Электронная библиотека » Джордан Элленберг » » онлайн чтение - страница 6


  • Текст добавлен: 29 марта 2017, 15:10


Автор книги: Джордан Элленберг


Жанр: Математика, Наука и Образование


Возрастные ограничения: +16

сообщить о неприемлемом содержимом

Текущая страница: 6 (всего у книги 38 страниц) [доступный отрывок для чтения: 12 страниц]

Шрифт:
- 100% +
Глава четвертая. Сколько это в мертвых американцах?

Насколько серьезен конфликт на Ближнем Востоке? Эксперт по вопросам борьбы с терроризмом Дэниел Баймен из Джорджтаунского университета приводит в Foreign Affairs холодные, безжалостные цифры: «Израильские военные сообщают о том, что с начала второй интифады [2000 год. – Д. Э.] до конца октября 2005 года палестинцы убили 1074 и ранили 7520 израильтян – для такой маленькой страны поразительные данные, пропорциональный эквивалент которых составляет 50 тысяч убитых и 300 тысяч раненых американцев»[95]95
  Daniel Byman. Do Targeted Killings Work? // Foreign Affairs, 2006 Mar./Apr. 85, no. 2, p. 95.


[Закрыть]
. Такие подсчеты часто используются во время обсуждения ситуации в ближневосточном регионе. В декабре 2001 года Палата представителей Конгресса США заявила о том, что гибель 26 человек во время серии атак в Израиле «пропорционально смерти 1200 американцев»[96]96
  Expressing Solidarity with Israel in the Fight Against Terrorism // 107th Congress, House Resolution, 2001, 280.


[Закрыть]
. Ньют Гингрич писал в 2006 году[97]97
  Отдельные фрагменты этой главы основаны на моей статье, см.:Jordan Ellenberg. Proportionate Response // Slate, 2006, July 24.


[Закрыть]
: «Помните о том, что, когда Израиль теряет восемь человек, с учетом разницы в численности населения это эквивалентно потере почти 500 американцев»[98]98
  См. стенограмму: Meet the Press, 2006, July 16 (www.nbcnews.com/id/13839698/page/2/#.Uf_Gc2TEo9E – просмотрено 13.01.2014).


[Закрыть]
. Не желая уступать авторам этих высказываний, Ахмед Мур написал в Los Angeles Times следующее: «Когда во время операции “Литой свинец” в секторе Газа Израиль убил 1400 палестинцев – что пропорционально 300 тысячам американцев, – будущий президент Обама хранил молчание»[99]99
  См.:Ahmed Moor. What Israel Wants from the Palestinians, It Takes // Los Angeles Times, 2010, Sept. 17.


[Закрыть]
.

Риторика с использованием пропорций не является исключительным правом, закрепленным лишь за Святой землей. Джеральд Каплан писал в 1988 году: «За последние восемь лет погибли, ранены или похищены с обеих сторон противостояния около 45 тысяч никарагуанцев – это эквивалентно 300 тысячам канадцев или 3 миллионам американцев»[100]100
  Gerald Caplan. We Must Give Nicaragua More Aid // Toronto Star, 1988, May 8.


[Закрыть]
. Министр обороны США в период Вьетнамской войны Роберт Макнамара сказал в 1997 году, что почти 4 миллиона погибших во время войны вьетнамцев «эквивалентны 27 миллионам американцев»[101]101
  David K. Shipler. Robert McNamara and the Ghosts of Vietnam // New York Times Magazine, 1997, Aug. 10, p. 30–35.


[Закрыть]
. Каждый раз, когда в какой-либо небольшой стране погибает много людей, авторы редакционных статей достают свои логарифмические линейки и начинают подсчитывать: сколько этих погибших «укладывается» в мертвых американцах?

Вот как можно получить эти цифры. Погибшие от рук террористов 1074 израильтян составляют 0,015 % от общей численности населения Израиля (которая в период с 2000 по 2005 год составляла от 6 до 7 миллионов). Далее все эти эксперты приходят к выводу, что смерть 0,015 % американского населения (что составляет около 50 тысяч человек) имела бы в данном случае такой же эффект.

Это линеоцентризм в чистейшей форме. Согласно аргументации с использованием пропорций, эквивалент 1074 израильтян в любой точке земного шара можно найти с помощью такого графика.



Количество израильских жертв – 1074 человек – эквивалентно 7700 испанцев или 223 тысяч китайцев, но всего 300 словенцев и одному или двум тувалуанцам.

Со временем (а может быть, и с самого начала?) такая аргументация начинает рушиться. Когда в момент закрытия в баре остается два человека и один из них сбивает с ног другого, это совсем не эквивалентно тому, что в это же время удар получают 150 миллионов американцев.

Еще один пример. Все согласны с тем, что одно из самых страшных преступлений столетия – когда в 1994 году было уничтожено 11 % населения Руанды. Но мы не рассуждаем об этом кровопролитии так: «С точки зрения Европы сороковых это было в девять раз хуже холокоста». Малейшая попытка сделать это вызвала бы настоящее отвращение.

Вот одно из важнейших правил математической гигиены: когда вы проверяете на практике тот или иной математический метод, попробуйте выполнить одни и те же расчеты несколькими разными способами. Если получите в результате разные ответы, значит, с вашим методом что-то не так.

Возьмем такой пример. На железнодорожном вокзале Аточа в результате взрыва бомбы в 2004 году погибло 200 человек[102]102
  На мадридском вокзале Аточа 11 марта 2004 года в результате серии взрывов, произведенных исламистской ячейкой, погибли 191 человек и около 2000 людей были ранены. Прим. М. Г.


[Закрыть]
. Каким был бы эквивалентный итог взрыва бомбы на Центральном железнодорожном вокзале в Нью-Йорке?

Численность населения Соединенных Штатов Америки в семь раз превышает численность населения Испании. Следовательно, если представить 200 человек как 0,0004 % от населения Испании, эквивалентный террористический акт в США привел бы к гибели 1300 человек. С другой стороны, 200 человек составляют 0,006 % от населения Мадрида; пропорциональное увеличение этого количества с учетом численности населения Нью-Йорка, которая в два с половиной раза больше населения Мадрида, дает 463 жертвы. Или нам следует сопоставить провинцию Мадрид со штатом Нью-Йорк? В таком случае мы получили бы цифру около 600 жертв. Такую неоднозначность результатов необходимо расценивать как тревожный сигнал: метод пропорций не внушает доверия.

Безусловно, нельзя полностью отбросить пропорции. Пропорции действительно важны! Если вы хотите выяснить, в каком регионе Америки наиболее остро стоит проблема заболеваемости раком мозга, нет смысла смотреть на штаты с самым большим количеством смертных случаев от рака мозга. В таких штатах, как Калифорния, Техас, Нью-Йорк и Флорида, самый высокий уровень заболеваемости раком мозга, поскольку в них самая большая численность населения[103]103
  Данные о раке мозга приведены на основании материалов, размещенных на официальном портале Национального института онкологии США State Cancer Profiles (http://statecancerprofiles.cancer.gov/cgi-bin/deathrates/deathrates.pl?00&076&00&2&001&1&1&1 – просмотрено 13.01.2014).


[Закрыть]
. Стивен Пинкер подчеркивает эту мысль в книге 2011 года, сразу ставшей бестселлером, – The Better Angels of Our Nature: Why Violence Has Declined («Лучшие стороны нашей натуры: почему насилия становится меньше»), – где он утверждает, что на протяжении всей истории человечества происходит устойчивое снижение уровня насилия. Двадцатое столетие получило дурную репутацию из-за огромного количества людей, попавших под жернова политических распрей между великими державами. Однако в действительности нацисты, Советы, коммунистическая партия Китая и колониальное господство, по мнению Пинкера, были с пропорциональной точки зрения не самыми эффективными виновниками массовых убийств: в наши дни погибает столько же людей! Сейчас мы не выражаем особой горечи по поводу давних кровопролитий во времена Тридцатилетней войны. Однако эта война проходила в менее населенном мире, и, по оценкам Пинкера, в ней погиб каждый сотый человек на Земле. В современном мире это означало бы уничтожение 70 миллионов человек, что больше количества погибших в обеих мировых войнах.

Следовательно, лучше анализировать относительные показатели: количество смертельных случаев как долю от общей численности населения. Например, вместо подсчета общего количества смертельных случаев от рака мозга по штатам мы можем рассчитать долю людей, ежегодно умирающих от рака мозга, в общей численности населения штата. Южная Дакота занимает весьма неприятное первое место: в этом штате за год происходит 5,7 смертельного случая от рака мозга на каждые 100 тысяч человек, что существенно превышает средний показатель по стране, составляющий 3,4 смертельного случая. После Южной Дакоты в этом списке следуют такие штаты, как Небраска, Аляска, Делавэр и Мэн. Создается впечатление, что существуют такие места, в которых лучше не жить, если не хочешь заболеть раком мозга. Тогда куда лучше переехать? В конце списка вы найдете штаты Вайоминг, Вермонт, Северная Дакота, Гавайи и округ Колумбия.

А вот это уже странно. Почему в Южной Дакоте самый высокий уровень заболеваемости раком мозга, а в Северной Дакоте почти нет онкологических заболеваний? Почему в Вермонте вы были бы в безопасности, а в штате Мэн оказались бы под угрозой?

Даю ответ: дело не в том, что в Южной Дакоте что-то способствует возникновению рака мозга, а в Северной Дакоте делают все, чтобы его предотвратить. У штатов, занявших первые пять мест и последние пять мест, есть нечто общее. В обоих случаях это одно и то же, а именно: там почти никто не живет. Из девяти штатов (и одного округа), оказавшихся в первых и последних строках списка, самый большой – штат Небраска, в настоящее время он борется со штатом Западная Виргиния за 37-е место по численности населения. Создается впечатление, что проживание в маленьком штате или повышает, или существенно снижает риск заболеть раком мозга[104]104
  Приведенные здесь примеры заболеваемости раком мозга во многом опираются на методы Говарда Вейнера, который провел статистическую обработку похожих случаев заболеваемости раком почки по административным округам, см.:Howard Wainer. Picturing the Uncertain World: How to Understand, Communicate, and Control Uncertainty through Graphical Display. Princeton, NJ: Princeton University Press, 2009. Однако Вейнер развивает свою мысль намного детальнее и анализирует данные гораздо тщательнее, чем это делаю я на страницах этой книги.


[Закрыть]
.

Поскольку это лишено смысла, нам лучше поискать другое объяснение.

В надежде понять, что происходит, предлагаю провести воображаемую игру, которую мы назовем «Кто лучше всех подбросит монету». Игра очень простая. Вы подбрасываете какое-то количество монет, а побеждает тот, у кого больше всего монет упадет вверх лицевой стороной (аверс). Чтобы несколько разнообразить игру, представим, будто не у всех ее участников одинаковое количество монет. У Малой команды всего по десять монет на каждого человека, тогда как у Большой команды на каждого приходится по сто монет.

Если подсчитывать только абсолютное количество монет, упавших лицевой стороной вверх, одно можно утверждать почти наверняка: победителем в этой игре станет кто-то из Большой команды. Этот кто-то получит около 50 аверсов – показатель, который ни один участник Малой команды просто не сможет потянуть. Даже если в Малой команде было бы сто игроков, самый результативный из них получит восемь-девять монет, выпавших лицевой стороной вверх[105]105
  Я не собираюсь приводить здесь соответствующие расчеты, но, если вы захотите проверить мой результат, ключевым термином в данном случае будет «биномиальное распределение».


[Закрыть]
.

Кажется, это крайне несправедливо! У Большой команды с самого начала имеется большее преимущество. Давайте вместо подсчета абсолютного количества монет, выпавших той или иной стороной, будем определять победителя по относительной доле выпавших монет, что должно создать для двух команд более равные условия.

Но этого не происходит. Как я уже сказал, если в Малой команде было бы сто игроков, минимум один из них мог бы выбить хотя бы восьми-девяти аверсов. Следовательно, в результате он получит минимум 80 % монет, выпавших лицевой стороной вверх. А как насчет Большой команды? Ни один из ее игроков не получит 80 % орлов. Безусловно, физически такое возможно. Тем не менее этого не случится. На самом деле вам понадобилось бы около двух миллиардов игроков в составе Большой команды, чтобы появилась довольно высокая вероятность получения результата, свидетельствующего о серьезном перевесе. Разве не об этом говорит ваше интуитивное представление о правдоподобии? Чем больше монет вы подбрасываете, тем больше вероятность того, что вы приблизитесь к результату 50 на 50.

Вы можете попытаться сами! Я так и сделал, и вот что произошло. Многократно подбрасывая десять монет подряд, как это сделали бы игроки Малой команды, я получил такую последовательность количества монет, выпавших лицевой стороной вверх:


4, 4, 5, 6, 5, 4, 3, 3, 4, 5, 5, 9, 3, 5, 7, 4, 5, 7, 7, 9…


С сотней монет, как в случае Большой команды, я получил такую последовательность:


46, 54, 48, 45, 45, 52, 49, 47, 58, 40, 57, 46, 46, 51, 52, 51, 50, 60, 43, 45…


А в случае тысячи монет последовательность оказалась такой:


486, 501, 489, 472, 537, 474, 508, 510, 478, 508, 493, 511, 489, 510, 530, 490, 503, 462, 500, 494…


Честно говоря, я не подбрасывал тысячу монет. Вместо этого я поставил перед своим компьютером задачу смоделировать подбрасывание монет. Разве у кого-то найдется столько времени на тысячекратное подбрасывание монеты?

У одного человека нашлось – математик из Южной Африки Джон Эдмунд Керрич, которому дали опрометчивый совет посетить Европу ни больше ни меньше как в 1939 году. Его европейский семестр быстро превратился в незапланированное заключение в концлагере в Дании. Там, где обычный узник, не столь увлеченный статистикой, проводил бы дни заточения, царапая на стене камеры прошедшие дни, Керрич подбрасывал монету (всего 10 тысяч раз) и подсчитывал количество выпаданий лицевой стороной вверх[106]106
  John E. Kerrich. Random Remarks // American Statistician, 1961, June 15, no. 3, p. 16–20.


[Закрыть]
. Его результаты выглядели следующим образом:



Как видите, доля монет, выпавших лицевой стороной вверх, непреклонно стремится к 50 % по мере подбрасывания все большего количества монет, как будто под действием невидимых тисков. Тот же эффект можно увидеть и во время моделирования этого процесса. Доля монет, выпавших лицевой стороной в первой группе попыток, составляет от 30 до 90 %. В случае сотни подбрасываний подряд этот диапазон начинает сужаться и составляет от 40 до 60 %. А когда количество подбрасываний достигает тысячи, диапазон количества выпаданий лицевой стороной вверх составляет всего от 46,2 до 53,7 %. Что-то толкает наши числа все ближе и ближе к 50 %. Это равнодушная и сильная рука закона больших чисел. Я не стану приводить здесь точную формулировку соответствующей теоремы (хотя она удивительно красива!), но ее можно представить следующим образом: чем больше монет вы подбрасываете, тем более маловероятно, что вы получите 80 % монет, выпавших лицевой стороной вверх. В действительности, если вы подбросите достаточное количество монет, шанс, что у вас будет 51 % аверсов, становится ничтожным! Нет ничего примечательного, если в случае десяти подбрасываний наблюдается неравновесный результат, однако в случае сотни подбрасываний получение соразмерного неравновесного результата было бы настолько удивительным событием, что оно, скорее всего, заставит задуматься, не поработал ли кто с вашими монетами.

Понимание, что результаты эксперимента стремятся к фиксированной средней величине, когда этот эксперимент повторяется многократно, – факт далеко не новый. В действительности данное явление известно почти столь же давно, сколько существует математическое изучение самой вероятности. Этот принцип сформулировал в XVI столетии Джироламо Кардано – правда, без всяких формальностей; и только в начале XIX столетия Симеон Дени Пуассон придумал для него выразительное название – «закон больших чисел» (Loi des grands nombres).

Шлем жандарма

В начале XVIII столетия Якоб Бернулли предложил точную формулировку и математическое доказательство закона больших чисел. Теперь этот закон стал уже не наблюдением, а теоремой.

И данная теорема говорит нам, что игру Большой и Малой команды нельзя считать справедливой. Закон больших чисел всегда будет подталкивать результаты игроков Большой команды к 50 %, тогда как у игроков Малой команды будет гораздо более широкий диапазон результатов. Однако было бы глупо приходить к заключению, что Малая команда «лучше» справляется с подбрасыванием монет лицевой стороной вверх, даже когда она побеждает в каждой игре. Если найти средний показатель доли аверсов, выпавших у всех игроков Малой команды, вместо того чтобы рассматривать относительную долю результативного игрока, этот показатель также окажется близким к 50 %, как и у Большой команды. А если определить игрока с минимальным, а не максимальным количеством выпавших аверсов, Малая команда начинает выглядеть далеко не лучшим образом в плане подбрасывания монет лицевой стороной вверх: есть заметная вероятность, что один из игроков этой команды выбьет всего 20 % аверсов, тогда как ни один член Большой команды никогда не получит столь плохого результата. Определение результатов по абсолютному количеству аверсов дает Большой команде неоспоримое преимущество; с другой стороны, использование относительных показателей так же сильно склоняет игру в пользу Малой команды. Чем меньше количество монет – в статистике это количество обозначается термином «размер выборки», – тем больше разброс значений относительной доли монет, выпавших лицевой стороной вверх.

Именно этот эффект делает результаты политических опросов менее надежными, когда в них принимает участие меньшее количество избирателей. То же самое касается и рака мозга. В небольших штатах выборки имеют малый размер – они напоминают тонкий тростник, сгибающийся под ветром перемен, тогда как большие штаты можно сравнить с величественными старыми дубами, которым любой ветер нипочем. Определение абсолютного количества случаев заболеваемости раком мозга характеризуется смещением в сторону больших штатов, тогда как измерение самой высокой (или самой низкой) относительной доли ставит малые штаты во главе списка. Именно поэтому в Южной Дакоте может быть самый высокий уровень смертности от рака мозга, тогда как Северная Дакота претендует на одно из последних мест по этому показателю. Причина состоит не в том, что гора Рашмор или торговый центр Wall Drug[107]107
  Рашмор – гора в Южной Дакоте, в которой высечены портреты президентов США Джорджа Вашингтона, Томаса Джефферсона, Теодора Рузвельта и Авраама Линкольна. Wall Drug – знаменитый торговый центр, туристическая достопримечательность города Уолл в Южной Дакоте. Прим. М. Г.


[Закрыть]
каким-то образом оказывают пагубное воздействие на мозг. Все проще: населению штатов меньшего размера по существу свойственна более высокая вариабельность.

Таков математический факт, который вам уже известен, даже если вы сами не догадываетесь об этом. Кто самый меткий снайпер в НБА[108]108
  НБА, Национальная баскетбольная ассоциация (National Basketball Association, NBA) – мужская профессиональная баскетбольная лига Северной Америки. Прим. М. Г.


[Закрыть]
? Через месяц после начала сезона 2011/2012 года пять игроков получили равное значение самого высокого процента попаданий в лиге: Армон Джонсон, ДеАндре Лиггинс, Райан Рейд, Хашим Табит и Ронни Тюриаф.

Кто-кто?

Дело в том, что эти пять игроков не были лучшими бомбардирами НБА. Они вообще почти не играли. Армон Джонсон, например, играл в одном матче за Portland Trail Blazers. Он сделал один бросок, оказавшийся точным. В целом пять игроков из этого списка сделали тринадцать бросков, каждый из которых попал в корзину. Маленькие выборки более вариабельны, поэтому ведущим игроком НБА неизменно становится тот, кто совершил небольшое количество бросков и кому каждый раз сопутствовала удача. Вы ни за что не стали бы утверждать, что Армон Джонсон был более метким снайпером, чем Тайсон Чендлер, самый результативный постоянный игрок Knicks[109]109
  Knicks – баскетбольный клуб New York Knickerbockers («Нью-Йорк Никербокерс»), более известный как New York Knicks («Нью-Йорк Никс») или просто «Никс». Прим. М. Г.


[Закрыть]
, который попал в цель в случае 141 из 202 бросков за тот же период[110]110
  И да, когда вы бросаете мяч в корзину, процент попаданий не в меньшей степени зависит от ваших врожденных данных. Крупный игрок, делающий броски в корзину из-под кольца или сверху в прыжке, с самого начала имеет серьезное преимущество. Но это не имеет прямого отношения к той идее, которую мы здесь рассматриваем.


[Закрыть]
[111]111
  См.:Kirk Goldsberry. Extra Points: A New Way to Understand the NBA’s Best Scorers // Grantland, 2013, Jan. 9 (www.grantland.com/story/_/id/9795591/kirk-goldsberry-introduces-new-way-understand-nba-best-scorers – просмотрено 13.01.2014). Автор статьи рассматривает подход к оценке результативности нападающих; он предлагает не ограничиваться лишь одним показателем, а именно процентом попаданий, но разработать более содержательные критерии.


[Закрыть]
. (Любые сомнения по этому поводу можно отбросить, взглянув на данные о результативности Джонсона на протяжении сезона 2010/2011 года, когда в ходе игры он сделал 45,5 % попаданий – причем попаданий довольно заурядных.) Именно поэтому в стандартном списке лидеров не отображаются данные о результативности таких игроков, как Армон Джонсон. Вместо этого НБА включает в рейтинги только тех, кто превысил определенный порог игрового времени; в противном случае первые места в списке занимали бы никому не известные временные игроки с их выборками малого размера.

Однако не всякая рейтинговая система разработана настолько грамотно, чтобы принимать во внимание закон больших чисел. В штате Северная Каролина, как и во многих других штатах в эпоху образовательной отчетности, были введены программы мотивации, рассчитанные на школы, добивающиеся высоких результатов по стандартизованным тестам. Рейтинг каждой школы определяется по среднему увеличению количества баллов, полученных учениками по тестам за период с весны текущего до весны следующего года. Школы, занявшие в рейтинге по данному показателю первые 25 мест, вывешивают свой плакат в спортивном зале и получают право с гордостью говорить о своих достижениях в близлежащих городах.

Кто побеждает в таком соревновании? Например, в 1999 году первое место в рейтинге (с «суммарным показателем результативности», равным 91,5) заняла начальная школа C. C. Wright Elementary в Северном Уилксборо. Это небольшая школа (всего 418 учеников), расположенная в штате, в котором средняя численность учеников начальных школ составляет 500 детей. Второе место заняла школа Kingswood Elementary (90,9 балла), за ней следует школа Riverside Elementary (90,4 балла). В школе Kingswood насчитывалось лишь 315 учеников, а в начальной школе Riverside из аппалачского городка Ньюленд учился только 161 ребенок[112]112
  Показатели за 1999 год взяты из сводного табеля успеваемости: A Report Card for the ABCs of Public Education. Volume I: 1998–1999. Growth and Performance of Public Schools in North Carolina – особенно см. гл. «25/10 Most Improved Schools in Academic Growth/Gain» о школах с восемью классами обучения (www.ncpublicschools.org/abc_results/results_99/99ABCsTop25.pdf – просмотрено 13.01.2014).


[Закрыть]
.

Получается, что по данному показателю небольшие школы обошли все остальные школы штата Северная Каролина. Томас Кейн и Дуглас Стейджер провели исследование, в ходе которого было установлено, что в тот или иной момент семилетнего периода, охваченного исследованием, 28 % самых маленьких школ штата попадали в первые 25 мест рейтинга; при этом из всех школ только 7 % школ получали право вывесить плакат в спортзале[113]113
  Thomas J. Kane,Douglas O. Staiger. The Promise and Pitfalls of Using Imprecise School Accountability Measures // Journal of Economic Perspectives, 2002, Fall, 16, no. 4, p. 91–114.


[Закрыть]
.

Создается впечатление, что в маленьких школах уделяется больше времени для индивидуального обучения, поскольку учителя хорошо знают своих учеников и их семьи, и поэтому они лучше справляются с повышением результатов тестов.

Может быть, мне следует упомянуть, что статья Кейна и Стейджера называется так: The Promise and Pitfalls of Using Imprecise School Accountability Measures («Перспективы и подводные камни использования неточных показателей школьной отчетности»). Кроме того, нелишне отметить, что небольшие школы в среднем не демонстрируют тенденции к получению существенно более высоких результатов по тестам. И еще не мешало бы добавить, что школы, куда были направлены «группы по оказанию поддержки» (речь идет о школах, получивших от властей штата взбучку за низкие результаты по тестам), в большинстве своем также относились к числу небольших школ.

Короче говоря, насколько нам известно, школа Riverside не может считаться одной из лучших начальных школ штата Северная Каролина, так же как и Армон Джонсон не может быть самым метким снайпером в лиге. Небольшие школы занимают большинство из первых 25 мест в рейтинге не потому, что они лучшие, а потому что в маленьких школах более высокий уровень вариабельности результатов тестов. С одной стороны, несколько одаренных детей и несколько двоечников из третьего класса в состоянии существенно изменить средний показатель школы. С другой стороны, в крупной школе воздействие нескольких очень высоких или очень низких результатов просто растворится в большом среднем значении, практически не изменив общего показателя.

Не совсем ясно, по каким критериям определять, почему одна школа самая лучшая и почему граждане одного штата больше всего подвержены онкологическим заболеваниям, когда вычисление простых средних показателей не позволяет сделать этого? Если вы руководите работой многих групп, как вычислить эффективность каждой из них, если более мелкие группы с большой вероятностью займут как верхние, так и нижние позиции вашего рейтинга?

К сожалению, легкого ответа на этот вопрос не существует. Если в таком крохотном штате, как Южная Дакота, имеет место резкое увеличение уровня заболеваемости раком мозга, вы можете предположить, будто этот всплеск в значительной мере произошел по воле случая, и сделать вывод, что в будущем уровень заболеваемости раком мозга приблизится к общему показателю по стране. Это можно сделать, вычислив взвешенное среднее от уровня заболеваемости в Южной Дакоте и в целом по стране. Но как взвесить два данных показателя? В какой-то мере это искусство, требующее больших затрат труда на выполнение формальных операций, от описания которых я вас здесь избавлю[114]114
  Тем не менее, если захотите узнать полнее о соответствующих формальных методах, вы найдете их описания в следующих работах: Kenneth G. Mantonet al. Empirical Bayes Procedures for Stabilizing Maps of U.S. Cancer Mortality Rates // Journal of the American Statistical Association, 1989, Sept., 84, no. 407, p. 637–650;Andrew Gelman, Phillip N. Price. All Maps of Parameter Estimates Are Misleading // Statistics in Medicine. 1999, 18, no. 23, p. 3221–3234.


[Закрыть]
.

Один важный факт впервые обнаружил Абрахам де Муавр, который внес большой вклад в теорию вероятностей. Его книга The Doctrine of Chances («Теория случайностей») стала одним из ключевых трудов по этому предмету.

(Даже в те времена популяризация математических достижений представляла собой активную область. Эдмонд Хойл, чтобы помочь любителям азартных игр освоить новую теорию, написал учебный трактат An Essay Towards Making the Doctrine of Chances Easy to those who Understand Vulgar Arithmetic only, to which is added some useful tables on annuities («Исследование, предназначенное, чтобы сделать “теорию случайностей” более понятной для людей, понимающих только простую арифметику, а также несколько полезных таблиц аннуитетов»). Авторитет Хойла в вопросах карточных игр был настолько велик, что многие до сих пор ссылаются на его мнение; в определенной среде нередко можно услышать расхожие фразы: «По утверждению Хойла», «По правилам Хойла».)

Де Муавра не удовлетворял закон больших чисел, гласивший, что в долгосрочной перспективе доля аверсов в последовательности подбрасываний монет все больше приближается к 50 %. Он хотел знать, насколько ближе. Чтобы понять сделанное Муавром открытие, предлагаю вернуться к подбрасыванию монет и еще раз проанализировать этот феномен. Но теперь вместо перечисления общего количества монет, выпавших лицевой стороной вверх, мы будем записывать разность между количеством фактически выпавших аверсов и количеством аверсов, выпадания которых можно ожидать в случае 50 % подбрасываний.

Если подбрасывать десяток монет, вы получите такую последовательность:


1, 1, 0, 1, 0, 1, 2, 2, 1, 0, 0, 4, 2, 0, 2, 1, 0, 2, 2, 4…


Если подбрасывать сотню монет, последовательность выглядит так:


4, 4, 2, 5, 2, 1, 3, 8, 10, 7, 4, 4, 1, 2, 1, 0, 10, 7, 5…


А в случае тысячи монет будет получена такая последовательность:


14, 1, 11, 28, 37, 26, 8, 10, 22, 8, 7, 11, 11, 10, 30, 10, 3, 38, 0, 6…


Как видите, отклонения от 50 на 50 в абсолютном выражении становятся больше по мере увеличения количества подбрасываний монет, хотя (как того требует закон больших чисел) эти отклонения становятся меньше в случае относительной доли монет, выпавших той или иной стороной. Де Муавр пришел к выводу, что типичное отклонение[115]115
  Специалисты наверняка обратят внимание, что я всячески избегаю понятия «стандартное отклонение». Неспециалисты, желающие глубже изучить данный вопрос, могут поискать этот термин в справочнике.


[Закрыть]
зависит от квадратного корня из количества монет, которые вы подбрасываете. Подбросьте в сто раз больше монет, чем раньше, и типичное отклонение возрастет в 10 раз – во всяком случае, в абсолютном выражении. В случае доли от общего количества подбрасываний отклонение сокращается по мере увеличения количества монет, поскольку квадратный корень из количества монет увеличивается гораздо медленнее, чем само количество монет. Тот, кто подбрасывает тысячу монет, порой отклоняется от уровня равномерного распределения на целых 38 аверсов, однако – с точки зрения доли от общего количества бросков – это составляет всего 3,8 % от распределения 50 на 50.

Наблюдение де Муавра совпадает с концепцией, лежащей в основе расчетов стандартной погрешности в результатах политического опроса. Если вы хотите сократить уровень погрешности в два раза, вам необходимо опросить в четыре раза больше людей. Но если вы хотите знать, как правильно оценить довольно большое количество выпавших аверсов, можно определить, на сколько квадратных корней из числа попыток данное значение отклоняется от 50 %. Квадратный корень из 100 равен 10. Следовательно, если я получил 60 аверсов за 100 попыток, это и есть отклонение на один квадратный корень от распределения 50 на 50. Квадратный корень из 1000 равен почти 31; следовательно, если я получил 538 аверсов за 1000 попыток, значит, мне удалось совершить нечто еще более удивительное, хотя во втором случае я получил всего 53,8 % аверсов, тогда как в первом случае – 60 %.

Однако де Муавр еще не поставил точку в своих изысканиях. Он обнаружил, что в долгосрочной перспективе отклонения от 50 на 50 всегда стремятся сформировать идеальную колоколообразную кривую, которую мы называем нормальным распределением. Основоположник статистики Фрэнсис Исидор Эджуорт предложил называть эту кривую шлемом жандарма[116]116
  См.:Stephen M. Stigler. Statistics on the Table: The History of Statistical Concepts and Methods. Cambridge, MA: Harvard University Press, 1999, p. 95.


[Закрыть]
. (Должен признаться, мне жаль, что этот термин не прижился.)

Колоколообразная кривая («шлем жандарма») высокая посередине и плоская по краям; другими словами, чем дальше отклонение от нуля, тем меньше вероятность такого отклонения. Это можно точно представить в количественной форме. Если вы подбрасываете N монет, вероятность того, что в итоге вы отклонитесь от 50 % не более чем на квадратный корень из N, составляет 95,45 %. Квадратный корень из 1000 равен 31; в действительности восемнадцать из представленных выше двадцати попыток в случае подбрасывания тысячи монет (или 90 %) были в пределах 31 аверсов больше или меньше 500. Если я продолжил бы игру, относительная доля количества раз, когда я попадал бы в диапазон от 469 до 531, все больше приближалась бы к показателю 95,45 %[117]117
  Точнее говоря, немного меньше, где-то 95,37 %, поскольку квадратный корень из 1000 не в точности равен 31 – он чуть меньше.


[Закрыть]
.



Возникает ощущение, будто нечто воздействует на то, как это происходит. Вполне допускаю, что подобное ощущение было и у самого де Муавра. Согласно многим свидетельствам, он рассматривал закономерности в поведении монет при многократном подбрасывании (или в любом другом эксперименте при наличии фактора случайности) как проявление воли Бога, превращавшего любые кратковременные особенности монет, игральных костей и человеческих жизней в предсказуемое долгосрочное поведение, которым управляют непреложные законы и поддающиеся расшифровке формулы[118]118
  См., например: Ian Hacking. The Emergence of Probability: A Philosophical Study of Early Ideas About Probability, Induction, and Statistical Inference. 2d ed. Cambridge, UK: Cambridge University Press, 2006, ch. 18.


[Закрыть]
.

Однако такое ощущение опасно, поскольку как только вы примете за истину, будто чья-то трансцендентальная воля (Божья ли, Госпожи ли Удачи или Лакшми[119]119
  Лакшми – в пантеоне индуизма богиня благословения, изобилия, процветания, богатства, удачи и счастья; старшая супруга бога Вишну. Прим. ред.


[Закрыть]
 – чья конкретно, не имеет значения) подталкивает монеты к тому, чтобы они выпадали лицевой стороной вверх в половине случаев, вы сразу начинаете верить в так называемый закон средних: если пять монет подряд выпадают аверсом, тогда следующая почти наверняка выпадет реверсом. Если у кого-то есть три сына, следующей наверняка будет дочь. В конце концов, разве де Муавр не говорил нам, что крайние результаты (такие как четыре сына подряд) в высшей степени маловероятны? Говорил, и так оно и есть на самом деле. Тем не менее, если у вас уже есть три сына, возможность того, что четвертым тоже будет сын, далеко не маловероятна. В действительности вероятность, что у вас снова будет сын, такая же, как если это был бы ваш первый ребенок[120]120
  Возможно, даже чуть больше, поскольку три сына подряд могут указывать на наличие у вас соответствующей генетической предрасположенности; ср. обсуждение далее. Прим. М. Г.


[Закрыть]
.

На первый взгляд может показаться, что это противоречит закону больших чисел, который должен был бы разделить ваше потомство в равных частях на девочек и мальчиков[121]121
  На самом деле точнее так: 51,5 % мальчиков и 48,5 % девочек – но кому придет в голову подсчитывать?


[Закрыть]
. Однако это только кажущееся противоречие. Легче понять, что происходит, на примере монет. Я мог бы начать подбрасывать монеты и получить 10 аверсов подряд. Что произойдет далее? Прежде всего вы заподозрите, будто что-то не так с вашей монетой. Во второй части книги мы вернемся к этому вопросу, но пока будем исходить из предположения, что монета у нас правильная. Итак, закон гласит: по мере того как я подбрасываю монету все больше и больше раз, относительная доля выпавших аверсов должна приближаться к 50 %.

Здравый смысл говорит, что теперь – дабы скорректировать существующий дисбаланс – вероятность выпадания реверсов должна быть немного выше.

Но тот же здравый смысл еще более настойчиво утверждает: монета никак не в состоянии помнить, что с ней происходило, когда я подбрасывал ее первые десять раз!

Не хочу держать вас в неведении. Здравый смысл прав во втором случае. Закон средних получил не очень подходящее название, поскольку законы должны быть истинными, а этот закон ложный. У монет нет памяти, а значит, у следующей монеты, которую вы подбросите, такой же шанс 50 на 50 выпасть лицевой стороной вверх, что и у любой другой. Общая относительная доля монет стремится к 50 % вовсе не по причине благоволения судьбы к реверсам – дабы компенсировать уже выпавшие аверсы. Причина в том, что чем больше вы подбрасываете монету, тем больше уменьшается влияние первых десяти подбрасываний. Если я подброшу монету еще тысячу раз и получу при этом примерно половину аверсов, то их доля в серии первых 1010 подбрасываний также приблизится к 50 %. Именно так работает закон больших чисел: не уравновешивая то, что уже произошло, а разбавляя произошедшее новыми данными до тех пор, пока прошлое станет настолько пропорционально незначительным, что его вполне можно будет забыть.


Страницы книги >> Предыдущая | 1 2 3 4 5 6 7 8 9 10 11 12 | Следующая
  • 4.6 Оценок: 5

Правообладателям!

Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.

Читателям!

Оплатили, но не знаете что делать дальше?


Популярные книги за неделю


Рекомендации