возможность время от времени давать ученикам содержательные задания. Мои дочки учатся в школах, где знают о результатах научных исследований о домашней работе, поэтому обычно дают ученикам только полезные задания по математике (например, головоломки KenKen[12]12
  Математическая и логическая головоломка, в которой нужно заполнить сетку цифрами так, чтобы в каждой строке и в каждом столбце они не повторялись. Число в углу каждого выделенного блока – результат арифметической операции над цифрами в этом блоке. Цифры внутри блока могут повторяться. Прим. ред.


[Закрыть]
). Но и там учителя время от времени давали детям по 40 задач на вычитание или умножение. Я видела, как у моих детей портится настроение, когда они получают такие задания. В такие моменты я объясняю им, что целая страница однотипных вопросов – это не настоящая математика, а когда они успешно выполняют несколько заданий (обычно четыре или пять), я предлагаю им прекратить работу. Затем я пишу учителю записку, что я вполне удовлетворена тем, как мои дети поняли метод, и не хочу, чтобы они отвечали еще на 35 вопросов, поскольку из-за этого у них сформируется пагубное представление о математике.

Если вы работаете в школе, где домашняя работа обязательна, можно использовать задания, которые гораздо более эффективны, чем страницы однотипных вопросов. Екатерина Мильвидская и Тиана Тебельман, два учителя-новатора, с которыми я работаю в объединенном школьном округе Виста, создали перечень вопросов для домашней работы. Они каждый день выбирают вопросы, позволяющие их ученикам более глубоко проанализировать и понять математические концепции, которые они изучали в тот день. Как правило, на один вечер ученикам дают по одному вопросу для размышлений и одно – пять заданий (в зависимости от сложности), которые нужно выполнить. В примере 4.2 представлены некоторые из этих вопросов.

ПРИМЕР 4.2. ВОПРОСЫ ДЛЯ РАЗМЫШЛЕНИЙ: ДОМАШНЕЕ ЗАДАНИЕ ПО МАТЕМАТИКЕ

Часть 1. Вопросы, требующие письменного ответа


* Ответ на вопрос(ы) должен быть очень подробным! Пожалуйста, используйте полные предложения и будьте готовы сформулировать свой ответ на уроке на следующий день.

1. Какие основные математические концепции или идеи вы изучили сегодня; что вы обсуждали на уроке сегодня? _____

2. Какие вопросы у вас остались по поводу _____? Если у вас нет вопросов, придумайте аналогичную задачу и решите ее.

3. Опишите ошибку или заблуждение, которое возникло у вас или у кого-то из одноклассников сегодня на уроке. Что вы узнали благодаря этому? _____

4. Какой подход вы или ваша группа использовали для решения задачи или ряда задач? Был ли ваш подход эффективным? Какой урок вы извлекли из этого подхода?

5. Подробно опишите алгоритм решения этой задачи, который использовал на уроке кто-то другой. Чем он был похож на ваш подход и чем отличался от него? _____

6. Какие новые слова или термины были представлены сегодня? Что, по вашему мнению, означает каждое новое слово? Приведите пример каждого слова (или нарисуйте то, что оно означает) _____

7. Вокруг чего развернулась самая серьезная математическая дискуссия на уроке сегодня? Что вы узнали из нее? _____

8. В чем сходство или различие между _____ и _____?

9. Что произошло бы, если бы вы изменили _____?

10. В чем были ваши сильные и слабые места в работе над этой темой? Как вы планируете исправить слабые места? _____

Материал предоставлен Екатериной Мильвидской и Тианой Тебельман на условиях лицензии Creative Commons Attribution 3.0.

Екатерина и Тиана, применявшие эти вопросы на протяжении двух лет, отметили положительное влияние такого подхода на учеников. Теперь они размышляют над тем, что узнали на уроке, синтезируют идеи и задают больше вопросов.

В середине каждого учебного года Екатерина и Тиана проводят среди своих учеников опрос, чтобы собрать данные и получить обратную связь о методах преподавания, в том числе новом подходе к домашним заданиям. Вот некоторые отзывы о новом формате домашних заданий.

Думаю, наш способ выполнения домашней работы очень полезен. Когда тратишь больше времени на размышления над тем, что мы изучали (письменный ответ), и меньше времени на выполнение дополнительных заданий по математике (учебник), узнаёшь намного больше.

Мне кажется, что вопросы, которые задают нам на дом, помогают мне поразмышлять над тем, что мы изучали в тот день. Если я что-то плохо помню, я могу заглянуть в свою тетрадь.

Мне правда нравится домашняя работа в этом году. Благодаря вопросам для размышления я понимаю, как выполнять задание; они помогают мне, потому что я могу вспомнить, что было на уроке в тот день.

Вопросы для размышлений мне очень помогают. Я вижу, над чем мне нужно поработать и что я делаю правильно.

Ученики говорят о том, как вопросы для размышлений помогают им изучать математику. Они вызывают гораздо меньше стресса, что всегда важно; они побуждают размышлять над серьезными идеями на концептуальном уровне, что просто бесценно. Вопросы, которые побуждают анализировать ошибки и заблуждения, особенно полезны для стимулирования самоанализа и часто помогают лучше понимать математику. Кроме того, из ответов на них учителя получают крайне важную информацию, которая может направлять их в процессе преподавания. Аналогичные вопросы можно ставить ученикам в конце урока в качестве «билетов на выход». В главе 8 я поделюсь другими идеями по поводу вопросов для размышлений.

Как было сказано в главе 1, группа PISA, которая работает в рамках ОЭСР, не только проводит тесты по математике среди учеников, но и собирает данные об убеждениях учеников и математических стратегиях. Результаты анализа данных о стратегиях, которые используют 13 миллионов учеников, свидетельствуют о том, что хуже всего с тестами справляются дети, применяющие стратегию запоминания. Самые высокие результаты получают ученики, которые придерживаются подхода, основанного на анализе важных концепций и связей между ними. На рисунке 4.4 показаны различия в результатах тестирования учеников, использующих разные стратегии.


Рис. 4.4. Математические стратегии и результаты тестов

Источник: PISA, 2012.


Лучшее, что мы можем сделать для учеников, – помочь им развить математическое мышление, понять, что суть математики – размышления, осмысление, важные идеи и связи, а не запоминание.

Превосходная методика подготовки учеников к процессу мышления и обучения (основанному на понимании связной, концептуальной природы математики) – стратегия под названием «Разговоры о числах». Это лучшая из известных мне стратегий одновременного обучения чувству числа и математическим фактам. Метод разработали Рут Паркер и Кэти Ричардсон. Это идеальное короткое обучающее упражнение, с которого учителя могут начинать урок и которое родители могут использовать дома. Необходимо поставить абстрактную математическую задачу и попросить учеников показать, как они в уме решат ее. Затем учитель собирает разные методы, которые используют ученики, и анализирует, почему они работают. Предложив ученикам найти произведение 15 × 12, учитель может выяснить, что они решили эту задачу пятью разными способами.



Ученики любят рассказывать о своих стратегиях; как правило, они увлеченно и с интересом анализируют разные методы, используемые при решении задач. Ученики осваивают ментальную математику, у них появляется возможность запомнить факты, а также формируется концептуальное понимание чисел и арифметических свойств, что крайне важно для успешного изучения алгебры и других разделов математики. Существует две книги, одну из которых написали Кэти Хамфриз и Рут Паркер (Humphreys & Parker, 2015), а другую – Шерри Пэрриш (Parrish, 2014), где представлено описание множества разговоров о числах, которые можно использовать в работе с учениками средней и начальной школы соответственно. Объяснение стратегии «Разговоры о числах» можно также найти на видео на сайте YouCubed. Это фрагмент моего онлайн-курса для учителей и родителей (https://www.youcubed.org/categorteachingideas/number-sense).

Беседы о числах – лучший из известных мне педагогических методов, позволяющих развивать у учеников чувство числа и помочь им понять гибкую и концептуальную природу математики.

Как быть с учениками постарше?

Мы много говорили о том, как обучать детей математике с помощью концептуального подхода, а также формированию представления о том, что математика – предмет, который должен быть наполнен смыслом и который можно изучать в рамках активного подхода. Лучше всего выбрать этот вариант с самого начала, но подход к математике и отношения с ней можно изменить в любое время. В следующей главе мы поговорим об учениках средней школы и взрослых, которые ненавидели математику, воспринимая ее как сугубо процедурную дисциплину. Но когда им рассказали о возможностях, обеспечиваемых мышлением роста, они начали использовать другие методы обучения. Я видела, как такие перемены происходят с учениками всех возрастов, в том числе со студентами Стэнфорда. На рисунке 4.5 показано влияние воздействия на мышление во время весеннего семестра в седьмом классе (Blackwell, Trzesniewski, & Dweck, 2007). Результаты исследований свидетельствуют, что после перехода в среднюю школу относительный уровень успеваемости учеников снижается, но у тех, на мышление которых было оказано воздействие, спад приостановился и началось повышение уровня успеваемости.


Рис. 4.5. Воздействие на мышление учеников

Источник: Blackwell et al., 2007.


Сигналы в отношении мышления очень важны для учеников, а когда они сопровождаются благоприятными возможностями для изучения математики, происходят поразительные события – и неважно, сколько лет ученикам.

Математические игры и приложения

Еще один способ предоставления ученикам возможностей для формирования вдумчивого, концептуального подхода к математике – применять игры и приложения, помогающие изучать дисциплину на концептуальном уровне. Подавляющее большинство математических игр и приложений бесполезны, поскольку ориентированы на выполнение однотипных заданий и запоминание. В данном разделе уделено особое внимание четырем приложениям, которые я считаю очень полезными: они позволяют ученикам заниматься концептуальной математикой с помощью визуальных инструментов. Я консультант трех из четырех компаний, разработавших эти игры и приложения (Wuzzit Trouble, Mathbreakers и Motion Math).


Wuzzit Trouble

Wuzzit Trouble (игра, которую разработали стэнфордский математик Кит Девлин и его команда) помогает ученикам исследовать важные математические концепции (сложение и вычитание, множители и кратные числа и т. п.) наряду с освоением гибкого подхода к работе с числами и стратегий решения задач. Цель игры – освободить маленькое существо из ловушки, повернув небольшую шестеренку, чтобы запустить колесо и собрать ключи. Уровень сложности повышается до действительно трудных головоломок. Есть разные версии этой игры, рассчитанные на определенные математические темы и уровни сложности.

Игра от компании BrainQuake работает на основе операционных систем iOS и Android; ее можно бесплатно загрузить с сайта http://wuzzittrouble.com.


Mathbreakers

Mathbreakers от Imaginary Number – видеоигра для учеников начальной школы, в которой персонажи передвигаются в игровой среде, вооружившись числами. Она не только позволяет ученикам играть с математикой, что само по себе очень важно, но и дает им возможность выполнять действия с числами – например, делить пополам, если игроку необходимо меньшее число, чтобы перейти мост. Это «бродилка» с участием чисел. Она знакомит учеников с числами на концептуальном уровне, в увлекательной открытой среде.

Mathbreakers работает на основе Mac, Windows и Linux (https://www.mathbreakers.com).


Number Rack

Number Rack от Math Learning Center – приложение для учеников начальной школы, которое моделирует обучающий инструмент под названием Rekenrek («Счеты»), разработанный в Институте Фройденталя в Голландии (http://www.k-5mathteachingresources.com/Rekenrek.html). Счеты Rekenrek – десять костяшек, нанизанных на стержень; чтобы получить числа больше десяти, можно добавить дополнительные стержни. В игре есть экран, которым можно прикрыть группы костяшек, чтобы ученики могли находить отсутствующее число в том или ином соотношении. Это удобный инструмент для счета и работы с десятью числами. Ученики могут передвигать костяшки и работать с числовыми парами и соотношениями на концептуальном уровне.

Number Rack есть в интернете в бесплатном доступе (http://www.mathlearningcenter.org/web-apps/number-rack).


Motion Math

Приложение Motion Math, выпускаемое одноименной компанией, ориентировано на учеников начальной школы. Это ряд игр, которые помогают детям развивать визуальное понимание важных математических концепций, в частности чисел и дробей. Например, в игре Hungry Fish ученики соединяют числа, чтобы покормить рыбу. Игрокам нужно находить разные способы создания чисел. В игре Pizza игроки управляют пиццерией, готовя и продавая еду. В ходе игры ученики осваивают пропорциональное мышление, ментальную математику и даже азы экономики. В игре Fractions ученики перемещают шарик с определенной дробью в соответствующее место на числовой прямой. Игра Cupcake позволяет ученикам управлять собственным бизнесом. Игрок принимает решения по поводу кексов, доставляет их на своем автомобиле и вносит математические коррективы в заказы.

Motion Math работает на основе iOS и Android (http://motionmathgames.com).

Есть и другие игры и приложения, помогающие ученикам развивать чувство числа. Они позволяют глубже понять смысл изучаемых математических концепций, а также помогают увидеть математические идеи.

Резюме

Результаты новых исследований головного мозга свидетельствуют, что разница между преуспевающими и отстающими учениками обусловлена скорее не тем, какой материал они изучают, а типом их мышления. Мышление роста крайне важно, но, чтобы дети добивались больших успехов в изучении математики, необходимо математическое мышление. Нужно привить ученикам установку на рост в отношении себя в сочетании с установкой на рост в отношении математики и их задач в изучении этого предмета. При концептуальном, исследовательском подходе к преподаванию математики, а также стимуляции мышления ученики научатся избавляться от пагубных представлений о том, что для изучения математики необходимы только скорость и память и что человек либо способен понять ее, либо нет. Такое изменение мышления – главное условие успеха и получения удовольствия от математики, и оно может произойти даже в зрелые годы. Данная глава сфокусирована на том, как оно происходит в ранние годы, особенно при изучении чисел, но сформулированные здесь идеи применимы ко всем уровням математики. Даже математические факты, один из самых скучных аспектов этой науки, можно объяснять ученикам на концептуальном уровне, добиваясь осмысления и понимания. Если описывать ученикам интересные ситуации и предлагать им наполнить эти ситуации смыслом, они будут иначе воспринимать математику – не как неизменную совокупность знаний, а как открытый мир, который можно исследовать, задавая вопросы и размышляя о взаимосвязях. В следующей главе представлен ряд лучших способов создания такой среды с помощью содержательных и увлекательных математических задач.

Глава 5. Содержательные математические задачи

Учителя – самый важный ресурс для учеников. Именно учителя создают увлекательную среду для освоения математики, подают позитивные сигналы, в которых дети так нуждаются, и добиваются того, чтобы любая задача пробуждала интерес. Исследования свидетельствуют, что учитель оказывает на обучение учеников большее влияние, чем любой другой фактор (Darling-Hammond, 2000). Но есть еще один крайне важный аспект изучения математики (во многих смыслах это лучший друг учителя): программа, с которой работает учитель, а также задания и вопросы, с помощью которых ученики осваивают этот предмет. Все учителя знают, что интересные математические задачи – прекрасный ресурс. Именно они определяют разницу между счастливыми учениками, которые с воодушевлением изучают математику, и незаинтересованными, немотивированными. Задания и вопросы помогают развивать математическое мышление и создают условия для глубокого, связного восприятия изучаемого материала. В этой главе представлен подробный анализ истинной вовлеченности в изучение математики, а также рассматривается вопрос о том, как добиться ее путем постановки математических задач.

Я преподавала математику на всех уровнях среднего и высшего образования в Англии и США. Кроме того, я изучила сотни заданий по математике на всех уровнях 16-летнего образования в обеих странах и проанализировала, как дети и подростки изучают математику и какие условия благоприятны для этого. Мне удалось накопить богатый опыт – и это большая удача по многим причинам, одна из которых состоит в том, что это помогло мне понять суть истинной вовлеченности и глубокого изучения математики. Я наблюдала, как самые разные школьники и студенты вдохновляются математикой, что дало им прекрасную возможность получить представление о математических концепциях и взаимосвязях между ними. Я пришла к выводу, что и 11-летние ученики, сталкивающиеся с серьезными трудностями в изучении математики, и успешные студенты лучших университетов испытывают одинаковое воодушевление, которое включает в себя такие аспекты, как любознательность, установление связей, вызов, творчество и, как правило, сотрудничество. На мой взгляд, это и есть пять аспектов вовлеченности. Ниже я расскажу о характере вовлеченности и воодушевления в связи с изучением математики, прежде чем рассматривать свойства задач, обеспечивающих вовлеченность. Их могут давать на своих уроках математики все учителя.

Вместо того чтобы анализировать суть вовлеченности бесстрастно и абстрактно, я хочу показать вам пять примеров истинного воодушевления. Я считаю его вершиной вовлеченности. Речь пойдет о ситуациях, которые я наблюдала в разных группах и благодаря которым сделала важные выводы о сути преподавания и задачах, которые открывают такие возможности для обучения. Первый пример взят не из школы, а из особой среды одного из стартапов Кремниевой долины. Он раскрывает один сильнейший аспект воодушевления, который я хотела бы донести до всех учителей математики.

1. Понимание открытости чисел

В конце декабря 2012 года, за несколько дней до отъезда в Лондон на праздники, я впервые встретилась с Себастьяном Труном и его командой в Udacity – компании, которая занимается организацией онлайн-курсов. Мне предложили приехать к ним, чтобы дать членам команды консультации по поводу математических курсов и способов создания возможностей для эффективного обучения. В тот день я зашла в просторный офис компании в Пало-Альто и сразу поняла, что попала в стартап Кремниевой долины. Велосипеды на стенах; молодые люди, в основном парни, в футболках и джинсах, погрузились в компьютеры или сидят, обсуждая различные идеи. В офисе не было никаких перегородок, только кабинки и много света. Я прошла мимо кабинок в конференц-зал, расположенный в задней части офиса за стеклянной стеной. Около 15 человек втиснулись в небольшое помещение и сидели на стульях и на полу. Себастьян вышел вперед, пожал мне руку, представил меня присутствующим и пригласил сесть. Затем он начал забрасывать меня вопросами: «Каким должен быть хороший курс математики? Как ее преподавать? Почему ученики не справляются с математикой?» Себастьян сказал, что, по мнению его друга Билла Гейтса, алгебра стала причиной многочисленных неудач с изучением математики в США. Я дерзко ответила: «О, так вам сказал об этом преподаватель Билл Гейтс?» Присутствующие улыбнулись, а Себастьян пораженно застыл. Затем он спросил: «Ладно, а что вы думаете?» Я сказала, что ученики не справляются с алгеброй не потому, что это трудный предмет, а потому, что у них нет чувства числа, которое является основой этой дисциплины. Крис, один из разработчиков курсов, в прошлом учитель математики, кивнул в знак согласия.

Себастьян продолжил забрасывать меня вопросами. Когда он спросил, каким должно быть хорошее задание по математике, я прервала беседу и спросила присутствующих, могу ли я задать им один математический вопрос. Они охотно согласились, и я разыграла мини-версию разговора о числах. Я попросила присутствующих подумать, как можно найти произведение 18 × 5, и показать мне, что ответ готов, молча подняв палец вверх. Вскоре у всех членов команды были ответы. В тот день для решения примера было использовано шесть разных методов, и я нарисовала их на столе, вокруг которого мы сидели (рис. 5.1).


Рис. 5.1. Визуальные решения примера 18 × 5


Затем мы обсудили сходство и различия между этими методами. Когда я изображала их с помощью рисунков, глаза присутствующих становились всё шире. Некоторые начали взволнованно вскакивать с мест. Кто-то сказал, что даже не представлял себе, как много способов анализа абстрактной числовой задачи существует. Другие были поражены тем, что существует визуальное представление такой задачи и оно так наглядно иллюстрирует математику.

Когда несколько дней спустя я приехала в Лондон, мне пришло электронное письмо от Энди, молодого разработчика курсов из Udacity. Он составил онлайновый мини-курс по примеру 18 × 5, в процессе работы над которым прохожих на улице спрашивали, как они решили бы этот пример, чтобы собрать разные методы. Члены команды были настолько воодушевлены этими идеями, что захотели сразу же выложить их в открытый доступ; в команде говорили даже о том, чтобы изготовить для всех сотрудников Udacity футболки с надписью «18 × 5».

Через несколько месяцев после встречи в Udacity я познакомилась с Люком Бартеле, который был тогда директором Wolfram Alpha – одной из самых важных математических компаний в мире. Люк прочитал о разных методах решения примера 18 × 5, которые я описала в своей книге (Boaler, 2015), и это так заинтересовало его, что он начал спрашивать всех, с кем встречался, как бы они решили этот пример. Я считаю важным рассказать об этой реакции, моментах глубокого воодушевления по поводу абстрактной математической задачи. Почему всем этим пользователям высшей математики, как и маленьким детям, так интересно представлять себе и анализировать разные методы решения на первый взгляд неинтересной задачи, такой как 18 × 5? Возможно, вовлеченность обусловлена тем, что люди отмечают в математике элемент творчества, и тем, что они по-разному видят математические идеи. Это интересно само по себе, но верно и то, что большинство моих знакомых, даже математики высокого уровня, никогда не осознавали, что числа могут быть настолько открытыми, а для решения задач с ними можно использовать так много разных способов. Вовлеченность еще больше усиливается, когда это осознание приходит вместе с глубоким визуальным пониманием математических методов работы.

Я использовала аналогичные задачи в работе с учениками средней школы, студентами Стэнфорда и генеральными директорами компаний. Все они демонстрировали одинаковую вовлеченность. Благодаря этому я поняла, что людей восхищают присущие математике гибкость и открытость. Это наука, которая требует точного мышления, но, когда оно сопровождается изобретательностью, гибкостью и многообразием идей, люди начинают воспринимать ее как живую науку. Учителя могут создавать такое воодушевление на уроках при работе над любыми задачами, предлагая ученикам описать разные способы представления и решения задач и поощряя обсуждение разных способов визуального представления. Они должны уделять внимание выполнению правил работы на уроке и объяснять ученикам, что те должны слушать и уважать мнение друг друга. В главе 7 представлено описание стратегии, которая позволяет добиться этого. Если ученики уважают друг друга и внимательны к одноклассникам, очень интересно наблюдать, с какой вовлеченностью они рассказывают о разных способах решения задачи.

2. Растущие фигуры: сила визуализации

Следующий пример взят из совсем другой среды – занятий летней школы в районе Сан-Франциско, куда отправили учеников с низкой успеваемостью за прошедший учебный год. Вместе со своими студентами из Стэнфорда я преподавала математику в одном из четырех математических классов. Мы решили сосредоточиться на алгебре, но алгебра как таковая, бездумный поиск значения х, не была нашей конечной целью. Мы преподавали ее как инструмент, который можно использовать для решения содержательных, увлекательных задач. Наши ученики только что кончили шестой и седьмой классы, и большинство из них ненавидели математику. Примерно половина получила низшие оценки за прошедший учебный год (подробнее см.: Boaler, 2015; Boaler & Sengupta Irving, 2015).

Разрабатывая учебную программу для летней школы, мы использовали ряд ресурсов, в том числе книги Марка Дрисколла, математические задачи Рут Паркер, а также два учебных плана из Англии – SMILE (Secondary mathematics individualized learning experience – «Опыт индивидуального изучения математики в средней школе») и Points of Departure («Отправные пункты»). Задачу, которая вызвала воодушевление в данном случае, составила Рут Паркер. В ее рамках ученики должны были продолжить показанную в примере 5.1 растущую закономерность, представленную в виде кубиков, и определить, сколько кубиков будет на шаге 100. (Полные рабочие листы со всеми заданиями можно найти в приложении к этой книге.)

ПРИМЕР 5.1. ЗАДАЧА С ФИГУРАМИ

Как вы представляете себе рост фигур?

Материал предоставлен Рут Паркер; задача используется на курсах MEC (Mathematics Education Collaborative).

Ученики могли использовать кубики. Мы попросили детей работать группами, обсуждая разные идеи. Иногда группы формировали мы сами, а порой их создавали сами ученики. В день, о котором идет речь, я обратила внимание на интересную группу из троих мальчиков – самых непослушных в классе! До начала учебы в летней школе они не были знакомы друг с другом, но на протяжении большей части первой недели либо сами уклонялись от выполнения заданий, либо делали всё, чтобы отвлечь других от работы. Эти мальчишки постоянно что-то выкрикивали, когда другие писали на доске; в первые дни учебы их больше интересовало общение, чем обсуждение математических задач. На последнем занятии по математике Хорхе получил неудовлетворительную оценку, Карлос – удовлетворительную, а Люк – отличную. Но в день, когда мы дали ученикам это задание, что-то изменилось. Три мальчика трудились 70 минут, не останавливаясь, не отвлекаясь и не пытаясь уклониться от работы. В какой-то момент к ним подошли девочки и начали тыкать в них карандашами. Мальчики взяли свою работу и перешли к другому столу – настолько они были увлечены поиском решения.


Страницы книги >> Предыдущая | 1 2 3 4 5 6 | Следующая
  • 0 Оценок: 0

Правообладателям!

Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.

Читателям!

Оплатили, но не знаете что делать дальше?


Популярные книги за неделю


Рекомендации