Электронная библиотека » Джордан Элленберг » » онлайн чтение - страница 3


  • Текст добавлен: 29 марта 2017, 15:10


Автор книги: Джордан Элленберг


Жанр: Математика, Наука и Образование


Возрастные ограничения: +16

сообщить о неприемлемом содержимом

Текущая страница: 3 (всего у книги 38 страниц) [доступный отрывок для чтения: 12 страниц]

Шрифт:
- 100% +
Экономическое шаманство

Парадокс в том, что экономисты-консерваторы – вроде исследователей Института Катона – понимают это лучше, чем кто-либо другой. Помните вторую картинку – ту, которую нарисовал я? Тот самый в высшей степени научный график с горбом посередине? Я далеко не первый, кто изобразил это. График такого типа, получивший название «кривая Лаффера», уже почти сорок лет играет центральную роль в экономике республиканцев. Примерно в середине президентского срока Рейгана кривая Лаффера стала настолько распространенной темой экономических дискуссий, что Бен Стайн в фильме Ferris Bueller’s Day Off («Выходной день Ферриса Бьюлера»[38]38
  Фильм Джона Хьюза (1984), в котором роль преподавателя экономики сыграл известный экономический комментатор Бен Стайн. Прим. М. Г.


[Закрыть]
) экспромтом включил ее в свой знаменитый невыносимо скучный школьный урок:

Кто-нибудь знает, что это? Эй, класс? Кто-нибудь знает? Кто-нибудь встречал это раньше? Кривая Лаффера. Сегодня продолжается дискуссия по этому вопросу… Кто-нибудь знает суть этих дискуссий? Класс? Кто ответит? Есть желающие? Кто-то знает, что это такое? Это значит, в этой точке кривой дохода вы получите точно такую же сумму, как и в этой. Это спорный вопрос. Кто-нибудь знает, как вице-президент Буш назвал это в восьмидесятые годы? Кто-нибудь знает? Насчет экономики? Что-то там… ду-ду экономика? Вуду-экономика, экономическое шаманство.

С кривой Лаффера связана такая легенда. Однажды в 1974 году Артур Лаффер, который был в то время профессором экономики Чикагского университета, ужинал с Диком Чейни, Дональдом Рамсфелдом и тогдашним главным редактором Wall Street Journal Джудом Ванниски в ресторане одного фешенебельного вашингтонского отеля. Во время ужина заговорили о предложенной президентом Фордом схеме налогообложения. Возник спор, и в итоге, как обычно водится среди людей творческих, когда разногласия достигают наибольшего накала, Лаффер схватил салфетку и изобразил на ней рисунок[39]39
  Эту часть истории Лаффер отрицает. По его словам, в ресторане были превосходные тканевые салфетки, которые он ни за что не стал бы портить экономическими закорючками.


[Закрыть]
.



Здесь горизонтальная ось отображает уровень налогообложения, а вертикальная – объем доходов, полученных правительством от налогов, выплаченных налогоплательщиками. С левой стороны графика налоговая ставка составляет 0 %; в этом случае правительство по определению не получает никакого дохода от налогов. Справа ставка налога составляет 100 %; это означает, что, каким бы ни был ваш доход – будь то прибыль от вашего бизнеса или заработная плата, получаемая вами от работодателя, – абсолютно все уходит в карман дядюшки Сэма.

Но это бессмысленно. Если правительство отнимает у вас все до последнего цента из зарплаты, которую вам платят за то, что вы преподаете в школе, или продаете оборудование, или занимаете пост руководителя среднего звена, – то зачем вам нужна такая работа? Когда уровень налогообложения дойдет до правого края графика, люди вообще перестанут работать. Но если и будут продолжать, то исключительно в системе неофициальной экономики, куда сборщикам налогов доступ закрыт. Правда, в таком случае правительственные доходы тоже будут равны нулю.

Правительство все-таки имеет определенный объем доходов от налогообложения – в случае когда налоговые ставки попадают в промежуточный диапазон посередине кривой, то есть где-то между нулевой долей нашего дохода и всем доходом. Собственно, так и происходит в реальном мире[40]40
  Лаффер всегда настаивал, что не он придумал кривую своего имени; когда-то эту идею понял и описал Джон Кейнс, а базовый принцип сформулировал еще в XIV веке историк Ибн Хальдун.


[Закрыть]
[41]41
  Из книги «Физики шутят»: «Дирак любил потеоретизировать на самые различные темы. Однажды он высказал предположение, что существует оптимальное расстояние, на котором женское лицо выглядит привлекательнее всего; поскольку в двух предельных случаях – на нулевом и бесконечном расстоянии – “привлекательность обращается в нуль” (ничего не видно), то между этими пределами, естественно, должен существовать максимум» (Физики шутят / Составители-переводчики: Ю. Конобеев, В. Павлинчук, Н. Работнов, В. Турчин. М.: Мир, 1993). Прим. М. Г.


[Закрыть]
.

Это означает, что линия, отображающая зависимость между налоговой ставкой и правительственным доходом, не может быть прямой. Если было бы так, объем доходов от налогообложения оказался бы максимальным как с левой, так и с правой стороны графика, однако в обоих случаях он равен нулю. Если текущая ставка подоходного налога действительно близка к нулю, то есть вы находитесь с правой стороны графика, повышение налогов приведет к тому, что в распоряжении правительства будет больше денег для финансирования различных социальных программ, как, возможно, вам и подсказывает интуиция. Однако если подоходный налог близок к 100 %, повышение налогов на самом деле приведет к сокращению правительственных доходов. Если вы находитесь с правой стороны от вершины кривой Лаффера и хотите сократить дефицит бюджета без сокращения расходов, есть простое и замечательное с политической точки зрения решение: снизить уровень налогообложения, тем самым увеличив общую сумму налогов, которые вы взимаете. Какой путь выбрать, зависит от того, где вы находитесь.

Так где мы находимся? Здесь и начинаются трудности. Максимальная ставка подоходного налога в 1974 году составляла 70 %, и мысль о том, что Америка находится на нисходящем участке кривой Лаффера, представляла определенный интерес – особенно для тех счастливчиков, которым повезло платить налоги по этой ставке, распространявшейся только на доход, превышающий 200 тысяч долларов[42]42
  Примерно от 500 тысяч до 1 миллиона долларов в год в современном исчислении.


[Закрыть]
. Кривая Лаффера получила сильного сторонника в лице Ванниски, который донес ее идею до сознания общественности в 1978 году, в книге с довольно самонадеянным названием The Way the World Works («Как устроен мир»[43]43
  Похоже, я единственный, кто о ней вспомнил.


[Закрыть]
). Ванниски по-настоящему верил в эту теорию и отстаивал ее не только с большим рвением, но и с дипломатичным благоразумием, позволившим ему привлечь к ней надлежащее внимание. А ведь даже сторонники снижения налогов считали концепцию кривой Лаффера слишком радикальной. Ванниски совсем не задевало, когда его называли чудаком: «Томас Эдисон был чудаком, Лейбниц был чудаком, Галилей был чудаком и так далее и тому подобное. Каждого, кто выдвигает новые идеи наперекор расхожему мнению, новые идеи, раздвигающие границы устоявшихся научных направлений, считают сумасшедшим»[44]44
  Цит. по: JonathanChait. Prophet Motive: Jude Wanniski, the GOP’s odd man in // New Republic, 1997, March 31.


[Закрыть]
.

(Отступление. Здесь важно отметить, что люди, которые выдвигают идеи, выходящие за рамки общепринятого, и которые сравнивают себя с Эдисоном и Галилеем, никогда не бывают правы. Я получаю письма, написанные в таком духе, примерно один раз в месяц, как правило, пишут их люди, «доказавшие» математические утверждения, про которые уже сотни лет известно, что они ложные. Могу вас заверить, что Эйнштейн не говорил людям: «Послушайте, я знаю, что теория относительности звучит как бред сумасшедшего, но ведь то же самое говорили об идеях Галилея!»)

Кривая Лаффера с ее компактным графическим представлением и притягательной парадоксальностью быстро нашла своих сторонников среди политиков, и раньше выступавших за снижение налогов. Экономист Хэл Вариан сказал об этом: «Вы можете объяснить что-то члену Конгресса за шесть минут, а он будет говорить об этом шесть месяцев»[45]45
  Hal R. Varian. What Use Is Economic Theory? [Working Paper] University of California at Berkeley, 1989, August (http://people.ischool.berkeley.edu/~hal/Papers/theory.pdf – просмотрено 13.01.2014).


[Закрыть]
. Ванниски стал советником сначала Джека Кемпа[46]46
  Американский политик Джек Френч Кемп в 1988 году проиграл на республиканских праймериз Бушу-ст., в 1996 году был кандидатом в вице-президенты (с Бобом Доулом). Прим. М. Г.


[Закрыть]
, а затем Рональда Рейгана, чей богатый опыт работы в Голливуде в 1940-е годы, когда он был всего лишь кинозвездой, заложил основы его представлений об экономике, что понадобилось ему четыре десятилетия спустя. Дэвид Стокман, руководитель административно-бюджетного управления в период президентства Рейгана, вспоминает:

«Я узнал, что такое большие деньги, снимаясь в фильмах во время Второй мировой войны», – так всегда говорил [Рейган. – Д. Э.]. В то время добавочный подоходный налог достиг 90 %. «Можно было сняться в четырех картинах – и вы уже в более высоком разряде налогообложения. Поэтому примерно после четырех фильмов мы бросали работу и уезжали в деревню», – продолжал Рейган. Высокий налог приводит к тому, что люди работают меньше. Низкий налог приводит к тому, что они работают больше. Его опыт доказал это[47]47
  David Stockman. The Triumph of Politics: How the Reagan Revolution Failed. New York: Harper & Row, 1986, p. 10.


[Закрыть]
.

В наши дни трудно найти экономиста с хорошей репутацией, считающего, будто мы находимся на нисходящем участке кривой Лаффера. Может быть, в этом и нет ничего удивительного, если учитывать, что в настоящее время с самых высоких доходов взимается налог по ставке всего 35 %, которая показалась бы абсурдно низкой на протяжении большей части ХХ столетия. Но даже во времена Рейгана мы, по всей вероятности, находились с левой стороны кривой Лаффера. Экономист Гарвардского университета Грегори Мэнкью – республиканец, возглавлявший совет консультантов по экономическим вопросам при президентстве второго Буша, – пишет в своем учебнике по микроэкономике:

Дальнейшая история не подтвердила гипотезу Лаффера по поводу того, что снижение налоговых ставок приводит к увеличению налоговых поступлений. Когда после избрания на пост президента Рейган снизил налоги, объем налоговых сборов сократился, а не увеличился. За период с 1980 по 1984 год поступления от подоходного налога с физических лиц сократились на 9 % (на человека, с учетом инфляции), хотя средний доход (на человека, с учетом инфляции) возрос на 4 % за тот же период. Тем не менее изменить действующую налоговую политику было трудно[48]48
  N. Gregory Mankiw. Principles of Microeconomics. Amsterdam: Elsevier, 1998, vol. 1, p. 166.


[Закрыть]
.

Теперь самое время по достоинству оценить точку зрения сторонников экономики предложения. Прежде всего следует отметить, что максимальное увеличение правительственных доходов не обязательно должно быть целью налоговой политики. Милтон Фридман, с которым мы уже встречались, когда он выполнял секретную военную работу для Группы статистических исследований во времена Второй мировой войны, стал впоследствии лауреатом Нобелевской премии по экономике, советником ряда президентов, последователем либертарианской философии и влиятельным сторонником снижения налогов. Знаменитый лозунг Фридмана звучит так: «Я сторонник снижения налогов в любых обстоятельствах, под любым предлогом и при любой возможности». Он считал, что мы не должны стремиться к вершине кривой Лаффера – точке, в которой налоговые сборы правительства достигают максимума. В понимании Фридмана собранные правительством деньги в конечном счете будут израсходованы тем же правительством, причем в таком случае деньги будут потрачены скорее плохо, чем хорошо.

Сторонники экономики предложения, придерживающиеся более умеренных взглядов, – как, например, Мэнкью, – утверждают, что снижение налогов может усилить мотивацию людей работать больше и открывать новые компании, что в итоге приведет к укреплению экономики, даже если прямой эффект снижения налогов – это сокращение правительственных доходов и увеличение бюджетного дефицита. Экономист, больше сочувствующий идее перераспределения доходов, отметил бы, что это палка о двух концах, поскольку сокращение правительственных расходов может означать, что правительство будет выделять меньше средств на инфраструктуру, менее строго бороться с мошенничеством и в целом предпринимать меньше всех тех действий, которые способствуют развитию свободного предпринимательства.

Кроме того, по мнению Мэнкью, самые богатые люди, платящие налог на верхнюю часть дохода по ставке 70 %, действительно увеличили налоговые поступления после предпринятого Рейганом снижения налогов[49]49
  Трудно сказать наверняка, действительно ли увеличение объема налоговых поступлений было обусловлено тем, что богатые люди, освободившись от бремени подоходного налога, начали работать больше, как гласит теория предложения.


[Закрыть]
. Это создает несколько тревожную возможность того, что максимальное увеличение правительственных доходов может быть достигнуто за счет повышения налогов на представителей среднего класса, которым не останется ничего другого, кроме как продолжать работать, при одновременном снижении налогов на накопивших достаточно богатства богатых людей. Но если правительство введет налог, который покажется среднему классу слишком высоким, то возникнет реальная угроза сокращения деловой активности и, напротив, ее усиления в офшорных зонах. При таком развитии событий многим либералам придется примкнуть к точке зрения Милтона Фридмана: возможно, максимальное увеличение правительственных доходов – не такая уж хорошая идея.

Итоговый вывод Мэнкью довольно корректен: «Аргумент Лаффера нельзя назвать полностью необоснованным». Я бы воздал должное Лафферу в большей мере! Его рисунок проиллюстрировал фундаментальную и неопровержимую математическую идею: зависимость между налогообложением и налоговыми поступлениями в казну неизбежно носит нелинейный характер. Безусловно, кривая этой зависимости не обязательно должна представлять собой один ровный изгиб, как на рисунке Лаффера. Эта кривая может иметь форму трапеции.



Или напоминать по форме спину одногорбого верблюда.



Или иметь сильно осциллирующую форму[50]50
  Или, что еще более вероятно, это вообще может быть не одна кривая, как показал Мартин Гарднер с помощью запутанной «неокривой Лаффера» в язвительной оценке теории предложения, изложенной в статье «Кривая Лаффера».


[Закрыть]
[51]51
  Martin Gardner. The Laffer Curve //Martin Gardner. The Night Is Large: Collected Essays, 1938–1995. New York: St. Martin’s Griffin, 1996, p. 127–139.


[Закрыть]
.



В любом случае, если эта кривая направлена вверх в одном месте, она непременно развернется вниз в другом. Существует такая вещь, как чрезмерная мера шведскости. Ни один экономист не станет спорить с этим утверждением. Кроме того, сам Лаффер подчеркивал, что многие социологи понимали это задолго до него. Лаффер прекрасно осознавал, что его кривая не позволяет определить, является ли экономика той или иной страны обремененной слишком высокими налогами в данное время. Именно поэтому он не привел на своем рисунке никаких конкретных показателей. Когда во время слушаний в Конгрессе[52]52
  Во время рассмотрения в 1978 году законопроекта Кемпа – Рота, направленного на снижение налоговых ставок.


[Закрыть]
один из участников задал вопрос о местоположении точки оптимального уровня налогообложения, Лаффер признал: «Я не могу определить этот уровень, но могу сказать, какими должны быть его характеристики, сэр». Кривая Лаффера говорит только о том, что при определенных обстоятельствах снижение налоговых ставок может привести к увеличению налоговых поступлений, однако определение этих обстоятельств требует выполнения глубоко продуманной, трудной эмпирической работы – работы, описание которой не поместится на салфетке.

С кривой Лаффера все в порядке, не совсем хорошо обстоит дело с тем, как ее используют. Последовавшие за дудочкой Ванниски политики стали жертвой старейшего ложного силлогизма, присутствующего в его книге:

Вполне возможно, что снижение налогов приведет к увеличению объема государственных доходов.

Мне хотелось бы, чтобы снижение налогов привело к увеличению объема государственных доходов.

Таким образом, это именно тот случай, когда снижение налогов приведет к увеличению объема государственных доходов[53]53
  Ср. формализацию женской логики по Колмогорову: «Пусть [Р=>Q] и [Q приятно]; тогда Р»; см.: В. А. Успенский. Лермонтов, Колмогоров, женская логика и политкорректность // Неприкосновенный запас. 2000. № 6 (14). Прим. М. Г.


[Закрыть]
.

Глава вторая. Локально прямая, глобально кривая

Наверное, вы не думаете, что вам нужен профессиональный математик, который объяснит, что не все линии прямые. Однако линейные рассуждения присутствуют повсюду. Вы прибегаете к ним каждый раз, когда утверждаете, что если хорошо иметь нечто, то лучше иметь этого еще больше. Именно так рассуждают политические крикуны: «Вы поддерживаете военные действия против Ирана? Тогда, полагаю, вы предпочли бы осуществить сухопутную операцию против любой страны, которая лишь косо посмотрит в нашу сторону!» В то же время звучит и такое: «Хотите поддерживать взаимодействие с Ираном? Наверное, вы также считаете, что и Адольфа Гитлера просто неправильно поняли».

Почему такие рассуждения столь распространенны? Ведь даже малейшее умственное усилие с нашей стороны позволит осознать их ошибочность. Почему вообще у кого бы то ни было может хотя бы на мгновение возникнуть мысль, что все линии прямые, когда совершенно очевидно обратное?

Одна из причин заключается в следующем: в каком-то смысле они действительно прямые. История эта начинается с Архимеда.

Метод исчерпывания

Чему равна площадь данного круга?

В современном мире это настолько стандартная задача, что ее можно включать в SAT[54]54
  SAT (Scholastic Assessment Test, букв. «академический оценочный тест») – отборочный экзамен для выпускников школ на определение академических способностей. Прим. М. Г.


[Закрыть]
. Площадь круга равна πr2, а в нашем случае радиус равен 1, значит, площадь этого круга равна π. Однако две тысячи лет назад вопрос был открытым и настолько важным, что привлек внимание Архимеда.



Почему вопрос площади окружности оказался настолько сложным? Во-первых, на самом деле древние греки не считали π числом, как считаем мы. В их понимании все числа были целыми, то есть такими, с помощью которых можно что-то подсчитать: 1, 2, 3, 4… Однако теорема Пифагора[55]55
  Кстати, нам неизвестно, кто первым доказал теорему Пифагора, хотя ученые почти убеждены, что это был не Пифагор. На самом деле, помимо засвидетельствованного современниками факта существования некоего ученого мужа с именем «Пифагор», жившего и обретшего славу в VI веке до нашей эры, мы ничего о нем не знаем. Основные сведения о жизни и работе Пифагора появились лишь через 800 лет после его смерти. К тому времени реального человека Пифагора полностью затмил миф о Пифагоре, вобравший в себя философские учения мыслителей, называвших себя пифагорейцами.


[Закрыть]
 – первый большой прорыв в древнегреческой геометрии – превратила всю их систему счисления в руины.

Перейдем к следующему рисунку.



Теорема Пифагора гласит, что квадрат гипотенузы (сторона прямоугольного треугольника, которая нарисована здесь по диагонали и не проходит через прямой угол) равен сумме квадратов двух других сторон, или катетов. В данном примере квадрат гипотенузы равен 12 + 12 = 1 + 1 = 2. Это означает, что гипотенуза длиннее 1, но короче 2. Проверяется без всяких теорем – просто на глаз. Сам факт, что длина гипотенузы не представляет собой целое число, не был проблемой для древних греков. Может быть, мы просто измеряли все не в тех единицах. Если мы выберем такую единицу длины, чтобы длина катетов была равна 5 единицам, тогда вы с помощью линейки легко проверите, что в таком случае длина гипотенузы составит почти 7 единиц. Почти – но все-таки немного больше, поскольку квадрат гипотенузы равен:


52 + 52 = 25 + 25 = 50,


но если длина гипотенузы составляла бы 7 единиц, квадрат гипотенузы был бы равен 49.

А если мы взяли бы катеты длиной 12 единиц, длина гипотенузы была бы равна почти 17 единиц, но все же немного короче, поскольку 122 плюс 122 равно 288, что незначительно меньше чем 172, равное 289.



Примерно в V столетии до нашей эры один из представителей пифагорейской школы сделал потрясающее открытие: не существует способа измерить равнобедренный прямоугольный треугольник таким образом, чтобы длина каждой его стороны представляла собой целое число. Современный человек сказал бы, что «квадратный корень из 2 – это иррациональное число», то есть число, которое нельзя представить в виде соотношения двух целых чисел. Но пифагорейцы так не говорили. Разве могли они сказать нечто подобное? В основе их представлений о количестве лежала идея о соотношении целых чисел. Следовательно, в их понимании длина гипотенузы, как оказалось, вообще не есть число.

Это повлекло за собой неразбериху. Вы наверняка помните, что пифагорейцы были крайне своеобразными людьми. Их философия представляла собой рагу из суждений, часть которых мы назвали бы математикой, часть – религией и оставшуюся часть – психическим расстройством. Пифагорейцы были убеждены, что нечетные числа символизируют добро, тогда как четные – зло, что по ту сторону Солнца находится планета Антихтон (Антиземля, Противоземля), а также что нельзя есть бобы, как писали некоторые, потому, что в них находятся души умерших. Ходили слухи, будто Пифагор разговаривал с домашним скотом (он велел животным не есть бобы), а также что он был одним из немногих древних греков, носивших штаны[56]56
  См.:Christoph Riedweg. Pythagoras: His Life, Teaching, and Influence. Ithaca; New York: Cornell University Press, 2005, p. 2.


[Закрыть]
[57]57
  Российским ученым известно со школы, что пифагоровы штаны во все стороны равны. Прим. М. Г.


[Закрыть]
.

Математика пифагорейцев была неразрывно связана с их идеологией. Легенда (которая, возможно, не совсем соответствует действительности, но дает правильное представление о пифагорейском стиле) гласит, что первым пифагорейцем, открывшим иррациональность квадратного корня из 2, был человек по имени Гиппас; в награду за доказательство этой отвратительной теоремы соратники бросили его в море, где он и утонул.

Но теорему не утопишь. Преемники пифагорейцев, такие как Евклид и Архимед, понимали, что нужно просто закатать рукава и начать все измерять, даже если придется ради этого выйти за пределы высокой стены, окружавшей цветущий сад целых чисел, столь милый их сердцу. Никто не знал, можно ли выразить площадь круга с помощью одних только целых чисел[58]58
  На самом деле нельзя, но до XVIII века никто не смог это доказать.


[Закрыть]
. Однако колеса необходимо строить, а силосные башни заполнять[59]59
  В действительности силосные башни не были круглыми до начала ХХ века, когда профессор Висконсинского университета Хорас У. Кинг не придумал – чтобы решить проблему порчи продукции, лежащей в углах башни, – цилиндрическую конструкцию, широко распространенную в наше время.


[Закрыть]
, а значит, такие измерения должны быть выполнены.

Первоначальную идею предложил Евдокс Книдский, а Евклид включил ее в 12-ю книгу «Начал». Однако именно Архимед довел их дело до конца. В наши дни мы называем этот подход методом исчерпывания. А начинается он вот с чего.



Изображенный на этом рисунке квадрат называется «вписанный квадрат»: каждый его угол только касается окружности, но не выходит за ее границы. Зачем это делать? Потому что круг – нечто загадочное и пугающее, тогда как с квадратом все просто и ясно. Если у вас есть квадрат, длина стороны которого равна Х, его площадь равна Х умножить на Х – именно поэтому мы и называем умножение числа на самого себя возведением в квадрат! Основное правило математической жизни гласит: если мироздание ставит перед вами сложную задачу, попытайтесь решить вместо нее более простую – с расчетом на то, что упрощенный вариант окажется настолько близким к первоначальной версии, что мироздание не станет возражать против такого решения.

Вписанный квадрат можно разбить на четыре треугольника, каждый из которых представляет собой не что иное, как равнобедренный прямоугольный треугольник, который мы только что нарисовали[60]60
  Точнее говоря, каждый из этих четырех фрагментов можно получить из исходного равнобедренного прямоугольного треугольника, вращая его по кругу на плоскости. Давайте примем без доказательств тот факт, что такие манипуляции не меняют площадь фигуры.


[Закрыть]
. Следовательно, площадь такого квадрата в четыре раза больше площади треугольника. Треугольник в свою очередь – это то, что получится, если взять квадрат 1 × 1 и разрезать его пополам, как бутерброд с тунцом.



Площадь такого бутерброда равна 1 × 1 = 1, значит, площадь каждого треугольника равна 1/2, а площадь вписанного квадрата составляет четыре раза по 1/2, то есть 2.

Кстати, предположим вы не знакомы с теоремой Пифагора. Так вот, на всякий случай сообщаю: вы ее все-таки знаете! Или как минимум знаете, что она должна гласить применительно к данному прямоугольному треугольнику. Ведь прямоугольный треугольник, представляющий собой нижнюю часть нашего бутерброда, точно такой же, как и верхний левый фрагмент вписанного квадрата. А его гипотенуза – сторона вписанного квадрата. Следовательно, если вы возведете длину гипотенузы в квадрат, то получите площадь вписанного квадрата, которая равна 2. Другими словами, длина гипотенузы есть число, квадрат которого равен 2, или, если использовать привычную и более лаконичную формулировку, квадратный корень из 2.

Вписанный квадрат полностью находится в пределах окружности. Если его площадь равна 2, площадь круга должна составлять минимум 2 единицы.

Теперь давайте нарисуем другой квадрат.



Этот квадрат, который обозначается термином «описанный квадрат», также касается окружности всего в четырех точках, но теперь окружность находится внутри него. Длина сторон такого квадрата равна 2 единицам, значит, его площадь составляет 4 единицы. Следовательно, теперь мы знаем, что площадь круга равна максимум 4 единицам.

Возможно, иллюстрация того, что число π должно находиться в пределах от 2 до 4, производит не такое уж большое впечатление. Но Архимед только начинает. Возьмите четыре вершины вписанного квадрата и обозначьте на окружности новые точки, равноудаленные от каждой пары смежных вершин. Теперь у вас на окружности восемь точек, расположенных на равном расстоянии друг от друга. Соединив их, вы получите вписанный восьмиугольник, или, если говорить на техническом языке, «стоп-сигнал».



Вычислить площадь вписанного восьмиугольника немного труднее, но я не собираюсь утруждать вас тригонометрией. Важно, что мы по-прежнему имеем дело с прямыми и вершинами, а не с кривыми, поэтому данную задачу можно было решить с помощью методов, которые были в распоряжении Архимеда. Так вот, площадь восьмиугольника в два раза больше квадратного корня из 2, то есть примерно 2,83.

Вы можете сыграть в ту же игру с описанным восьмиугольником, площадь которого равна 8(√2–1), немногим более 3,31.



Таким образом, площадь круга находится в пределах от 2,83 до 3,31.

Но зачем останавливаться на этом? Вы можете обозначить на окружности точки, равноудаленные от вершин восьмиугольника (вписанного или описанного), – и получите шестнадцатиугольник; дополнительные тригонометрические расчеты покажут, что площадь круга находится в пределах от 3,06 до 3,18. Проведите процедуру еще раз, чтобы получить 32-угольник, а затем повторите снова и снова – и вскоре получите нечто похожее на такую фигуру.



Но разве это не окружность? Разумеется, нет! Это правильный многоугольник с 65 536 сторонами! Неужели вы не видите?

Великое озарение Евдокса и Архимеда состоит в том, что на самом деле не имеет значения, что это за фигура – окружность или многоугольник с очень большим количеством очень коротких сторон. Площади этих двух фигур достаточно близки для любых возможных целей. Площадь небольшой области между окружностью и многоугольником была «исчерпана» в процессе нашего неутомимого последовательного приближения. Да, окружность – это кривая, это действительно так. Но каждый крохотный фрагмент этой кривой можно приблизить к идеально прямой линии, подобно тому как крохотный кусочек поверхности Земли, на котором мы стоим, приближен к идеально ровной плоскости[61]61
  Во всяком случае, если вы, как и я, живете на Среднем Западе США.


[Закрыть]
.

Следует запомнить девиз: локально прямая, глобально кривая.

Или лучше представьте: вы мчитесь по направлению к окружности с большой высоты; сначала вы видите всю окружность;



затем только один сегмент дуги окружности;



а затем еще более мелкий сегмент.



Продолжайте это до тех пор, пока, приближаясь все больше и больше, вы не увидите нечто напоминающее прямую линию. Ползущему по кругу муравью, видящему лишь пространство, непосредственно его окружающее, представляется, будто он ползет по прямой. Точно так же человеку, стоящему на поверхности Земли, кажется, что он стоит на плоскости (если только он не окажется настолько проницательным, что обратит внимание, как на горизонте поднимаются приближающиеся издалека объекты).


Страницы книги >> Предыдущая | 1 2 3 4 5 6 7 8 9 10 11 12 | Следующая
  • 4.6 Оценок: 5

Правообладателям!

Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.

Читателям!

Оплатили, но не знаете что делать дальше?


Популярные книги за неделю


Рекомендации