Электронная библиотека » Джо Боулер » » онлайн чтение - страница 6


  • Текст добавлен: 27 сентября 2019, 13:00


Автор книги: Джо Боулер


Жанр: Математика, Наука и Образование


Возрастные ограничения: +16

сообщить о неприемлемом содержимом

Текущая страница: 6 (всего у книги 19 страниц) [доступный отрывок для чтения: 6 страниц]

Шрифт:
- 100% +

Все наши уроки записывались на видео. Просматривая запись того, как эти мальчики работали в тот день, мы увидели, что они активно обсуждают числовые закономерности, визуальный рост и алгебраическое обобщение. Такая глубокая вовлеченность отчасти объяснялась тем, что мы использовали адаптированный вариант задачи. Адаптацию можно выполнять применительно к любым математическим заданиям. На уроках, когда ученикам дают задачи с функциями, обычно требуется определить значение на шаге 100 и в общем виде на шаге n. Мы начали не с этого, а с того, что попросили учеников самостоятельно поразмышлять о том, как они представляют себе рост фигуры, прежде чем переходить к групповой работе. Мы предложили им поразмышлять над этим на визуальном уровне, а не с помощью чисел, и нарисовать в своих тетрадях, где они представляют себе дополнительные кубики на каждом шаге. Мальчики по-разному увидели картину происходящего. Люк и Хорхе представили себе рост фигуры в виде прибавления кубиков к нижней части. Позже этот вариант получил в классе название «метод боулинга»: кубики расставляются, как кегли на дорожке. Карлос представил себе рост фигуры в виде кубиков, которые устанавливаются на верхушки столбцов. Этот подход стал известен как «метод дождевых капель» – кубики падают на столбцы сверху, как капли дождя с неба (рис. 5.2).


Рис. 5.2. Работа учеников

Источник: Selling, 2015.


Поработав над задачей о росте функции индивидуально, ученики обсудили, кто как представляет себе дополнительные кубики на каждом шаге. Поразительно, что они связали свои визуальные методы с количеством кубиков в каждой фигуре; и не только работали со своими методами, но и находили время объяснить их друг другу и применить методы друг друга. Рост функции заинтриговал этих троих мальчиков, и они настойчиво пытались определить значение на шаге 100, вооружившись своими знаниями о визуальном росте фигуры. Мальчики предлагали друг другу идеи, наклонившись над столом и показывая свои рисунки в тетрадях. Как часто бывает в процессе решения математических задач, они перемещались зигзагами, то приближаясь к нужному решению, то отдаляясь от него, а затем снова возвращаясь к нему (Лакатос, 2010). Разные подходы позволяли им тщательно исследовать математический ландшафт.

Я показывала видеозапись работы этих мальчиков на многих конференциях для учителей. На всех произвели впечатление их мотивация, настойчивость и высокий уровень дискуссии. Учителя знают, что настойчивость, которую продемонстрировали эти мальчики, а также уважительность, с которой они обсуждали идеи друг друга, особенно в летней школе, – явление весьма необычное, и им интересно, как мы этого добились. Им знакома ситуация, когда ученики (особенно отстающие) прекращают попытки, если задача трудная и им не удается получить ответ сразу. Но в нашем случае этого не произошло; когда мальчики не смогли двигаться дальше, они вернулись к своим диаграммам и обсудили друг с другом идеи, многие из которых были ошибочными, но в итоге все же смогли найти путь к решению. Показав видеозапись этого случая учителям во время конференции, я спрашиваю их, какие элементы взаимодействия учеников могут помочь нам понять причины высокого уровня их настойчивости и вовлеченности. Ниже представлен ряд важных соображений по поводу благоприятных возможностей для повышения вовлеченности всех учеников.

1. Задача трудная, но доступная. Все три мальчика смогли понять задачу, хотя им было нелегко. Она идеально соответствовала их уровню мышления. Найти задачи, которые идеально подойдут всем ученикам, трудно, но возможно, когда мы расширяем их: приводим к виду, который я называю «низкий пол, высокий потолок». Пол низкий, потому что все могут видеть, как растет фигура, а потолок высокий, поскольку функция, которую изучали мальчики, – квадратичная, с помощью которой шаг n может быть представлен в виде (n + 1)2 блоков. Мы сделали «пол» ниже, предложив ученикам поразмышлять на визуальном уровне, хотя, как я покажу ниже, это не единственная причина для такой важной адаптации.

2. Мальчики восприняли задачу как головоломку, поэтому им было интересно искать решение. Вопрос не касался «реального мира» или жизни мальчиков, но увлек их. В этом и состоит сила абстрактной математики: она подразумевает открытое мышление и установление связей.

3. Рассуждения на визуальном уровне помогли мальчикам понять, как растет закономерность в задаче. Мальчики увидели, что представленная фигура растет как квадрат со стороной (n + 1), рассмотрев рост закономерности визуально. Они искали сложное решение, но были уверены в себе: им помогало визуальное представление происходящего.

4. Мальчиков воодушевило, что каждый из них разработал свой способ визуального представления роста закономерности и все они нашли правильные методы, раскрывающие разные аспекты решения. Мальчики с воодушевлением поделились своими мыслями друг с другом и использовали свои идеи и идеи других при решении задачи.

5. Урок был организован так, чтобы ученики стремились предлагать идеи без страха совершить ошибку. Это позволило мальчикам двигаться дальше, когда они «застревали», предлагая идеи (и правильные, и ошибочные), которые позволят продолжить обсуждение.

6. Мы научили учеников уважать мнение друг друга. Мы призывали отдавать должное широте мышления каждого ученика, а не процедурному мышлению отдельных детей, а также давали высокую оценку разным способам визуального представления задач и установления связей.

7. Ученики использовали свои идеи, а не придерживались метода, взятого из учебника по алгебре. Они предложили разные идеи по поводу визуального представления роста функции, поэтому им было еще интереснее решать задачу.

8. Мальчики работали вместе. На видео заметно, как мальчики поняли друг друга, делясь идеями в процессе обсуждения, и получили еще большее удовольствие от работы.

9. Работа мальчиков носила смешанный характер. Люди, которые смотрят это видео, отмечают, что каждый ученик предлагает что-то особенное и по-своему важное. Сильный постоянно выкрикивает догадки по поводу чисел (эта стратегия могла бы быть полезной для сугубо процедурных вопросов), а слабые подталкивают его к тому, чтобы он размышлял на визуальном и более концептуальном уровне. Именно такое сочетание разных способов мышления помогает мальчикам и приводит их к успеху.


Как правило, в задачах на рост закономерности ученикам задают числовые вопросы вроде «Сколько кубиков на шаге 100?» и «Сколько кубиков на шаге n?» Мы тоже поставили ученикам такие вопросы, но только после того, как они поработали над задачей сами, чтобы они проанализировали рост фигуры на визуальном уровне. Это изменило все.

Как показано на рис. 5.3–5.10, люди представляют себе рост фигуры разными способами. Не предлагая ученикам мыслить визуально, мы упускаем прекрасную возможность помочь им лучше понять происходящее. Ниже показано, как учителя и ученики, с которыми я работала, представляют себе рост фигуры, и приведены названия, которые они использовали для обозначения своих вариантов.


Рис. 5.3. Метод дождевых капель – кубики падают на столбцы с неба, как капли дождя


Рис. 5.4. Метод боулинга – кубики расставляются, как кегли на дорожке для боулинга


Рис. 5.5. Метод вулкана – средний столбец растет в высоту, а остальные растекаются, как лава из вулкана


Рис. 5.6. Метод расхождения вод Красного моря – два столбца расходятся, и между ними появляется еще один


Рис. 5.7. Метод подобных треугольников – уровни можно рассматривать в виде треугольников


Рис. 5.8. Метод сечения – уровни можно рассматривать по диагонали


Рис. 5.9. «Лестница в небеса: в доступе отказано» – из фильма «Мир Уэйна»


Рис. 5.10. Метод квадратов – любую фигуру можно перегруппировать, сделав из нее квадрат


Недавно я дала эту задачу на рост закономерности группе учителей старших классов, которые не стали тратить время на визуальное представление роста фигуры, составив вместо этого таблицу значений.



Когда я попросила учителей объяснить, почему эта функция возрастает по квадратичному закону, они не смогли ответить. Но мы видим здесь квадратичную функцию вот почему: фигура растет как квадрат со стороной (n + 1), где n – номер шага (рис. 5.11).


Рис. 5.11. Метод квадратов 2


Если мы не предлагаем ученикам проанализировать рост фигуры визуально, они не могут понять важные аспекты роста функции. Часто они не способны сказать, что означает n, и алгебра остается для них тайной: набором абстрактных символов, которые они переставляют на странице с места на место. Наши ученики летней школы знали, что представляет собой n, поскольку сами его нарисовали. Они знали, почему функция растет по квадратичному закону и почему n-й шаг представлен в виде (n + 1)2. Алгебраическое выражение, которое ученики в итоге составили, имело для них смысл. Кроме того, они не считали, что ищут стандартный ответ; они полагали, что исследуют разные методы и используют свои идеи, в том числе способы визуального представления математического роста. Ниже пойдет речь о том, как свойства данной задачи можно использовать в других задачах, чтобы повысить вовлеченность и понимание учеников.

3. Пора рассказать?

Когда я рассказываю учителям об открытых, исследовательских задачах по математике, например задаче о росте фигур или «дождевых каплях», о которых шла речь выше, они часто спрашивают: «Я понимаю, что эти задачи увлекательны и рождают интересные математические дискуссии, но как ученикам осваивать новые концепции, например тригонометрические функции? Или как разлагать числа на множители? Они не могут открыть это для себя самостоятельно». Это обоснованный вопрос, и поиску ответа на него посвящен ряд важных исследований. Идеальные математические дискуссии – те, в ходе которых ученики используют математические методы и концепции для решения задач. Но иногда учителям нужно познакомить учеников с новыми методами. На большинстве уроков математики применяется стандартный подход: учителя объясняют методы, а ученики отрабатывают их, решая задачи из учебника. На уроках математики более высокого уровня ученики выходят за рамки отработки конкретных приемов и используют их для решения прикладных задач, но порядок сохраняется: учителя объясняют методы, а ученики применяют их.

В ходе одного важного исследования были сопоставлены три подхода к преподаванию математики (Schwartz & Bransford, 1998). Первый распространен в США: учитель объяснял методы, а ученики с их помощью решали задачи. При втором подходе ученики имели возможность открыть эти методы для себя в рамках исследований. Третий представлял собой обратный вариант типичной последовательности: ученикам сначала ставили прикладные задачи, над которыми они должны были работать, не зная, как их решить, а затем объясняли необходимые для этого методы. Именно третья группа учеников показала гораздо более высокие результаты. Исследователи обнаружили: когда ученикам предлагали решить задачи и они не знали методов, но им давалась возможность провести исследования, у них возникало любопытство и их мозг был настроен на изучение нового. И когда учителя объясняли эти методы, ученики уделяли им больше внимания и были более заинтересованы. Результаты исследования были опубликованы в статье под названием «Пора рассказать». По мнению исследователей, вопрос не в том, должны ли мы рассказывать о методах или объяснять их, а в том, когда это лучше делать. Результаты исследования однозначно указывают: самый подходящий момент наступает после того, как ученики исследуют задачу.

Как это происходит на уроке? Как учителям удается ставить ученикам задачи, которые они не могут решить, так чтобы те не испытывали разочарования? Чтобы объяснить, как это работает, приведу два разных примера такого подхода к преподаванию.

Первый взят из научного исследования, которое я проводила в Англии. Оно показало, что ученики, изучавшие математику на основе проектно-ориентированного подхода, добились гораздо более высоких результатов как при сдаче стандартных тестов (Boaler, 1998), так и позже (Boaler, 2005), по сравнению с теми, кто применял традиционный подход. В рамках одной из задач, о которой я узнала в школе, работающей на основе проектно-ориентированного подхода, группе тринадцатилетних учеников сказали, что фермеру нужно оградить забором как можно большую площадь 36 планками длиной 1 м. Ученики начали исследовать способы определения максимальной площади. Они пробовали квадраты, прямоугольники и треугольники, пытаясь найти фигуру с максимально возможной площадью. Два ученика поняли, что самую большую площадь имеет фигура, состоящая из 36 сторон, и приступили к определению ее точной площади (рис. 5.12).


Рис. 5.12. Максимальную площадь ограждает забор в виде правильного многоугольника с 36 сторонами


Ученики разделили свою фигуру на 36 треугольников; им было известно, что длина основания треугольника составляет 1 м, а угол при вершине – 10° (рис. 5.13).


Рис. 5.13. Треугольник, образованный секцией забора длиной 1 м


Но этого было недостаточно, чтобы найти площадь треугольника. И тут учитель объяснил детям суть тригонометрии и способы использования функции тангенса для определения высоты треугольника. Ученики были в восторге: так кстати пришелся новый метод. Я видела, как один мальчик взахлеб объяснял членам своей группы функцию тангенса, оценивая новое знание как «действительно крутое». В этот момент я вспомнила об уроке совсем иного рода, за которым я наблюдала в обычной школе неделей ранее. Учитель объяснил ученикам тригонометрические функции и дал им целые страницы с упражнениями.

Ученики считали, что тригонометрические функции очень скучны и не имеют отношения к их жизни. В школе, придерживающейся проектно-ориентированного подхода, ученики с воодушевлением исследовали тригонометрию и считали эти методы интересными и полезными. В результате они глубже освоили методы. И именно поэтому ученики школы с таким подходом к преподаванию математики более успешны на экзаменах и в жизни.

Второй пример того, как ученики изучали методы после постановки задач, взят из исследования, которое я проводила в США. Оно также показало, что ученики добились гораздо лучших результатов, когда им преподавали математику на основе концептуального подхода, сфокусированного на связях и коммуникации (Boaler & Staples, 2005). Более подробная информация об обоих подходах к преподаванию представлена в моей книге «При чем тут математика?» (Boaler, 2015). Однажды я присутствовала на уроке по началам анализа в успешной школе, которую я назвала Рейлсайд. Урок был посвящен определению объема сложной фигуры. Лора Эванс готовила учеников к изучению анализа и поиску площади под кривой с помощью интегралов, но не стала с самого начала объяснять формальный метод, как обычно бывает. Она поставила задачу, для которой были нужны эти знания, и предложила детям подумать, как ее решить. Задача состояла в том, чтобы найти способ определения объема лимона. Чтобы ученики могли поразмышлять над этим, учительница дала каждой группе лимон и большой нож и предложила исследовать возможные решения (рис. 5.14).


Рис. 5.14. Чему равен объем лимона?

Источник: Shutterstock (ampFotoStudio).


После того как ученики обсудили эту задачу в группах, некоторые из них подошли к доске и с воодушевлением поделились своими идеями. Одна группа решила погрузить лимон в миску с водой, чтобы вычислить объем вытесненной жидкости. Вторая – тщательно измерить размер лимона. Третья – разрезать лимон на тонкие дольки и представить их себе в виде двумерных сечений, которые они затем разрезали на полоски, приблизившись к формальному методу определения площади под кривой, которому обучают в рамках курса математического анализа (рис. 5.15).


Рис. 5.15. Вычисление объема лимона по сечениям


Когда учительница объяснила детям метод интегралов, те с воодушевлением приняли его как эффективный инструмент.

В обоих случаях применялся обратный порядок обучения. Ученики узнали о тригонометрических методах и пределах после того, как исследовали задачу и столкнулись с необходимостью в конкретных приемах. Учителя объяснили эти методы в тот момент, когда в них возникла необходимость, вместо того чтобы сначала дать формальную информацию, а потом предложить отработать метод. Это пробудило у учеников огромный интерес к изучаемым методам и помогло понять их.

Как я упоминала в главе 4, Себастьян Трун поведал мне, насколько важную роль сыграла интуиция в его работе. Он сказал, что ему не удавалось продвинуться в решении задачи, если у него не было интуитивного ощущения, что он на верном пути. Математики также подчеркивают роль интуиции в их работе. Леоне Бертон провела опрос среди 70 математиков, занимающихся научными исследованиями, и 58 из них отметили этот факт (Burton, 1999). Рубен Херш пришел к тому же выводу: «Интуиция в математике повсюду» (Hersh, 1999). Так почему же ее не применяют на большинстве уроков математики? Многие дети даже не представляют себе, что интуиция нужна при решении задач. Когда ученикам предложили поразмышлять над определением объема лимона, их попросили прибегнуть к интуиции. С ее помощью можно решать многие математические задачи. Детям помладше стоит дать разные треугольники и прямоугольники и предложить подумать, как найти площадь треугольника, до того как объяснить им формулу площади. Ученики могут анализировать различия между наборами данных до того, как им объяснят такие понятия, как среднее арифметическое, мода и амплитуда. Они могут исследовать соотношения в окружностях, прежде чем узнают значение π. И когда эти ученики начнут изучать формальные методы, этот процесс будет более глубоким и содержательным. Мыслить интуитивно – очень полезное занятие. Во-первых, дети перестают пользоваться конкретными методами и анализируют задачи в более широком контексте. Во-вторых, они осознают, что должны использовать разум: мышление, осмысление и умозаключения. Они уже не думают, что их задача – простое воспроизведение методов, и понимают, что им нужно анализировать целесообразность применения разных подходов. В-третьих, как показали исследования Шварца и Брэнсфорда, мозг учеников настраивается на изучение новых методов (Schwartz & Bransford, 1998).

4. Первое знакомство с математическими связями (треугольник Паскаля)

Следующий пример взят из семинара по профессиональному развитию, за которым я наблюдала. Мероприятие вела Рут Паркер – удивительный педагог, которая организует для учителей семинары, помогающие им понять математику на совершенно новом уровне. Я выбрала именно этот пример, поскольку в тот день увидела то, с чем сталкивалась впоследствии неоднократно: задачу, которая позволила учительнице по имени Элизабет увидеть настолько сильную математическую связь, что она расплакалась. Элизабет – учительница начальной школы, которая, как и многие другие, преподавала математику как набор процедур. Она не знала, что это наука, в которой есть много глубоких связей. Люди, которые всегда считали математику бессвязным набором процедур, нередко волнуются, когда видят глубокие связи в математике.

Семинар Рут, как и обучение в нашей летней школе, был сосредоточен на алгебраическом мышлении. Ведущая давала учителям много задач на определение функциональных закономерностей. В тот день Рут выбрала интересную задачу из категории «низкий пол, высокий потолок»: с виду простую, но на деле сложную и глубокую. Учителя, которые принимали участие в семинаре, после этого начали изучать экспоненциальный рост и отрицательные показатели степени.

Элизабет и другие учителя приступили к работе, раскладывая и упорядочивая цветные счетные палочки Кюизенера, чтобы найти все способы формирования последовательностей, соответствующих длине трех выбранных ими палочек. Некоторые решили начать с палочки длиной 10 – и задача заметно усложнилась, поскольку существует 1024 способа образовать последовательности такой же длины, что и палочка длиной 10! Рут знала, что ее задача не в том, чтобы избавлять учителей от проблем, а в том, чтобы дать им возможность погрузиться в математические детали задачи. Поднапрягшись, некоторые из этих учителей вспомнили то, что узнали на семинаре немного раньше: важный математический навык, которым ученики могут так и не овладеть за одиннадцать лет, – начинать с меньшего. Учителя поработали со счетными палочками разной длины и увидели, как формируется закономерность и на визуальном, и на числовом уровне (пример 5.2).

ПРИМЕР 5.2. ПОСЛЕДОВАТЕЛЬНОСТИ ПАЛОЧЕК КЮИЗЕНЕРА

Определите, сколько разных последовательностей можно составить для палочек любой длины. Например, для светло-зеленой палочки можно составить четыре последовательности.

Материал предоставлен Рут Паркер; задача используется на курсах MEC (Mathematics Education Collaborative).

И тут Рут показала учителям треугольник Паскаля и предложила им исследовать его связь с задачей с палочками Кюизенера и знаменитым треугольником (см. пример 5.3).

ПРИМЕР 5.3. ТРЕУГОЛЬНИК ПАСКАЛЯ

Потратив много сил на выполнение этого задания, учителя с удивлением обнаружили, что все их варианты находятся в треугольнике Паскаля. Именно этот момент растрогал Элизабет до слез, и я ее понимаю. Для любого человека, который воспринимал математику как совокупность несвязных процедур, а затем получил возможность исследовать визуальные и числовые закономерности, научившись видеть и понимать связи, это сильнейший опыт. Тогда Элизабет и обрела уверенность в своих интеллектуальных возможностях и способности самостоятельно обнаруживать математические идеи и связи.

С этого момента отношения Элизабет с математикой изменились, и она уже никогда не возвращалась к прошлому. Я встретилась с ней год спустя, когда она снова проходила курс Рут Паркер, чтобы освоить еще более эффективный подход к изучению математики. Элизабет рассказала мне обо всех замечательных изменениях, которые она внесла в свои методы преподавания, и о трепетном отношении ее подопечных к математике.

Опыт нового видения математики, который получила Элизабет, когда впервые узнала о математических связях, я постоянно использую в работе с разными детьми и взрослыми. И эмоции, которые они испытывают, прямо связаны с опытом обнаружения, изучения и осмысления математических связей.

5. Чудеса отрицательных координат

Этот пример связан с задачей, которую я использовала в работе со своей группой по подготовке учителей в Стэнфорде и с другими группами учителей. Она вызывает такое сильное воодушевление, что не рассказать о ней нельзя. Это одна из задач на рост закономерности, но с одним дополнением, которому я и хочу уделить особое внимание. Задачу придумал Карлос Кабана – замечательный учитель, с которым я работаю. В примере 5.4 показана задача, которую он обычно ставит ученикам.

ПРИМЕР 5.4. ЗАДАЧА НА ОТРИЦАТЕЛЬНОЕ ПРОСТРАНСТВО

1. Как выглядел бы рисунок 100?

2. Представьте себе, что вы могли бы продолжить построение этой модели в обратном направлении. Сколько ячеек было бы на рисунке –1? (Да, рисунок минус один, что бы это ни значило!)

3. Как выглядел бы рисунок –1?

На основе материалов Карлоса Кабаны.

Один из вопросов, поставленных в этой задаче, звучит так: сколько ячеек было бы на рисунке –1 (если бы нужно было продолжить закономерность в обратном направлении, сколько ячеек было бы на шаге –1)? Задавая этот вопрос учителям, я обнаружила, что им легко найти ответ. Гораздо более интересным и сложным был вопрос о том, как выглядел бы рисунок на шаге –1. Когда я включила этот вопрос в задачу, произошло кое-что поразительное. Решение (которое я не буду здесь раскрывать) требует напряженных размышлений; учителя шутили, что, когда они пытались найти это решение, у них заболела голова и произошло возбуждение синапсов. Существует ряд способов добраться до шага –1 и правильных вариантов визуального представления. Но и числовое решение не единственное. Задача перемещается в неизведанную и захватывающую область – анализ вопроса о том, что такое отрицательный квадратный корень. Некоторые учителя поняли, что им необходимо поразмышлять об отрицательном пространстве, а также о том, как выглядела бы ячейка, отображенная на себя. Когда я поставила эту задачу свой группе учителей из Стэнфорда, они от волнения перепрыгивали через столы и пытались представить отрицательное пространство, протыкая в бумаге отверстия, чтобы показать, как ячейки переходят туда. Один из учителей понял и рассказал другим о том, что эту функцию можно представить в виде параболы (рис. 5.16). Другой спросил меня, куда уйдет эта парабола – останется ли на положительной части оси ординат или примет отрицательное значение.


Рис. 5.16. Дилемма с параболой


Этот вопрос показался членам группы очень увлекательным, и они активно старались во всем разобраться. В конце занятия будущие учителя пришли к выводу, что испытали истинное воодушевление и знают, какие ощущения хотят вызывать у своих учеников на уроках.

Но что именно вызвало такое воодушевление? Когда недавно я поставила эту задачу ведущим учителям в Канаде, она так увлекла их, что я не могла заставить их остановиться. Кое-кто даже шутил по этому поводу. В Twitter появилось сообщение: «Джо Боулер не может оторвать нас от задачи, которую нам поставила».

Эта задача вызывает такое воодушевление, поскольку требует размышлений об отрицательном пространстве, выходе в другое измерение, что само по себе интересно. Математика позволяет сделать это, потому-то она так увлекательна. Кроме того, слушатели курса считали, что исследуют неизведанную область; они не искали ответ на вопрос, который знали преподаватель и составители учебников, и это усиливало их воодушевление. Когда слушатели курса задавали вопрос о направлении параболы, у них было ощущение, что они могут спросить обо всем, что математика – открытая наука и, обнаружив новую идею (ту же параболу), они могут развить ее с помощью следующего вопроса. Визуальное представление математической закономерности снова сыграло важнейшую роль в усилении вовлеченности.

Прежде чем задуматься, что значат все эти примеры в контексте разработки увлекательных задач, приведу еще один пример. На сей раз события разворачивались на уроке в третьем классе.

6. От фактов к воодушевлению

В главе 4 я говорила, что учителям стоит изменить способы стимулирования учеников к изучению математических фактов, а также о важности перехода от работы, которая часто травмирует учеников (тесты с ограничением времени, изучение конкретных фактов и долгие часы заучивания), к увлекательным занятиям, которые укрепляют важные связи в головном мозге. Чтобы помочь учителям внедрить такие перемены, мы с коллегами из YouCubed написали статью, упомянутую в предыдущей главе. Я разместила ее на нашем сайте в надежде на то, что ее смогут прочесть многие учителя. Но мы не могли предвидеть масштабов влияния этой статьи: ее цитировали крупные газеты США. Один из видов деятельности, о котором мы рассказывали учителям, дал положительный эффект иного рода. Они обменивались информацией о нем друг с другом в соцсетях, публикуя фотографии учеников, которые с удовольствием занимаются математикой и формируют важные связи в головном мозге.

Такую важность и популярность приобрела игра под названием «Насколько близко к 100?» (ее описание см. в предыдущей главе).

В числе прочих мой онлайн-курс прошла и после этого изменила свои методы преподавания математики Роуз Фернандес – учительница третьего класса калифорнийской школы, в которой минимум 40 % учеников – из небогатых семей. Роуз повесила на стене плакат с перечнем семи хороших правил изучения математики, разработанных в YouCubed (см. главу 9), чтобы их видели все ученики. Она рассказала мне, с каким воодушевлением ее ученики играют в эту игру и какие важные математические возможности перед ними открылись. Роуз – вдумчивая учительница; она не только организовала игру для учеников, но и предложила им для начала ее обсудить. Кроме того, она подготовила дополнительные задания для тех, кто работает быстрее. Перед началом игры она предложила детям подумать, как использовать игральные кости в качестве математического инструмента. Роуз попросила их подбрасывать две кости и по очереди называть полученные числа и их произведения. Затем она задала важный вопрос: как умножение и площадь связаны друг с другом? Ученики тщательно проанализировали его. Потом Роуз предложила детям поработать в парах и подумать, чему они учатся в этой игре. Кроме того, она поставила задачу выполнить разложение чисел и найти разные способы их записи на обратной стороне своих листов, если они закончат задание раньше. Ученики играли с большим воодушевлением, а когда Роуз попросила их оценить свою удовлетворенность по шкале от одного до пяти, 95 % детей поставили самую высокую оценку.

Вот что говорили ученики, размышляя над этой игрой.


«Это заставило меня думать».

«Было весело исследовать математику и изучать ее».

«Это дало мне возможность попрактиковаться в умножении».

«Это был забавный способ изучить математические факты».

«Я узнал, что умножение и площадь взаимосвязаны».

«Теперь я знаю связь между делением, умножением и площадью, потому что я могу себе ее представить!»

Уровень воодушевления учеников во время этой игры был таким же высоким, как и сила математики, которую они изучали. Они говорили не только об удовольствии от игры, но и о математических концепциях, которые они изучали. Дети размышляли об умножении, делении и площади на визуальном уровне, исследуя математические факты с удовольствием и вовлеченностью. Это куда интереснее заучивания таблицы умножения!

Во всех этих примерах в центре оказалась математическая задача, подкрепленная грамотным подходом к преподаванию. Ниже представлен обзор важных элементов постановки этих шести задач, которые можно применить ко всем математическим задачам независимо от этапа обучения. Вдобавок во всех случаях ученики взаимодействовали друг с другом, иногда размышляя самостоятельно, но чаще вместе работая над идеями на уроках и получая позитивные сигналы по поводу мышления роста. Ниже представлено описание способов включения этих важных структурных элементов в любую математическую задачу.

От примеров к разработке задач

Непродуктивный период в сфере образования завершается. С тех пор как правительство Буша приняло закон «Ни одного отстающего ребенка» (No Child Left Behind Act), учителя были вынуждены придерживаться «предписанной» программы и пошаговых инструкций, хотя знали, что вредят ученикам. Многие считали, что это снижает их профессиональный уровень: ведь их лишили возможности принимать важные решения по поводу преподавания. К счастью, приходит новое время: учителям доверяют принимать важные профессиональные решения. Один из аспектов преподавания, ориентированного на развитие математического мышления, который интересует меня больше всего, – перемены, которые мы можем внести в уроки математики, давая ученикам важную информацию и делая математические задачи открытыми. Это обеспечивает пространство для обучения и играет важнейшую роль в формировании математического мышления.

Внимание! Это не конец книги.

Если начало книги вам понравилось, то полную версию можно приобрести у нашего партнёра - распространителя легального контента. Поддержите автора!

Страницы книги >> Предыдущая | 1 2 3 4 5 6
  • 0 Оценок: 0

Правообладателям!

Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.

Читателям!

Оплатили, но не знаете что делать дальше?


Популярные книги за неделю


Рекомендации