Электронная библиотека » Е. Фурсова » » онлайн чтение - страница 7

Текст книги "Антенны"


  • Текст добавлен: 1 января 2014, 00:53


Автор книги: Е. Фурсова


Жанр: Дом и Семья: прочее, Дом и Семья


сообщить о неприемлемом содержимом

Текущая страница: 7 (всего у книги 10 страниц) [доступный отрывок для чтения: 3 страниц]

Шрифт:
- 100% +

Рис. 35


Это обстоятельство приводит к уменьшению коэффициента k по мере уменьшения отношения ρ0/f Однако с другой стороны, уменьшение отношения ρ0/f сопровождается увеличением равномерности облучения зеркала, что сопровождается увеличением коэффициента k. В результате действия двух указанных факторов получается оптимальное соотношение ρ0/f, которое в случае элементарного вибратора с рефлектором равно 1,3.

η – коэффициент использования поверхности рефлектора, показывающий, какая доля мощности сигнала, собранной рефлектором, попадает в облучатель. Из формулы следует, что сигналы на выходах антенн с рефлекторами, у которых одинаковые эффективные площади в диапазонах 4 ГГц (λ = 7,5 см) и 12 ГГц (λ = 2,5 см), будут отличаться в 9 раз, однако на самом деле такого отличия нет: в свободном пространстве происходит затухание энергии электромагнитных волн, определяемое уменьшением плотности потока мощности при удалении от источника (антенны-передатчика).

Затухание L0 растет при увеличении расстояния R и уменьшении длины волны λ электромагнитных колебаний в соответствии с формулой: L0 = 16π2R22.

Таким образом, при одинаковой площади параболических рефлекторов приемных антенн и одинаковых мощностях передатчиков сигналы на выходах антенн в диапазонах 4 и 14 ГГц будут примерно одинаковы.

Коэффициент усиления G по мощности антенны с параболическим рефлектором диаметром Dr повышается при увеличении эффективной площади рефлектора Sэф и при уменьшении длинны волны λ принимаемого сигнала. Его находят по формуле (в относительных единицах):


G = 4πSэф2, где Sэф = ηπDr2/4.


Таким образом, коэффициент усиления параболической антенны зависит от диаметра параболоида: чем больше диаметр зеркала, тем выше коэффициент усиления.

Зависимость коэффициента усиления параболической антенны от диаметра приведена ниже:

Роль коэффициента усиления параболической антенны можно проанализировать с помощью электрической лампочки (рис. 36 а). Свет равномерно рассеивается в окружающее пространство, и глаз наблюдателя ощущает определенный уровень освещенности, соответствующий мощности электролампочки.

Рис. 36


Однако если источник света поместить в фокус параболоида с коэффициентом усиления в 300 раз (рис. 36б), его лучи после отражения поверхностью параболоида окажутся параллельны его оси, а сила цвета будет эквивалентна источнику мощностью 13 500 Вт. Такую освещенность глаз наблюдателя воспринять не может. На этом свойстве в частности основан принцип работы прожектора.

Таким образом, антенный параболоид, строго говоря, не является антенной в ее понимании как преобразователя напряженности электромагнитного поля в напряжение сигнала. Параболоид – это лишь отражатель радиоволн, концентрирующий их в фокусе, куда и должна быть помещена активная антенна (облучатель).

Диаграмма направленности параболической антенны, приведенная на рис. 37, характеризует зависимость амплитуды напряженности электрического поля Е, создаваемого в некоторой точке, от направления на эту точку. При этом расстояние от антенны до данной точки остается постоянным.

Рис. 37


Увеличение коэффициента усиления антенны влечет за собой сужение главного лепестка диаграммы направленности, а сужение его до величины менее 1° приводит к необходимости снабжать антенну системой слежения, так как геостационарные спутники совершают колебания вокруг своего стационарного положения на орбите. Увеличение ширины диаграммы направленности приводит к снижению коэффициента усиления, а значит, и к уменьшению мощности сигнала на входе приемника. С учетом этого оптимальной шириной главного лепестка диаграммы направленности является ширина в 1–2° при условии, что передающая антенна спутника удерживается на орбите с точностью ±0,1°.

Наличие боковых лепестков в диаграмме направленности также снижает коэффициент усиления антенны и повышает возможность приема помех. Во многом ширина и конфигурация диаграммы направленности зависят от формы и диаметра зеркала принимающей антенны.

Самой важной характеристикой параболической антенны является точность формы. Она должна с минимальными ошибками повторять форму параболоида вращения. Точность соблюдения формы определяет коэффициент усиления антенны и ее диаграмму направленности.

Изготовить антенну с поверхностью идеального параболоида практически невозможно. Любое отклонение реальной формы параболического зеркала от идеальной влияет на характеристики антенны. Возникают фазовые ошибки, которые ухудшают качество принимаемого изображения, снижается коэффициент усиления антенны. Искажение формы происходит и в процессе эксплуатации антенн: под воздействием ветра и атмосферных осадков; силы тяжести; как следствие неравномерного прогрева поверхности солнечными лучами. С учетом этих факторов определяется допустимое суммарное отклонение профиля антенны.

Качество материала также влияет на характеристики антенны. Для изготовления спутниковых антенн в основном используют сталь и дюралюминий.

Стальные антенны дешевле алюминиевых, но тяжелее и больше подвержены коррозии, поэтому для них особенно важна антикоррозийная обработка. Дело в том, что в отражении электромагнитного сигнала от поверхности участвует очень тонкий приповерхностный слой металла. В случае повреждения его ржавчиной значительно снижается эффективность антенны. Стальную антенну лучше сначала покрыть тонким защитным слоем какого-нибудь цветного металла (например, цинка), а затем покрасить.

С алюминиевыми антеннами этих проблем не возникает. Однако они несколько дороже. Промышленность выпускает и пластиковые антенны. Их зеркала с тонким металлическим покрытием подвержены искажениям формы за счет различных внешних воздействий: температуры, ветровых нагрузок и ряда других факторов. Кроме того, к ним легко прилипает снег, что также приводит к искажению приема телепередач.

Существуют сетчатые антенны, устойчивые к ветровым нагрузкам. К тому же они значительно меньше портят «пейзаж», особенно в исторических районах. Они имеют хорошие весовые характеристики, но плохо зарекомендовали себя при приеме сигналов Кu-диапазона (основной диапазон частот от 10,7 до 12,75 ГГц, используемых в спутниковом телевидении). Для обеспечения приема такого же качества, как при использовании антенн со сплошным зеркалом, требуется рефлектор большего диаметра. Поэтому такие антенны целесообразно использовать для приема сигналов С-диапазона.

Параболическая антенна, на первый взгляд, кажется грубым куском металла, но, тем не менее, она требует аккуратного обращения при хранении, транспортировке и монтаже. Любые искажения формы антенны приводят к резкому снижению ее эффективности и ухудшению качества изображения на экране телевизора. При покупке антенны необходимо обратить внимание на наличие искажений рабочей поверхности антенны. Иногда бывает, что при нанесении антикоррозийных и декоративных покрытий на зеркало антенны ее «ведет» и она приобретает форму пропеллера. Проверить это можно, положив антенну на ровный пол: края антенны должны везде касаться поверхности.

Технические приемы и решения

Осесимметричная антенна. При использовании длиннофокусных рефлекторов оптимального облучения их поверхности удается достичь применением рупорных облучателей. При этом необходимо помнить, что рупоры, обладающие большим собственным углом раскрыва, имеют более узкие диаграммы направленности, а у рупоров с малым собственным углом раскрыва диаграмма направленности шире.

При использовании короткофокусных рефлекторов оптимального их облучения удается достичь, применяя облучатели в виде рупоров, у которых собственный угол раскрыва очень мал или равен нулю. Рупором, у которого угол раскрыва равен нулю, может служить открытый конец волновода.

В качестве такой антенны удобно использовать осесимметричный параболический рефлектор (рис. 38), оборудовав его круглым волноводом из дюралюминиевых трубок. Для диапазонов 11 и 12 ГГц конвертер (смеситель, гетеродин и даже МШУ) можно выполнить в виде модулей из коротких отрезков стандартных прямоугольных волноводов, широко применяемых в радиолокационных и других СВЧ-устройствах трехсантиметрового диапазона. При этом для подключения такого конвертора к круглому волноводу антенны необходим модульный переходник, имеющий плавный переход от круглого волновода к прямоугольному. Передачи спутникового телевидения ведутся как с горизонтальной, так и с вертикальной поляризацией радиоволн. Поэтому прием с той или иной поляризацией обеспечивается поворотом модуля-переходника и всего конвертера на конце круглого волновода, выведенного за заднюю поверхность параболического рефлектора.

Рис. 38


В настоящее время нашли широкое распространение конструкции, в которых компактный конвертер расположен непосредственно в фокусе параболического рефлектора. Однако при расположении конвертера, состоящего из нескольких отдельных модулей, за рефлектором удобнее настраивать эти модули и экспериментировать, не затеняя некомпактным модульным конвертером, рукой или частью своего тела рабочей поверхности параболического рефлектора. В такой конструкции потери энергии принятого сигнала на коротком отрезке круглого волновода малы и ими можно пренебречь.

Как в широко распространенных конструкциях, где конвертер расположен в фокусе параболического рефлектора, так и в конструкции с волноводом между облучателем и конвертером необходимо добиваться максимального согласования облучателя с рефлектором и волноводом, а последнего – с входом конвертера, добиваясь наличия в основном режима бегущей волны в этой цепи. С этой целью широкое применение в параболических антеннах находят рупорные облучатели, хорошо согласующиеся как с самим параболическим рефлектором, так и с волноводом или входом конвертера. Однако такие облучатели применимы лишь с длиннофокусными рефлекторами, и из-за значительного удаления облучателя от рефлектора конструкция антенны оказывается довольно громоздкой.

Гораздо более компактной получается антенна с короткофокусным рефлектором, в котором облучатель приближен к поверхности рефлектора, но в этом случае вместо рупорных с узкой диаграммой направленности приходится применять облучатели в виде открытого конца волновода с широкой диаграммой направленности. Однако он хуже, чем рупор, согласуется с параболическим рефлектором, а в цепи волновод – конвертер неизбежно рассогласование и, как следствие этого, появление там отражений и стоячих волн.

Применение облучателя на основе круглого волновода дает возможность обеспечить сбор с рефлектора энергии радиоволн любой поляризации. Однако из-за неидеального согласования круглого волновода (круглого облучателя) с входом конвертера, построенного на основе отрезков прямоугольного волновода, также неизбежно появление дополнительных отражений и стоячих волн.

Для уменьшения потерь энергии принятого сигнала во входных цепях модульного конвертера приходится применять согласующие устройство в виде модуля-трансформатора сопротивлений (рис. 38), представляющего собой отрезок круглого волновода с изменяемой длиной. Изменяя длину этого модуля, можно достичь лучшего согласования на входе конвертера, ориентируясь на наименьшие потери полезного сигнала в этой цепи.

Приведем описание трех конструкций осесимметричных антенн с параболическим рефлекторами, имеющими различные фокусные расстояния (с длиннофокусным, со среднефокусным расстоянием и с короткофокусным). Первые две антенны выполнены с облучателями в виде открытого конца круглого волновода, а третья – по схеме Кассегрена с рупорным облучателем.

Длиннофокусная осесимметричная антенна. Наиболее простой из этих трех можно назвать параболическую осесимметричную антенну (рис. 38) с относительно длиннофокусным (F = 0,28 м) рефлектором диаметром 0,67 м. Угол раскрыва рефлектора 2ψ0 равен 118°. Диаметр круглого волновода и облучателя в виде его открытого конца рассчитан и выбран таким, чтобы диаграмма облучателя хорошо вписывалась в угол раскрыва рефлектора с целью получения максимально возможного коэффициента использования поверхности рефлектора (около 0,6). Коэффициент усиления такой антенны – около 35 дБВт, а ширина диаграммы направленности – 2,5°. Заметим, что дБВт (децибел-ватт) – единица измерения, характеризующая затухание (усиление) антенны, выраженное в децибелах, рассчитанное относительно 1 Вт мощности.

Точно такие же волновод и облучатель можно применить для рефлекторов большего диаметра с большим фокусным расстоянием, но имеющих тот же угол раскрыва. При этом коэффициент использования поверхности останется прежним, а за счет увеличения площади рефлектора усиление антенны возрастет и ширина диаграммы направленности уменьшится. Коэффициент усиления по мощности для антенны с рефлектором большего диаметра можно подсчитать по формуле G = 4πSэф2.

Среднефокусная осесимметричная антенна. В среднефокусной параболической осесимметричной антенне применен рефлектор от радиорелейной станции трехсантиметрового диапазона диаметром 1 м, со средним фокусным расстоянием 30 см. Большой угол раскрыва этого рефлектора (2ψ0 = 150) потребовал более тщательного расчета диаметра круглого волновода, открытый конец которого служит облучателем. По приблизительным оценкам коэффициент использования поверхности рефлектора этой антенны – около 0,6; коэффициент усиления – около 39 дБВт. Волновод и облучатель такой конструкции можно применить и для рефлекторов большего диаметра, но с таким же углом раскрыва. Коэффициент усиления по мощности и ширину диаграммы направленности антенны с рефлектором большего (или меньшего) диаметра можно приблизительно оценить по приведенным выше соотношениям.

Короткофокусная осесимметричная антенна. В короткофокусной антенне может быть применен короткофокусный параболический рефлектор, у которого глубина соизмерима с фокусным расстоянием, а угол раскрыва 2ψ0 может достигать 180° и более. Применение таких рефлекторов возможно лишь при условии наиболее полного использования их поверхности (коэффициент использования поверхности – в пределах 0,6–0,7). Это, в свою очередь, диктует необходимость создания облучателей с углом диаграммы направленности, равным углу раскрыва примененного короткофокусного параболического рефлектора. Так как конструирование таких облучателей вызывает целый ряд непреодолимых трудностей, то приходится применять вспомогательное зеркало, то есть строить двухзеркальную антенну по схеме Кассегрена (рис. 39).

Рис. 39


Интересно отметить, что двухзеркальная антенна с гиперболическим контррефлектором названа именем Кассегрена, применившего в 1672 году такую систему для сбора энергии световых лучей от удаленных небесных светил, то есть в качестве телескопа. Ранее, в 1663 году, Грегори предложил вариант двухзеркального телескопа с основным параболическим рефлектором и эллипсоидным контррефлектором. По схеме Грегори строятся лишь длиннофокусные двухзеркальные антенны, в которых к тому же требуется более высокая точность исполнения контррефлектора, чем в антенне по схеме Кассегрена.

Двухзеркальная антенна. Полностью собрать энергию принятого сигнала с поверхности короткофокусного параболического рефлектора с большим углом раскрыва одним облучателем не удается. Это можно обеспечить, применив дополнительное гиперболическое зеркало (контррефлектор) (рис. 39). Вспомогательное зеркало (контррефлектор) представляет собой симметрично усеченный гиперболоид вращения, один фокус O1 которого должен совпадать с фокусом F параболического рефлектора. Во втором фокусе O2 второй мнимой ветви гиперболоида располагают облучатель, в качестве которого использована рупорная антенна круглого сечения с не столь большим собственным углом диаграммы направленности. Он рассчитан так, чтобы облучалась лишь поверхность гиперболического контррефлектора.

Несмотря на то что контррефлектор создает значительное затемнение для падающих на рефлектор лучей принимаемого сигнала, коэффициент использования поверхности рефлектора за счет эффективного сбора с него энергии оказывается довольно высоким (0,6–0,7). С контррефлектора энергия собирается рупорным облучателем с относительно малым углом раскрыва. Кроме того, такой двухэтапный сбор энергии приводит к более плавному, а следовательно, и более полному согласованию облучателя с основным рефлектором. Это, казалось бы, должно существенно уменьшить стоячие волны. Однако отраженные от входа конвертера волны, попадающие на центральную часть контррефлектора, не уходят в свободное пространство, из-за чего уровень стоячих волн увеличивается.

Если в двухзеркальной антенне, широко использовавшейся в радиолокационных системах на частотах 4 ГГц, применен параболический рефлектор диаметром 1,5 м с глубиной и фокусным расстоянием 0,38 м и углом раскрыва 180°, то коэффициент усиления антенны на частоте 11 ГГц окажется равным не менее 43 дБВт при ширине диаграммы направленности 1,2° и коэффициенте использования поверхности основного рефлектора около 0,6.

Неосесимметричная антенна. В параболических неосесимметричных антеннах вынесенный облучатель и конвертер находятся в стороне от падающего на рефлектор потока мощности принимаемого сигнала и не создают затемнения (рис. 40).

Рис. 40


Однако существенного выигрыша в усилении у этих антенн не получается, так как их эффективная площадь будет меньше из-за неперпендикулярности попадания на поверхность раскрыва рефлектора лучей приходящего сигнала. К тому же из-за неосесимметричного расположения ухудшается согласование облучателя с рефлектором. Поэтому отражения и стоячие волны между рефлектором и конвертером увеличиваются. Единственным заметным достоинством неосесимметричных антенн с вынесенным облучателем (Ofset Antenne) следует признать почти вертикальное к поверхности Земли расположение рефлектора, что позволяет уменьшить падение на него атмосферных осадков (дождя, снега, града и др.). Это очень важно в северных широтах, где осадки выпадают чаще, чем в южных.

Плоские и сферические спутниковые антенны. В настоящее время в спутниковом непосредственном телевизионном приеме в качестве антенн наиболее широко применяются два основных параболоида вращения: осесимметричный и офсетный.

Трудоемкость изготовления параболического отражателя вынудила искать альтернативные конструкции антенн, более технологичных в производстве и самостоятельном изготовлении. К таким конструкциям относится плоский зональный отражатель Френеля, приведенный на рис. 41. На рис. 41а показан вид сбоку (разрез) отражателя (1 – металлические кольца, 2 – диэлектрическое основание, 3 – центральный диск, 4 – конвертер). На рис. 41б показан вид спереди (без конвертера).

Рис. 41


Огюстен Жан Френель (1788–1828), французский физик, один из основателей волновой оптики, в процессе изучения дифракции света использовал метод разделения фронта волны на кольцевые зоны, названные впоследствии его именем.

Зональная антенна Френеля (ЗАФ) по принципу действия существенно отличается от обычно используемых антенн, содержащих в основе параболический отражатель.

Антенный отражатель Френеля представляет собой проводящие концентрические кольцевые поверхности, расположенные в одной плоскости. Под воздействием падающей волны электромагнитного поля, согласно принципу Гюйгенса, каждое кольцо становится источником вторичного излучения, которое направлено в разные стороны в отличие от параболоида вращения, отражающего все лучи в направлении фокуса. Можно подобрать такую ширину каждого кольца зональной антенны и расстояние между ними, чтобы сигналы вторичного излучения от средних линий каждого кольца в определенной точке пространства совпадали по фазе. Для этого достаточно, чтобы расстояния между средними линиями колец и указанной точкой отличались на длину волны сигнала. Эту точку по аналогии с параболоидом можно назвать фокусом. В фокусе, как и в параболической антенне, находится облучатель.

Сигналы, излученные серединой колец, оказываются в фазе с сигналом, излученным центром диска. Расфазировка между сигналами, излученными кромкой диска и его центром, а также кромками колеи и их серединой, составляет всего 1/4 длины волны.

Таким образом, расчет ЗАФ сводится к выбору места расположения фокуса F на воображаемой оси антенны, то есть расстояния f от полотна антенны, и вычислению внутренних и наружных радиусов колец в зависимости от длины волны λ ретранслятора. Расстояние f не критично, и его выбирают в пределах 500-1000 мм (для антенн больших диаметров).

Сигналы, которые излучают края колеи, отличаются по фазе от сигналов, которые излучает окружность (находится в середине кольца), обеспечивающая синфазность. Широкие кольца обеспечивают широкополосность антенны. В связи с тем, что радиусы колеи ЗАФ зависят от длины волны сигнала, может показаться, что антенна является узкополосной и для каждой частоты (или длины волны) спутникового транспондера понадобятся соответствующие размеры колец. Однако расчеты показывают, что это не так.

Зональная антенна плоская по форме, поэтому она значительно технологичнее в любительских условиях изготовления. Такая антенна может быть выполнена из большого куска фольгированного пластика, или методом травления, или путем вырезания промежутков между кольцами. Ее также можно изготовить наклейкой колец из фольги или ровной жести на лист гетинакса, текстолита, оргстекла, древесноволокнистого полотна (ДВП). Для снижения ветровой нагрузки в диэлектрическом основании антенны просверливают произвольное количество отверстий.

Основным недостатком зональной антенны по сравнению с параболической такого же диаметра является меньший коэффициент усиления, так как не вся энергия сигнала, попадающая на полотно антенны, направляется к облучателю. В условиях слабого сигнала потеря усиления даже на 2 дБ приводит к поражению сигнала шумами и потере цветности. Для компенсации недостатка коэффициента усиления ЗАФ необходимо увеличивать диаметр полотна антенны, хотя при достаточной мощности спутникового ретранслятора и больших углах места (меньше влияют тепловые шумы Земли) для данной точки приема такая антенна обеспечивает хорошие результаты.

Ряд зарубежных фирм производят плоские антенны, которые представляют собой систему из большого количества излучателей (простейших полуволновых вибраторов). Они расположены во много рядов и этажей, соединенных между собой фидерными линиями. Такая конструкция плоской антенны называется антенной решеткой (АР).

Точки питания вибраторов в этажах и рядах соединены таким образом, что принятые каждым вибратором сигналы складываются в фазе. В точках питания АР мощность сигнала равна сумме мощностей, принятых всеми вибраторами. В этих же точках находятся входные клеммы приемной части устройства (конвертера), куда поступает принятый решеткой суммарный по мощности сигнал.

Например, для частоты 12 ГГц синфазная решетка состоит из 2304 полуволновых вибраторов, размещенных в 48 рядов и 48 этажей. Такая решетка имеет размеры 600x600 мм, ширина ее диаграммы направленности в обеих плоскостях по половинной мощности составляет 4,2° без учета ее сужения за счет диаграмм направленности вибраторов. Конструктивно решетку можно выполнить известным печатным способом путем травления фольгированного пластика.

Плоские антенны очень технологичны в производстве, а синфазная решетка имеет дополнительные преимущества по сравнению с зональной антенной Френеля, так как не нуждается в облучателе и ее выходные клеммы можно расположить в плоскости самой антенны. Сложность использования синфазной решетки заключается в необходимости такого соединения вибраторов с клеммами антенны, чтобы принятые всеми вибраторами сигналы поступали к выходу антенны с одинаковой фазой.

Существуют квадратные планарные антенны (цвет. вкладка 5), в которых вибраторы расположены в одной плоскости. Радиоволны через диффузное (пористое) синтетическое покрытие попадают на металлические элементы-облучатели, напыленные на тонкопленочные подложки. Длина этих элементов кратна длине волны принимаемого сигнала, и все они синфазно подключены к направленным на конвертер собирательным шинам, которые сведены к центру квадрата.

При соответствующих размерах синфазной АР и количестве вибраторов коэффициент усиления такой плоской решетки может быть не ниже, чем у антенны с параболическим отражателем. Это связано с тем, что у синфазной решетки узкая диаграмма направленности, так как в фазе складываются только сигналы, поступающие к решетке перпендикулярно ее плоскости.

Кроме того, среди достоинств плоских антенн можно выделить следующие: возможность их изготовления методами печатного монтажа, что обеспечивает высокую воспроизводимость параметров; снижение на 10–30 % ветровой нагрузки по сравнению с параболическими антеннами; простота перевозки, хранения и установки.

Если фазы всех излучателей плоской АР равны, то суммарный луч диаграммы направленности расположен перпендикулярно плоскости антенны.

Однако если ввести в фидерные линии синфазной АР фазовращатели (ФВ) и менять фазу сигнала в каждом излучателе, то в определенном (заданном) направлении сигналы придут в фазе и усилят друг друга. Такая антенная решетка называется фазированной (ФАР). Диагональ антенны расположена перпендикулярно поверхности земли. На рис. 42 представлена фазированная антенная решетка с электронным сканированием луча, при этом цифрами обозначены: 1 – излучатель, 2 – фазовращатель, 3 – позиционер (устройство для управления системой наведения антенны на спутник).

Рис. 42


В технологии решетки заложена возможность установки управляемых ФВ одновременно с излучающими элементами. В устройстве фазовращателя используются полупроводниковые диоды, или варакторы.

В зависимости от количества принимаемых с различных спутников программ количество ФВ может равняться 12 или 24. Система ФВ из 12 диодов может вести прием в секторе ±8°, система из 24 диодов – в секторе ±16°.

В ФВ используют интегральные микросхемы. Таким образом, возможна распайка ФВ на той же печатной плате, где вытравлены излучатели.

В настоящее время внимание к АР значительно возросло в связи с достижениями в области изготовления печатных плат и созданием новых высококачественных диэлектрических материалов с малым углом потерь. Относительная простота их изготовления в заводских условиях обеспечивает производство большого количества антенных элементов и всех фидерных линий в едином технологическом цикле.

Отличием ФАР от используемых сегодня параболоидов вращения является микросекундное переключение луча на нужный спутник, в то время как в электромеханических системах с параболическим зеркалом этот процесс занимает десятки секунд и даже несколько минут.

Конвертер, прикрепленный к обратной стороне плоской печатной антенны, не затеняет апертуру. Невосприимчивость к воздействию прямых солнечных лучей, ветра и дождя гарантирует качественную работу конвертера в сложных климатических условиях.

Плоская форма и сравнительно небольшие габариты антенны (например, 65x65 см) не нарушают эстетичного внешнего вида здания и при ее установке не требуют согласования с архитектурными организациями.

Внедрение ФАР открывает новые, удобные для пользователя режимы работы (автопоиск спутников с последующим запоминанием координат и мгновенное переключение на нужный спутник), что, в свою очередь, позволяет использовать их для обеспечения приема спутниковых сигналов на подвижных объектах.

Сегодня эксплуатируется еще один вид спутниковой антенны – сферическая спутниковая антенна. Она имеет оригинальную конструкцию: шарообразная линза из диэлектрика, фокусирующая сигнал со спутника на концентрическую с фокальной плоскостью. Принцип фокусировки сферической антенны показан на рис. 43.

Рис. 43


Работа антенны аналогична процессу видения боковым зрением. Ведь мы видим не только то, что находится перед нами, но и в значительном секторе как по горизонтали (90–94), так и по вертикали (70–77).

По конструкции сферическая антенна напоминает планету Сатурн, на поясе (кольце) которой (фокальная плоскость) укреплено несколько конвертеров (цвет. вкладка 6). Сферическая антенна является многоспутниковой. Это означает, что на одну такую антенну одновременно можно принимать сигналы нескольких спутников, находящихся на разных позициях геостационарной орбиты. При этом необходимо установить на кольце сферической антенны конвертеры для каждого выбранного спутника.

Одна сферическая антенна диаметром 1,0–1,5 м может заменить семь-восемь параболических антенн соответствующих размеров.

При этом сферическая антенна не требует позиционера и опорно-поворотных устройств (ОПУ).

Основные типы подвески антенны. Кроме размера и формы зеркала, очень важным параметром является тип подвески антенны. Подвеска бывает азимутальной и полярной. Азимутальная подвеска, как правило, фиксированная, антенна при этом настраивается на единственный спутник и жестко фиксируется на кронштейне крепления. Для приема другого спутника должна быть проведена полная перенастройка антенны.

Полярная подвеска значительно сложнее по конструкции и настройке и, соответственно, более дорогая. Она обеспечивает возможность приема нескольких спутников, находящихся в разных орбитальных позициях, вращением антенны только вокруг одной вертикальной оси.

Чаще всего офсетные антенны имеют фиксированную азимутальную подвеску (цвет. вкладка 7), а прямофокусные – полярную (цвет. вкладка 8). Кроме того, даже если вы хотите принимать несколько спутников, для которых достаточно антенны размером 1,2 м, в полярную систему лучше поставить 1,8 м или хотя бы 1,5 м. Некоторый запас не помешает. В последнее время все чаще появляются офсетные антенны с полярным подвесом и размером до 1,6 м. К сожалению, образцов таких антенн не так много. Некоторые мастера присоединяют обычные офсетные антенны с азимутальной подвеской к самодельным полярным подвесам, но финансовый выигрыш при этом незначительный, хотя для приема 2–3 хорошо видных спутников это, как нам кажется, неплохое решение.

Ниже описаны способы самостоятельного изготовления спутниковых антенн и опорно-поворотных устройств, используемых для их крепления.


Страницы книги >> Предыдущая | 1 2 3
  • 4.6 Оценок: 5

Правообладателям!

Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.

Читателям!

Оплатили, но не знаете что делать дальше?


Популярные книги за неделю


Рекомендации