Электронная библиотека » Елена Погосян » » онлайн чтение - страница 2


  • Текст добавлен: 8 ноября 2016, 15:50


Автор книги: Елена Погосян


Жанр: Медицина, Наука и Образование


Возрастные ограничения: +12

сообщить о неприемлемом содержимом

Текущая страница: 2 (всего у книги 13 страниц) [доступный отрывок для чтения: 4 страниц]

Шрифт:
- 100% +
Глава 2
Исследование свертывания крови

Свертывание крови – результат работы тех систем, которые обеспечивают нам гемостаз, или нормальное состояние крови в кровеносном русле. Вообще-то этих систем три:

1) свертывающая;

2) противосвертывающая;

3) фибринолитическая.

Как можно понять из их названий, коагуляции противодействуют антикоагуляция и фибринолиз (разрушение образовавшихся тромбов). Свертывание крови – одно из важнейших приспособлений, выработанных нашим организмом в процессе эволюции. Без этого для нас был бы смертельным любой порез или ссадина. Сгусток крови не только закупоривает поврежденный сосуд и предотвращает потерю крови, но и образует впоследствии струп, защищающий поврежденные ткани от воздействия внешней среды, пока идет процесс заживления.

В процесс свертывания крови вовлечено много веществ. Двенадцать из них называются факторами свертываемости, но по принятой классификации они пронумерованы римскими цифрами от I до XIII, поскольку факторы V и VI выполняют одну и ту же функцию (см. табл. 2). Тем не менее и этот список можно считать неполным, поскольку в процессе задействован еще ряд веществ, например АДФ и серотонин. Поэтому проще будет кратко описать то, как образуется сгусток крови и что с ним происходит потом.

Образование сгустка начинается с тромбоцитарно-сосудистой стадии. Начальное повреждение стенок сосудов вызывает сжатие, или спазм, а также изменение их свойств. Грубо говоря, стенки становятся «липкими», то есть возрастают их адгезивные (склеивающие) свойства. Благодаря этому тромбоциты начинают во множестве прилипать к внутренней поверхности сосуда. При этом они изменяются, набухают и образуют все более крупные агрегаты. То есть происходит их агрегация. Данная фаза сопровождается активным выбросом в кровь биологически активных веществ, усиливающих адгезию и агрегацию тромбоцитов. Образуется так называемый первичный рыхлый тромбоцитарный тромб.

Далее следует стадия коагуляции. Хотя она длится дольше, чем предыдущая, но запускается уже через 30 сек. после повреждения сосуда. Эта стадия запускает каскадную реакцию, вовлекающую многочисленные факторы свертывания крови, подобно падению домино. Самая важная вещь на этом этапе – химическое преобразование (благодаря тем же факторам свертывания) растворенного в плазме фибриногена в волокна фибрина (см. табл. 2). Эти волокна «заманивают» в ловушку эритроциты и лейкоциты и таким образом уплотняют сгусток, который соответственно приобретает красный цвет. Процесс делят на три фазы:

1. Образование тромбопластина, или тромбокиназы, которую выбрасывают в кровь как поврежденные клетки стенок сосуда (тканевой тромбопластин), так и сами тромбоциты (кровяной тромбопластин).

2. При взаимодействии тромбопластина с протромбином образуется тромбин.

3. Тромбин завершает необратимую реакцию: он расщепляет фибриноген и преобразует его в фибрин.

Как и прочие системы организма, система гемостаза основана на сохранении равновесия между свертывающей и противосвертывающей системами. В последнюю входят следующие компоненты:

1. Простациклин (вещество, препятствующее адгезии и агрегации тромбоцитов).

2. Антитромбин III (вещество, активирующее факторы свертывания крови).

3. Гепарин – вещество, подавляющее образование кровяного тромбопластина и превращение фибриногена в фибрин).


Таблица 2

Факторы свертывания крови


После того как сгусток крови образовался и выполнил свои кровоостанавливающие и защитные функции, организму необходимо избавиться от него, то есть запустить фибринолитическую систему. Этот сложный ферментативный процесс происходит под воздействием плазмина. В крови плазмин содержится в неактивной форме в виде так называемого плазминогена. Он преобразуется в плазмин под влиянием ряда активаторов, обнаруженных в самых различных тканях.

Показатели сосудисто-тромбоцитарной стадии свертывания

Длительность кровотечения

Как уже говорилось выше, эта стадия характеризуется образованием рыхлой тромбоцитарной пробки. Получить общее представление об эффективности этого процесса позволяет определение длительности кровотечения.

Для этого прокалывают мочку уха на глубину примерно 3,5 мм, после чего каждые 20–30 сек. стерильной фильтровальной бумагой с уха снимают выступающую капельку крови. В норме появление новых капель прекращается через 2–4 мин. после прокола. Это и есть время (длительность) кровотечения. Увеличение данного показателя прежде всего говорит либо о тромбоцитопении, либо об изменении свойств тромбоцитов или сосудистой стенки.

Образование первичной рыхлой пробки обеспечивается адгезией и агрегацией тромбоцитов, о которых можно судить по определяемым в лаборатории индексу адгезивности (в норме он равен 20–50 %) и спонтанной или индуцированной агрегации тромбоцитов. В норме спонтанная агрегация либо не наблюдается, либо весьма незначительна. Она повышается при:

• атеросклерозе;

• тромбозах;

• предтомботических состояниях;

• инфаркте миокарда;

• сахарном диабете.


Ретракция кровяного сгустка

В результате коагуляции кровь образует сгусток, при сокращении выделяющий сыворотку. О сокращении, или ретракции кровяного сгустка, судят по объему выделенной при этом сыворотки. Индекс ретракции в норме равен 0,3–0,5 и уменьшается вследствие уменьшения количества тромбоцитов или их функциональных дефектах.

Показатели стадии коагуляции (плазменной стадии гемостаза)

Время свертывания

Общее представление о функциональном состоянии системы коагуляции дает время свертывания цельной крови. Проще всего его можно определить методом Моравица. На часовое стекло наносят каплю крови, взятую из пальца. Каждые 30 сек. по поверхности капли проводят запаянным стеклянным капилляром. Время, когда за капилляром потянутся фибриновые нити, и будет временем свертывания.

Кроме метода Моравица существует еще более 30 методов определения времени свертывания крови, из-за чего норма свертываемости может колебаться от 2 до 30 мин. Унифицированными считаются метод Сухарева (норма 2–5 мин.) и метод Ли-Уайта (норма 5–8 мин.). Свертываемость крови понижена при:

• ряде заболеваний печени;

• апластической анемии;

• гемофилии.

Примерно те же характеристики имеет и время рекальцификации плазмы. Его изменения сигнализируют о тех же заболеваниях, что и изменения свертываемости крови. В норме этот показатель колеблется от 60 до 120 сек.


Толерантность плазмы к гепарину

В отличие от времени свертывания, толерантность плазмы к гепарину говорит не только об общем состоянии системы коагуляции, но и косвенно характеризует содержание в крови протромбина. Этот показатель измеряется временем образования сгустка фибрина после добавления гепарина и хлорида кальция. В норме он равен 7–15 мин. Понижение толерантности плазмы к гепарину фиксируется при увеличении этого времени больше 15 мин.


Активированное частичное тромбопластиновое время (АЧТВ)

Это отрезок времени, за который сгусток фибрина образуется в плазме, бедной тромбоцитами. Определение АЧТВ – весьма чувствительный метод, характеризующий интенсивность выработки тромбопластина. У здорового взрослого человека это время равно 30–40 сек. Показатель заметно меняется в течение суток: повышается утром и понижается к вечеру.


Протромбиновое время

Это время образования сгустка фибрина при добавлении хлорида кальция и тканевого стандартизированного тромбопластина. Результат можно выразить в секундах (норма 11–15 сек.) или в виде протромбинового индекса (сравнив с протромбиновым временем здорового человека). В системе СИ в норме протромбиновый индекс равен 0,93–1,07. Увеличение протромбинового времени наблюдается при:

• заболеваниях печени;

• дефиците витамина К;

• внутрисосудистом свертывании крови;

• фибриногенолизе;

• повышении уровня антитромбина;

• некоторых онкологических заболеваниях;

• геморрагической болезни новорожденных;

• эритроцитозе;

• дефиците фактора IX.


Содержание фибриногена

Фибриноген – растворимая форма предшественника нерастворимого фибрина – главного компонента кровяного сгустка. Концентрация фибриногена в крови в норме равна 2–4 г/л и повышается при:

• инфаркте миокарда;

• предтромботических состояниях;

• ожогах;

• в последнем триместре беременности;

• после родов;

• хирургических вмешательствах;

• воспалительных процессах;

• злокачественных новообразованиях.

Понижение концентрации фибриногена, как правило, сигнализирует о тяжелых дисфункциях печени.

Показатели фибринолитической активности

Интенсивность фибринолиза определяют по скорости растворения сгустка фибрина. Для этого можно использовать так называемый эуглобулиновый метод, в норме дающий время лизиса эуглобулинового сгустка 3–4 ч. Есть также более простой метод Котовщиковой, по нему норма колеблется от 12 до 16 %.

Активация фибринолиза (сокращение времени лизиса) наблюдается при:

• внутрисосудистом свертывании крови;

• циррозе печени;

• раке простаты;

• оперативном вмешательстве на простате;

• шоке;

• хирургических вмешательствах на ткани легких;

• «акушерских осложнениях.

Угнетение фибринолиза (удлинение времени лизиса) говорит о:

• геморрагическом васкулите;

• тромбозе;

• гипо– и апластических процессах кроветворения.

Глава 3
Бактериологическое исследование крови
Медицинская микробиология

Микробиология – это раздел биологии, занимающийся изучением микроорганизмов, главным образом вирусов, бактерий, грибов (в особенности дрожжей), одноклеточных водорослей и простейших. Эта разнородная, искусственно объединенная группа микроскопически малых организмов составляет предмет одной науки в силу того, что для их изучения используются методы, первоначально разработанные для исследования бактерий. В основе микробиологических методов лежит получение чистых культур, выращенных из одной клетки. (Способы культивирования клеток многоклеточных организмов тоже заимствованы из бактериологии.) Создателем микробиологии считается Луи Пастер (1822–1825). Различают общую, медицинскую и техническую микробиологии. Медицинская микробиология – раздел микробиологии, изучающий болезнетворные организмы. В курсы медицинской микробиологии обычно включают также иммунологию и изучение более крупных паразитов, таких как черви и насекомые.

Многие микробы патогенны для человека, животных и растений и являются причиной разнообразных заболеваний. Медицинская микробиология изучает пути распространения инфекции, чувствительность возбудителей инфекционных болезней к антибиотикам и механизмы их патогенного действия. В клинических лабораториях при обследовании больных обычно проводят высевание и культивирование патогенных микробов, чтобы их затем идентифицировать и подобрать эффективное лечение. Другое прикладное направление – промышленная микробиология (получение антибиотиков, использование микроорганизмов при обработке пищевых продуктов, предохранение материалов от порчи и разложения, облагораживание почвы, извлечение металлов из руд и промышленных отходов, разработка способов получения белка из нефти). Наконец, сельскохозяйственная микробиология специализируется на повышении плодородия почвы и предупреждении болезней сельскохозяйственных животных.

Метаболическая активность микроорганизмов очень высока: они осуществляют фиксацию азота воздуха и тем самым повышают плодородие почвы; вносят основной вклад в фотосинтетическую продуктивность Мирового океана; разрушают органические отходы и продукты жизнедеятельности человека, обеспечивая их рециклизацию.

Бактериологическая лаборатория и бактериологическое исследование

Бактериологическая лаборатория – подразделение, выполняющее микробиологические исследования. Существуют клинические, санитарно-бактериологические, контрольные, ветеринарные, сельскохозяйственные, пищевые и другие бактериологические лаборатории.

Бактериологическое исследование – совокупность методов, применяемых для обнаружения и установления природы бактерий, выделенных от больных, бактерионосителей или из объектов окружающей среды. Бактериологическое исследование проводят с диагностической целью при инфекционных болезнях, а также при обследовании на бактерионосительство и определении санитарно-гигиенического состояния объектов окружающей среды.

Выбор материала для бактериологического исследования определяется целью исследования, биологическими свойствами микробов, условиями обитания их в исследуемом объекте, патогенезом заболевания (с учетом места наибольшей концентрации возбудителя и путей его выведения из организма). Так, при сепсисе или болезни, сопровождающейся бактериемией (например, при брюшном тифе), для обнаружения возбудителя берут кровь, при дизентерии – испражнения, при пневмонии – мокроту, при подозрении на анаэробную инфекцию – материал из глубоких слоев тканей и т. д. Успех бактериологического исследования в значительной степени зависит от правильности взятия материала и соблюдения определенной осторожности при его транспортировке. У больного материал для исследования рекомендуется брать до начала лечения химиотерапевтическими препаратами. Исследуемый материал собирают в стерильную посуду, соблюдая правила асептики, и в возможно короткие сроки доставляют в бактериологическую лабораторию. Транспортировку инфицированного материала производят в закрытой посуде, помещенной в специальные биксы, пеналы, чемоданы и т. д. К материалу, посылаемому для бактериологического исследования, прилагают сопроводительный документ, включающий следующие сведения: характер направляемого материала и дату его взятия, фамилию, имя, отчество, возраст и адрес больного, дату начала заболевания, предполагаемый клин, диагноз. Доставленный в лабораторию материал необходимо как можно быстрее исследовать.

Бактериологическое исследование материала начинается с его бактериоскопии. Исследование под микроскопом окрашенных мазков (бактериоскопический метод) позволяет в некоторых случаях идентифицировать возбудителя заболевания (например, микобактерии туберкулеза, гонококки). Однако возможности этого метода ограничены, и его обычно используют как ориентировочный.

Основным методом бактериологического исследования является бактериологический метод, который заключается в выделении чистой культуры возбудителя (популяции, содержащей бактерии одного вида) и ее идентификации. Под идентификацией микроорганизмов подразумевают изучение их свойств с целью установления принадлежности к той или иной систематической группе (роду, виду). Бактериологический метод представляет собой многоэтапное исследование. В связи с тем, что исследуемый материал чаще всего содержит смесь микроорганизмов, основой бактериологического метода является выделение чистой культуры возбудителя, которое производят на первом этапе исследования. С этой целью делают посев исследуемого материала, как правило, на плотные питательные среды, выбор которых обусловливается свойствами предполагаемого возбудителя. Применяют по возможности элективные среды, на которых растет только данный вид бактерий, или дифференциально-диагностические среды, позволяющие отличить предполагаемого возбудителя от других микроорганизмов. Например, для выделения дифтерийной палочки используют теллуритовые среды, при бактериологической диагностике кишечных инфекций – среду Эндо, висмут-сульфитный агар и т. д. При выделении условно-патогенных микроорганизмов посев материала производят на универсальные питательные среды, например кровяной агар. Все манипуляции, связанные с посевом и выделением бактериальных культур, осуществляют над пламенем горелки. Посев материала на питательные среды производят либо бактериальной петлей, либо стеклянным или металлическим шпателем таким образом, чтобы рассеять находящиеся в исследуемом материале бактерии по поверхности питательной среды, в результате чего каждая бактериальная клетка попадает на свой участок среды. При выделении чистой культуры возбудителя из патологического материала, в значительной мере загрязненного посторонней микрофлорой, иногда пользуются биологическим методом выделения чистой культуры: исследуемым материалом заражают чувствительных к возбудителю лабораторных животных. Так, при исследовании мокроты больного на содержание в ней пневмококков мокроту внутрибрюшинно вводят белым мышам и через 4–6 часов из их крови получают чистую культуру пневмококка. В том случае, если в исследуемом материале предполагается содержание малого количества возбудителя, для его накопления посев производят на жидкую питательную среду – среду обогащения (оптимальную для данного микроорганизма). Затем из жидкой питательной среды осуществляют пересев на плотные среды, разлитые в чашках Петри. Засеянную среду помещают в термостат обычно при t° 37° на 18–24 ч. Посевы анаэробов помещают в анаэростат, откуда удаляют воздух и заменяют его газовой смесью без кислорода.

На втором этапе проводят исследование колоний бактерий, происходящих от одной бактериальной клетки и выросших на плотной питательной среде (колония и является чистой культурой возбудителя). Производят макроскопическое и микроскопическое исследование колоний в проходящем и отраженном свете, невооруженным глазом, с помощью лупы, под малым увеличением микроскопа. Отмечают культуральные свойства колоний: их величину, форму, цвет, характер краев и поверхности, консистенцию, структуру. Далее часть каждой из намеченных колоний используют для приготовления мазков, окрашивают мазки по Граму, микроскопируют, определяя морфологические и тинкториальные (отношение к окраске) свойства выделенной культуры и одновременно проверяя ее чистоту. Оставшуюся часть колонии пересевают в пробирки со скошенным агаром (или другой оптимальной для данного вида средой) с целью накопления чистой культуры для более полного ее изучения. Пробирки помещают на 18–24 ч в термостат. Кроме перечисленных исследований на втором этапе нередко подсчитывают количество выросших колоний. Особенно большое значение это имеет при заболеваниях, вызванных условно-патогенными микроорганизмами, так как в этих случаях судить о ведущей роли того или иного возбудителя можно лишь по содержанию его в патологическом материале в большом количестве и преобладанию над другой флорой. Для проведения такого исследования готовят последовательные разведения исследуемого материала, из которых производят высев на чашки с питательной средой, подсчитывают число выросших колоний, умножают на разведение и таким образом определяют содержание микробов в материале.

Третий этап заключается в идентификации выделенной чистой культуры возбудителя и определении его чувствительности к антибиотикам и другим химиотерапевтическим препаратам. Идентификацию выделенной бактериальной культуры осуществляют по морфологическим, тинкториальным, культуральным, биохимическим, антигенным, токсигенным свойствам. Прежде всего делают мазок из культуры, выросшей на скошенном агаре, изучают морфологию бактерий и проверяют чистоту культуры бактерий. Затем производят посев выделенной чистой культуры бактерий на среды Гисса, желатин и другие среды для определения биохимических свойств. Биохимические, или ферментативные, свойства бактерий обусловлены ферментами, участвующими в расщеплении углеводов, белков, вызывающими окисление и восстановление различных субстратов. Причем каждый вид бактерий продуцирует постоянный для него набор ферментов. При изучении антигенных свойств чаще всего используют реакцию агглютинации на стекле. Токсинообразование микробов определяют с помощью реакции нейтрализации токсина антитоксином in vitro или in vivo. В некоторых случаях изучают и другие факторы вирулентности. Перечисленные исследования позволяют определить вид или род возбудителя.

С целью выявления эпидемической цепочки заболевания, в том числе для обнаружения источника инфекции, осуществляют внутривидовую идентификацию бактерий, которая заключается в определении фаготипа (фаговара), изучении антигенных и других свойств выделенных бактерий. Определение фаготипа – фаготипирование производят при стафилококковой инфекции, брюшном тифе, паратифе В. На чашку с питательной средой, засеянную с помощью шпателя (газоном) выделенной чистой культурой, наносят по капле различные диагностические фаги. Если культура чувствительна к данному фагу, наблюдается образование округлой формы участков разрушенных бактерий – так называемые бактериологического исследования негативные колонии (бляшки). Культура возбудителя может быть чувствительна к одному или нескольким фагам.

Для назначения рациональной химиотерапии в связи с широким распространением лекарственно-устойчивых форм бактерий необходимо определение антибиотикограммы – чувствительности или устойчивости выделенной чистой культуры возбудителя к химиотерапевтическим препаратам. С этой целью используют либо метод бумажных дисков, либо более точный, но громоздкий метод серийных разведений. Метод бумажных дисков основан на выявлении зоны подавления роста бактерий вокруг дисков, пропитанных антибиотиками. При применении метода серийных разведений антибиотик разводят в пробирках с жидкой питательной средой и засевают в них одинаковое количество бактерий. Учет результатов проводят по отсутствию или наличию роста бактерий. Полученная антибиотикограмма может служить и эпидемиологическим целям для определения идентичности штаммов.

При выявлении бактерионосительства проводят повторные исследования, т. к. в одной порции материала можно не обнаружить возбудителя.

В настоящее время существуют ускоренные методы идентификации бактерий. Так, в нашей стране применяют СИБ (систему индикаторных бумажек), позволяющую быстро (через 6–12 ч.) и без использования большого числа питательных сред идентифицировать чистую бактериальную культуру. Для экспресс-диагностики инфекционных болезней широко используют иммунофлюоресцентный метод (см. Серологические исследования).


Страницы книги >> Предыдущая | 1 2 3 4 | Следующая
  • 0 Оценок: 0

Правообладателям!

Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.

Читателям!

Оплатили, но не знаете что делать дальше?


Популярные книги за неделю


Рекомендации