Электронная библиотека » Джозеф Мазур » » онлайн чтение - страница 4


  • Текст добавлен: 23 июня 2017, 21:12


Автор книги: Джозеф Мазур


Жанр: Математика, Наука и Образование


Возрастные ограничения: +12

сообщить о неприемлемом содержимом

Текущая страница: 4 (всего у книги 17 страниц) [доступный отрывок для чтения: 5 страниц]

Шрифт:
- 100% +

Раздел 2
Математика

Коллизии

 
Будь наш мир велик иль мал,
В нем есть чудесные явления.
И утверждать я бы не стал,
Что стоит ждать их наступления
В одну из тысячи ночей
На убывающей луне,
Или раз в три миллиона дней,
Когда Сатурн к утру ясней
И дивные случаются мгновения.
Но уверяю вас: они придут!
Пусть их шаги малы,
Они не устают.
 
Дж. М. (пер. М. И.).

Здесь мы предложим читателю некоторые математические инструменты для исследования историй о совпадениях: закон больших чисел, закон действительно больших чисел, задачу о дне рождения, основы теории вероятностей и теории распределения чисел. Этот раздел охватывает математику, которая будет полезна для понимания основной идеи книги, а именно: если есть сколь угодно малая вероятность наступления некоторого события, когда-нибудь оно обязательно произойдет. Эти математические средства будут использованы для того, чтобы проанализировать истории, представленные в разделе 1; мы также вернемся к этим средствам в разделе 3.

Глава 4
Каковы шансы?

Я обнаруживал «совпадения», настолько многозначительно связанные, что вероятность их «случайности» выражалась бы астрономической цифрой.

Карл Густав Юнг{35}35
  Carl Gustav Jung, Jung on Synchronicity and the Paranormal, (London: Routledge, 2009) 8.


[Закрыть]

Совершенно невероятные истории о совпадениях неизменно заканчиваются вопросом: «Ну и каковы шансы, что нечто подобное может произойти?» Обычно вопрос является риторическим, поскольку на него в буквальном смысле сложно ответить. И хотя есть фундаментальные статистические методы и проверенные экспериментальные модели для изучения редких совпадений, у математиков все еще нет общей теории для данного предмета. Проблема заключается в самом определении слова. Все-таки «совпадение» предполагает событие без очевидной причины, включая случайности и чудеса. Что бы мы делали без веры в чудеса? Возможно, измерение вероятности совпадения – это оксюморон. Как мы можем узнать вероятность события, не имеющего видимой причины? Кто-то может утверждать, что выпадение двух шестерок на паре игральных костей не имеет видимой причины, за исключением сотни не поддающихся оценке переменных, которые определяют их движение, но тем не менее мы в состоянии оценить шансы против такого исхода как 35 к 1[6]6
  То есть вероятность наступления исхода равна 1/36 – Прим. науч. ред.


[Закрыть]
. У нас имеются точные и столь необходимые для страховых компаний данные о шансе дожить до возраста x лет. Так что же мешает нам измерить вероятность чуда или того, что сбудется сон, в котором мы встретили таинственного незнакомца посреди переполненной людьми комнаты? Нам не всегда необходимо знать причину события для того, чтобы разобраться с измерением его вероятности. Мы не знали, почему курение вызывает рак, когда выяснили это с помощью оценки статистической вероятности возникновения болезни. Это произошло после Второй мировой войны, когда женщины, которые до войны не курили, пошли работать на заводы и в учреждения – и начали курить. Тут же подскочила заболеваемость раком, – и бинго! – мы предположили наличие корреляции и сложили два и два. Проблема со многими совпадениями заключается в гигантском числе переменных, которых мы можем не знать или быть не в состоянии вывести из статистической выборки. Совпадения непросто оценить с помощью методов количественного анализа; однако есть качественные основания для предположения о том, что они происходят чаще, чем мы ожидаем. Даже физики избегают количественных прогнозов, предпочитая качественные.

Размышляя о совпадениях, мы имеем в виду правдоподобие. Попробуйте рассказать историю о совпадении, и кто-нибудь непременно спросит: «Ну и каковы шансы того, что такое могло произойти?» Ответ почти всегда сводится к словосочетанию «довольно незначительные». Объяснить нам, что значит «довольно незначительные», или по крайней мере заставить задуматься – задача специалистов по теории вероятностей. Меру правдоподобности события в числовом выражении математики называют вероятностью. Она всегда находится в пределах от 0 до 1, где 0 означает невозможность, а 1 – абсолютную достоверность. Существует несколько способов ее измерения. Один – рассмотреть относительную частотность большой выборки. В принципе, вероятность события – это отношение двух чисел, каждое из которых можно определить, повторяя испытание и вычисляя долю случаев, когда событие произошло. По мере увеличения числа испытаний частота наступления события приближается к вероятности этого события. Второй способ измерения – посчитать логические возможности: брошенная правильная игральная кость может приземлиться только на одну из шести сторон. Нам нет необходимости бросать кости, чтобы узнать, что вероятность выбросить четное число составляет 1/2, или 50 %.

Если два события связаны таким образом, что оба не могут произойти одновременно ввиду некоего логического ограничения (например, невозможность вытянуть одновременно красную даму и даму пик при условии, что тянут только одну карту, из стандартной колоды в 52 карты), тогда вероятность наступления одного либо другого события – это сумма вероятностей каждого из событий. Другими словами, вероятность вытянуть красную даму или даму пик составляет 1/26 + 1/52 = 3/52.

Общий смысл следующий: предположим, что X обозначает исход испытания, а P (X) – вероятность наступления события. Тогда вероятность того, что событие не наступит, будет 1 – P (X). Например, если вы подбрасывали монетку, то P (орел) будет равняться 1/2, как и P (решка). Если бросают пару игральных костей, то P (4) = 1/12, а P (не 4) = 11/12[7]7
  Каждая кость может выпасть одной из шести сторон, и, значит, всего есть 6 × 6 = 36 элементарных исходов. Из них событию «в сумме выпало 4 очка» соответствуют исходы 1-3, 2-2 и 3-1 – всего таких 3. Следовательно, вероятность равна 3/36 = 1/12. – Прим. науч. ред.


[Закрыть]
. Если X и Y – возможные взаимоисключающие исходы, то вероятность наступления события X и Y равна 0 и вероятность наступления X или Y равна P (X) + P (Y).

В качестве примера из жизни возьмем следующие события: первое – случайно встретиться с лучшим другом на Бора-Бора утром в следующий вторник; второе – случайно встретить двоюродного брата или сестру после полудня в тот же самый день в Рейкьявике. Первое имеет влияние на второе. Если вы не располагаете личным истребителем F-15, вы не можете случайно встретиться с лучшим другом на Бора-Бора и случайно встретиться с двоюродным братом или сестрой в Рейкьявике. Естественно, допущение обеих возможностей дает лучшие шансы. В случае с картами: можно вытянуть красную даму или (черную) даму пик. Если, с другой стороны, мы имеем ситуацию, где одно событие совершенно не зависит от другого, тогда вероятность того, что наступят оба, – это произведение вероятностей каждого из событий. Вероятность вытянуть красную даму, а затем, вернув ее в колоду, вытянуть даму пик будет 1/26 × 1/52 = 1/1352.

Действительно, требование о том, чтобы наступили два заданных события, дает меньшие шансы. С другой стороны, вероятность вытянуть из колоды обе карты, не возвращая в колоду первую карту, немного осложняет задачу. Нам потребуется найти вероятность того, что одно событие наступит после другого: условная вероятность. Случай со сдачей двух карт из одной колоды поучителен. Если допустить, что сданную карту не возвращают в колоду, то вероятность вытянуть красную даму, а затем – даму пик составит 1/26 × 1/51 = 1/1326. В момент сдачи второй карты в колоде не будет одной красной дамы или попросту одной карты. Таким образом, вероятность вытянуть даму пик на второй сдаче будет вероятностью вытянуть ее из колоды в 51 карту. Не возвращая карту в колоду, мы тем самым увеличиваем вероятность сдачи дамы пик. В данном случае важно то, что мы имеем дело с произведением двух чисел, оба из которых меньше единицы, а это означает, что полученная вероятность будет меньше вероятности каждого из событий. Для ясности отметим: мы условились, что дама пик была вытянута после красной дамы. Если бы условием была сдача любой из карт – дама пик вытянута первой по счету или второй, вероятность была бы больше. Мы рассматривали бы две вероятности: вероятность сдачи дамы пик, а затем красной дамы и вероятность сдачи красной дамы, а затем дамы пик.

Разница между шансом и вероятностью

Мы видим различие между понятиями «шанс» и «вероятность». Когда мы говорим, что шанс – это m: n, мы имеем в виду, что ожидаем, что событие не наступает в m случаях из n, когда оно наступает. Стандартная запись выглядит как m: n, что на словах означает «отношение m к n». Если шанс – это m: n, то вероятность будет отношением n/m+n, т. е. шанс 4 к 1, если перевести в вероятность, будет 1/5. Для вычисления шансов наступления события p вычислим отношение (1 – p)/p и сократим его до m/n. Тогда шанс того, что событие наступит, составит m к n. В случае с p = 1/5 отношение превращается в (1 – (1/5))/(1/5) = 4/1, таким образом шанс составляет 4:1[8]8
  Здесь описываются «шансы против события». Часто шансы определяются прямо противоположным образом: как p/(1 – p). В этом случае «шансы 1 к 4» означали бы вероятность 1/5. Однако в этой книге принято другое соглашение. – Прим. науч. ред.


[Закрыть]
.

Понятие шанса взято из азартных игр. С его помощью легче вычислять выигрыш; если выигравшая ставка в $1 оплачивается как m к 1, то выигрыш составит $m, т. е. сумма включает также и величину первоначальной ставки. Равные шансы или равная ставка означают, что шансы 1 из 1. В этой книге мы постараемся ограничиться случаями, где m = 1. Понять, насколько вероятно или невероятно событие, проще, когда мы знаем, что на одно удачное испытание приходится m неудачных. В определенных случаях мы будем использовать выражение «шансы 1 из m», подразумевая, что на m испытаний будет приходиться одно удачное. Так, например, «шансы вытянуть туза пик из колоды в 52 карты составляют 1 из 52», что можно выразить и как «шанс вытянуть туза пик из колоды в 52 карты составляет 51 к 1».

Вероятностный мысленный эксперимент

Выберем два любых маловероятных события. Примем в качестве первого – черная кошка перейдет вам путь в следующую среду. В качестве второго – вы когда-нибудь получите заказное письмо от юридической конторы, в котором будет сказано, что ваш двоюродный дедушка, о котором вы никогда не слышали, скончался и оставил вам миллион долларов. Предположим, что первое событие имеет вероятность 0,000001, учитывая численность черных кошек, шатающихся по улицам в вашем районе. Предположим, что вероятность второго – 0,000001, учитывая, что у ваших родителей не слишком много дядьев, о которых вы не знаете. (Эти числа я выбрал исключительно умозрительно.) Вероятность наступления обоих событий необычайно мала – всего 0,000000000001. Эта вероятность меньше, чем вероятность того, что наступит хотя бы одно из событий, и выше, чем вероятность того, что оба события произойдут одновременно. Несомненно, что вероятность наступления одного или другого события выше.

Теперь рассмотрим десять отдельных редких событий:


а) Черная кошка переходит вам путь в среду.

б) Двоюродный дедушка, о котором вы никогда не слышали, умирает и оставляет вам в наследство миллион долларов.

в) Кольцо, которое вы потеряли 20 лет назад, появляется на гаражной распродаже на вашей улице.

г) Сон, в котором мы встретили таинственного незнакомца посреди переполненной людьми комнаты, сбывается.

д) Вы играете в лотерею Texas Lotto и дважды выигрываете.

е) Вы случайно встречаете собственного брата на Бора-Бора.

ж) Находясь за границей, вы находите экземпляр книги Марка Твена «Таинственный незнакомец» с вашей подписью на титульном листе.

з) Вы получаете новый паспорт, номер которого совпадает с номером вашего социального страхования.

и) Вы находите экземпляр книги Марка Твена «Таинственный незнакомец», который был у вас во время учебы в школе, на скамье в парке (да, событие очень похоже на события «ж»).

к) Вы берете такси в Чикаго и узнаете в водителе человека, который подвозил вас в Нью-Йорке в прошлом году.


Я выбрал эти события произвольно. Некоторые из них являются совпадениями, некоторые – просто отдельные события. Они могли бы быть совершенно самостоятельными событиями, если бы не пресловутая бабочка над Тихим океаном, которая, как видно, влияет на все на свете: от погоды в Париже до результатов скачек «Кентукки Дерби», чем постоянно вызывает непредвиденные волнения. Почему кошка появилась в определенный момент? Таинственный незнакомец мог оказаться тем парнем, которому кошка принесла ваше давно потерянное кольцо.

Вероятность некоторых из этих событий и им подобных узнать чрезвычайно сложно даже приблизительно. Для простоты предположим, что вероятность каждого из событий составляет 0,000001, т. е. меньше, чем вероятность получить с раздачи флеш-рояль при игре в покер. Особых причин для того, чтобы брать именно это число, нет, кроме простого факта – такое событие не невозможно, но слишком уж рассчитывать на него не стоит. Может показаться, что вероятность наступления одного из двух событий в списке составит 2 × 0,000001 = 0,000002, потому что вероятности складываются, когда необходимо вычислить вероятность наступления одного из двух событий. Тогда можно наивно предположить, что, рассматривая только два события из предложенных, мы тем самым удваиваем вероятность. Но мы должны быть внимательны. Расчет игнорирует возможность того, что оба события (например, «ж» и «и» из списка) могут произойти одновременно. Нам необходимо вычесть вероятность такого исхода из суммы двух вероятностей. Если события независимы, то вероятность их одновременного наступления равна произведению вероятностей, то есть 0,000001 × 0,000001 = 0,00000000001, относительно небольшое число. Тогда действительная вероятность составит 0,00000199999 – немного меньше, чем ожидалось. Это подводит нас к любопытному вопросу. Ответ на него может заставить по-другому посмотреть на мир совпадений. В мире всевозможных необычайно удивительных событий должны быть тысячи – если не миллионы или миллиарды – событий, которые могут произойти с вами в течение одного года. Давайте предположим, что вероятность каждого из миллиона таких событий будет, скажем, 0,000001. Тогда вопрос в следующем: что произойдет, если мы объединим все эти события и попробуем найти вероятность того, что хотя бы одно из них произойдет в течение года? Нет реального способа определить, насколько независимыми друг от друга будут события числом в миллион. Мы не можем предполагать, что ни у одной из возможных пар событий нет прямой связи. Мы не можем не принимать в расчет возможность того, что одно событие может быть причиной другого или влиять на него или что отдельное событие может зависеть от другого. Например, если вы один раз выиграли в лотерею и потратите часть выигрыша на повторные попытки, это окажет влияние на второй выигрыш, он будет зависеть от первого. Также мы не можем просто сложить вероятности, чтобы получить вероятность того, что произойдет одно событие из миллиона. Это привело бы нас к абсурдным расчетам, из которых следует, что вероятность одного события составит 1 000 000 × 0,000001 = 1, т. е. событие будет достоверным! (Мы бы складывали 0,000001 миллион раз.) Чтобы такие расчеты сработали, события должны быть изолированными, т. е. не иметь ничего общего. Если они имеют что-то общее, то любая серьезная оценка вероятностей становилась бы делом непомерно сложным, если не невозможным. К примеру, нам пришлось бы исключить вероятность того, что черная кошка, которая может пересечь вам путь в следующую среду, также найдет ваше давно потерянное кольцо в водосточной трубе и принесет его таинственному незнакомцу, который попытается продать его на гаражной распродаже. Но даже при выполнении всех этих требований нам все же придется учитывать огромное число пересекающихся возможностей, которые могли бы снизить те или иные шансы. С другой стороны, если бы все из миллиона событий были взаимоисключающими, то математика говорила бы нам, что мы можем быть уверены – одно из них произойдет. Конечно! Любой активный человек может встретиться с миллионом возможных событий. Просто выйдя из дома, человек встречает необозримое число возможностей.

Событие «д» – единственное в нашем списке имеет довольно точно определяемую вероятность, но даже оно зависит от личности победителя. Чтобы выиграть дважды, нужно сначала выиграть в первый раз. Это значит, в первый раз выбрать шесть правильных чисел. Вероятность того, что это произойдет один раз, близка к 0,000000038 – в самом деле, достаточно малое число{36}36
  Я выбрал это число, потому что такова вероятность выигрыша в лотерею в моем родном штате Вермонте.


[Закрыть]
. Иначе говоря, ваши шансы на выигрыш составляли бы 25 827 164 к 1.

Как это рассчитано? Есть 54 варианта выбора числа. Когда выбрано первое число, оно исключается, т. е. остается 53 возможных варианта для второго числа. Подобным образом для третьего есть 52 варианта, для четвертого – 51, для пятого – 50, для шестого – 49. Поэтому существует 54 × 53 × 52 × 51 × 50 = 18 595 558 800 различных способов выбрать шесть чисел, каждое от 1 до 54. Есть 1 × 2 × 3 × 4 × 5 × 6 = 720 различных способов расположения шести чисел. Поскольку порядок, в котором выбраны числа, значения не имеет, мы делим на 720 и получаем 25 827 165 – число различных возможных вариантов, только один из которых верен.

Вероятность выиграть во второй раз остается такой же; числа в лотерее не обладают способностью к запоминанию, равно как и вероятность. Вероятность, однако, зависит от того, как мы о ней думаем. Если вы забываете о том факте, что выиграли в первый раз, то вероятность не меняется. Ваши шансы составляют 25 827 164 к 1, а вероятность – 0,000000038. Вероятность выиграть во второй раз составляет 0,000000038 × 0,000000038 = 0,000000000000001444, что выглядит очень, очень маловероятно. Мы знаем, что ранее выигравшие числа из следующих лотерей не исключаются и никак на последние не влияют. Однако сам факт выигрыша странным образом такое влияние оказывает, а основано оно на личности победителя. Как преступники возвращаются на место преступления, так победители продолжают играть в лотерею. И делают это, имея полные карманы денег, покупая куда больше билетов, чем раньше. Таким образом, наши расчеты не учитывают всех прочих попыток сыграть в лотерею. Человек мог сыграть 100 раз, прежде чем случился второй выигрыш. В главе 7 (а именно в табл. 7.1) мы найдем шансы на выигрыш в лотерею 4 раза за 4 попытки, что является куда более сложным делом.

Глава 5
Дар Бернулли

Возможен ли математический закон, который откроет нам будущее? После того как пара игральных костей брошена, они «забывают» о том, где и как легли. Если кости «честные» и брошены без жульничества, нельзя заранее сказать, каков будет результат, и все же мы можем быть вполне уверены, что, если бросать кости достаточно долго, 7 будет появляться намного чаще, чем любое другое число. Дело в геометрии игральных костей и простых арифметических правилах: существует больше пар чисел от 1 до 6, в сумме дающих 7, чем любых других пар, которые можно получить в результате броска двух игральных костей.

Математика вероятности – относительно новая область знания. Она зародилась примерно в XVI в. До начала XVI в. математика не занималась неопределенными проблемами. Натурфилософы и математики больше интересовались познанием серьезных вещей, которые для одних могли быть абстрактными понятиями теории чисел и геометрии, для других – более практичными и полезными делами: например, геодезия или другие строительные технологии (в частности, строительство соборов). Само математическое понятие случайного было впервые описано в «Книге об азартных играх» (Liber de Ludo Aleae) Джероламо Кардано – сборнике работ, содержащих основы понимания природы случайности и того, что мы сейчас называем вероятностью; книга была написана около 1563 г.{37}37
  Эти работы оставались неопубликованными почти сто лет. См.: Øystein Ore: Cardano, the Gambling Scholar (Princeton, NJ: Princeton University Press, 1953, or New York: Dover, 1965. Следует отметить, что книга Оре впервые осветила вклад Кардано в математическую теорию вероятностей. См.: Ernest Nagel's review of Cardano, the Gambling Scholar in Scientific American, June 1953.


[Закрыть]
Но «Книга об азартных играх» оставалась неизданной еще сто лет.

Джероламо Кардано был миланским врачом, математиком и игроком. Наибольшую известность ему принесла его книга «Великое искусство» (Ars Magna), опубликованная в 1545 г. В ней изложено все, что было известно на тот момент о теории алгебраических уравнений. «Книга об азартных играх» – это 15 страниц бессвязных математических и философских заметок. Кардано не собирался ее публиковать. Но в книге мы находим полезные инструменты для изучения частотности совпадений. Она считается краеугольным камнем теории вероятности, расчетных величин, средних величин, таблиц распределения, свойств сложения вероятностей и различных способов вычисления k успешных испытаний из N – общего числа испытаний. В ней даже содержалось предположение о существовании математического закона, который позже станет известен как слабый закон больших чисел. В общих чертах закон говорит о том, что разность между наблюдаемой вероятностью (которая совершенно не известна до момента наступления событий) и математически вычисленным средним значением p может оказаться сколь угодно малой при условии, что число испытаний N достаточно велико.

В строгом выражении он выглядит как загадочная скороговорка: вероятность P, что средний коэффициент успешности испытаний отличается от p, сколь угодно близка к нулю, при условии что N может быть сколь угодно большим для выполнения данного условия. В современной записи, где ε представляет любое выбранное малое число, сходится к 1 по мере того, как растет N.{38}38
  На словах это значит: вероятность P того, что разность между эмпирической вероятностью k/N и математической вероятностью p меньше, чем некоторое малое определенное число ε приближается к 1 по мере увеличения N.


[Закрыть]
Для тех читателей, которые подскочили, увидев этот набор символов, позвольте пояснить. Мы используем запись, разработанную для того, чтобы говорить о вероятности события, описанного в квадратных скобках. Например, P [на следующее 4 июля Центральный парк накроет ураган] обозначает вероятность того, что ураган накроет Центральный парк на следующее 4 июля. Таким образом, обозначает вероятность того, что разность между отношением k/N и p, взятая по модулю, будет меньше, чем любое выбранное малое число ε.

Это принцип, которому следуют средние величины в долгосрочной перспективе. Уместно спросить: как могут случайные события (без какой-либо памяти о каждом отдельном исходе) иметь среднее значение, настолько близкое к математически рассчитанной величине? К сожалению, этот замечательный истинный закон даже сегодня часто путают с тем, что некоторые называют законом средних чисел, который и не закон вовсе, а скорее, нелепое предположение, утверждающее, что если достаточно долго бросать монетку, то половина бросков придется на орла, а половина – на решку. Если только мы не примем «достаточно долго» за «неограниченно долго», то утверждение не так уж истинно.

Да, слабый закон больших чисел – действительно поразительная вещь. Но еще более удивительно то, что его можно доказать математически! Он показывает, что случайные события – события с широким диапазоном возможных исходов и без какой-либо памяти о каждом отдельном исходе – могут иметь эмпирическое среднее значение, близкое к математически рассчитанной величине. Математика может рассказать нам об определенных феноменах реального мира – строении мостов и плотин, которые подчиняются математическим законам. Летящий самолет и разбитое окно также следуют математическим законам. Стекло разбивается при определенных резонансных частотах; аэродинамический профиль крыла поднимает самолет, когда давление над крылом меньше давления под ним. Но, когда речь заходит о случайности, связи кажутся куда более загадочными. Игральные кости? Как можем мы знать, какая комбинация выпадет при следующем броске?

Кардано оставил после себя способ сделать это. До его «Книги об азартных играх» случай – счастливый или нет – был в руках Тихеи, Фортуны или других божеств, которые влияли на исход случайных событий в пользу того или иного исхода. Даже у греков, достигших удивительных высот во многих областях математики, не было математической теории азартных игр. Они просто бросали кости, полагая, что удача, случай или некое божество решали их судьбу. О, конечно же, они знали, что некоторые числа выпадали чаще других. Несомненно, знали, что 7 выпадает чаще любого другого числа. Все, что им нужно было сделать, – это сосчитать число вариантов выбросить 7 и сравнить с числом вариантов других комбинаций. Но, насколько мы можем судить, у них не было понятия о прогнозной вероятности.

Небольшая рукопись Кардано содержала первые крупицы знаний и ключи к науке о случайном. Мы узнали, что наблюдаемые факты помогают определить, что может случиться. Согласно Анри Пуанкаре, именно тогда мир узнал, что удача одного человека равна удаче любого другого и даже удаче богов.

Мы должны помнить о том, что во времена Кардано еще не существовало простого научного понятия случайности. Например, математики не задумывались о том, почему одни числа выпадают чаще других. Галилей разрешил эту загадку через полвека после смерти Кардано, когда написал небольшой трактат об игре в кости, хотя маловероятно, что Галилей знал о «Книге об азартных играх» Кардано. Он перечислил все комбинации и обнаружил, что для трех игральных костей существует 27 различных способов получить в сумме 10 или 11, но только 25 способов получить 9 или 12.{39}39
  G. Galileo (c. 1620), Sopra la scoperte die dadi (On a Discovery Concerning Dice), trans. E. H. Thorne, excerpted in Games, Gods, and Gambling: The Origins and History of Probability and Statistical Ideas from the Earliest Times to the Newtonian Era by F. N. David (New York: Hafner, 1962), 192–195.


[Закрыть]

Конечно, опытным игрокам это и так известно. У них есть фундаментальное понимание игры, основанное на народной мудрости, накопленной веками практики и наблюдений. У них также есть интуитивное знание шансов выпадения комбинаций; так, для 3 игральных костей, как они хорошо знают, 10 и 11 встречаются гораздо чаще, чем любое другое число. Но существует разница между интуицией и математическим объяснением. С уверенностью, которую дает математика, можно практически рассчитывать на успех. Для тех, кто знает, как вычислить математический шанс, решения уже не выглядят столь рискованными. В конечном итоге это уже практически достоверность, несмотря на отдельные уколы неопределенности, вызываемые случайностями и совпадениями.


Страницы книги >> Предыдущая | 1 2 3 4 5 | Следующая
  • 0 Оценок: 0

Правообладателям!

Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.

Читателям!

Оплатили, но не знаете что делать дальше?


Популярные книги за неделю


Рекомендации